七年级找规律专题练习
初一数学规律题

1.观察数列:2,5,10,17,26,…,则它的第6项是:
A.34
B.35(答案)
C.36
D.37
2.找出以下数列的规律,并判断下一个数字:3,7,13,21,…
A.28
B.31(答案)
C.33
D.35
3.若一个数列的前三项为1,3,6,且每一项都是前一项与它的前一项之和,则第四项
为:
A.8
B.9
C.10(答案)
D.11
4.观察图形规律,若第一个图形有1个点,第二个图形有3个点,第三个图形有6个点,
以此类推,第五个图形有多少个点?
A.10
B.15(答案)
C.20
D.25
5.下列哪个选项不符合数列2,4,8,16,…的规律?
A.32
B.64(答案,但此处为设问,实际答案应为不符合规律的选项)
C.128
D.256
6.数列1,4,9,16,…的第n项是:
A.n
B.n2(答案)
C.2n
D.2n
7.一个等差数列的首项是2,公差是3,则它的第4项是:
A.8
B.9
C.11(答案)
D.13
8.观察图形序列:一个正方形,两个三角形,三个圆形,四个矩形,…,则第n个图形
有:
A.n个正方形
B.n个三角形
C.n个与n对应的图形(答案)
D.n+1。
七年级数学找规律专题练习

初一数学找规律专题训练题1、如下图,将一张正方形纸片,剪成四个大小形状一样的小正方形,然后将其中的一个小正方形再按同样的方法剪成四个小正方形,再将其中的一个小正方形剪成四个小正方形,如此循环进行下去;(1)填表:剪的次数 1 2 3 4 5正方形个数(2)如果剪n次,共剪出多少个小正方形?(3)如果剪了100次,共剪出多少个小正方形?(4)观察图形,你还能得出什么规律?2、现有黑色三角形“▲”和“△”共200个,按照一定规律排列如下:▲▲△△▲△▲▲△△▲△▲▲……则黑色三角形有个,白色三角形有个。
3、仔细观察下列图形.当梯形的个数是n时,图形的周长是.11 124、把编号为1,2,3,4,…的若干盆花按右图所示摆放,花盆中的花按红、黄、蓝、紫的颜色依次循环排列,则第8行从左边数第6盆花的颜色为___________色.5、已知一列数:1,―2,3,―4,5,―6,7,…将这列数排成下列形式:第1行 1第2行-2 3第3行-45-6第4行7-89-10第5行11 -1213-1415按照上述规律排下去,那么第10行从左边数第5个数等于.6、观察下列算式:23451=+⨯,24462=+⨯,25473=+⨯,24846⨯+=,请你在察规律之后并用你得到的规律填空:250___________=+⨯, 第n个式子呢? ___________________7、一张长方形桌子可坐6人,按下列方式讲桌子拼在一起。
①张桌子拼在一起可坐______人。
3张桌子拼在一起可坐____人,n张桌子拼在一起可坐______人。
②一家餐厅有40张这样的长方形桌子,按照上图方式每5张桌子拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐______人。
③若在②中,改成每8张桌子拼成1张大桌子,则共可坐_________人。
8、观察下列顺序排列的等式:9×0+1=19×1+2=119×2+3=219×3+4=319×4+5=41……猜想:第n个等式(n为正整数)应为.9、观察下列各式,你会发现什么规律?3×5=15,而15=241-。
七年级数学找规律题

七年级数学找规律题归纳—猜想~~~找规律给出几个具体的、特殊的数、式或图形,要求找出其中的变化规律,从而猜想出一般性的结论.解题的思路是实施特殊向一般的简化;具体方法和步骤是(1)通过对几个特例的分析,寻找规律并且归纳;(2)猜想符合规律的一般性结论;(3)验证或证明结论是否正确,下面通过举例来说明这些问题. 一、数字排列规律题2221、观察下列各算式: 1+3=4=,1+3+5=9=,1+3+5+7=16=… 按此规律 324(1)试猜想:1+3+5+7+…+2005+2007的值 ,(2)推广: 1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少 ,2、下面数列后两位应该填上什么数字呢, 2 3 5 8 12 17 __ __3、请填出下面横线上的数字。
1 1 2 3 5 8 ____ 214、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个( ) 5、有一串数字 3 6 10 15 21 ___ 第6个是什么数,6、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是( ).7、100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“0”的个数为 _________个(二、几何图形变化规律题1、观察下列球的排列规律(其中?是实心球,?是空心球):……从第1个球起到第2004个球止,共有实心球个( 2、观察下列图形排列规律(其中?是三角形,?是正方形,?是圆),,若第一个图形是正方形,则第2008个图形是 (填图形名称). 三、数、式计算规律题1、已知下列等式: 32332333233332 ? 1,1; ? 1,2,3; ? 1,2,3,6; ? 1,2,3,4,10 ;由此规律知,第?个等式是 (2、观察下面的几个算式:1+2+1=4, 1+2+3+2+1=9, 1+2+3+4+3+2+1=16, 1+2+3+4+5+4+3+2+1=25,…根据你所发现的规律,请你直接写出下面式子的结果:1+2+3+…+99+100+99+…+3+2+1=____.1,,n,nn,11+2+3+…+100,,经过研究,这个问题的一般性结论是1+2+3+…+3、,其中,是正整数.2,,nn,1现在我们来研究一个类似的问题:1×2+2×3+…, ,观察下面三个特殊的等式111,,,,,,1,2,1,2,3,0,1,22,3,2,3,4,1,2,33,4,3,4,5,2,3,4 3331,3,4,5,20将这三个等式的两边相加,可以得到1×2+2×3+3×4, 3读完这段材料,请你思考后回答:1,2,2,3,?,100,101,,,,,1,2,3,2,3,4,?,nn,1n,2,? ?1,,,,1,2,3,2,3,4,?,nn,1n,2,2233445522224、已知:2,,2,,3,,3,,4,,4,,5,,5,,338815152424bb2 …,若10,,10,符合前面式子的规律,则a,b,aa规律发现专题训练1(用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案:第(4)个图案中有黑色地砖4块;那么第()个图案中有白色地砖块。
七年级数学找规律题(含答案)

七年级数学找规律题(含答案)1.观察下图,寻找规律,在“?”处填上的数字是( ). A.128 B.136 C.162 D.188 【答案】C2.寻找规律计算1 - 2+3 - 4+5 - 6+…+2015 - 2016等于 ( ) A.0 B.- 1 C.- 1008D.1008【答案】C3.找规律:21-20=20 ;22-21=21 ;23-22=2 2;………利用你的发现,求20+21+22+23+…+22018+22019的值是( ) A .22019 -1 B .22019 +1C .22020 -1D .22020 +1【答案】C4.先找规律,再填数:1111122+-=,111134212+-=,111156330+-=,111178456+-=,…,1120132014+-( )=()12014⨯.【答案】11007,2013. 5.找规律填上合适的数:﹣2,4,﹣8,16, ,64,… 【答案】﹣32.6.寻找规律,根据规律填空:31,152-,353,634-,995, ,…,第n 个数是 . 【答案】1436-14)1(21--+n n n (或:当n 时奇数时,142-n n;当n 时偶数时,142--n n )7.先找规律,再填数: 111111*********1,,,,122342125633078456............111+_______.2011201220112012+-=+-=+-=+-=-=⨯则 【答案】8.找规律填数:﹣1,2,﹣4,8,________ 【答案】﹣169.先找规律,再填数:11+12-1=12,13+14-12=112,15+16-13=130,17+18-14=156,12011+12012-________=120112012⨯ 【答案】10.已知C 32=3×21×2=3, C 53=5×4×31×2×3=10,C 64 =6×5×4×31×2×3×4=15,…观察以上计算过程,寻找规律计算C 85=_____. 【答案】56.11.已知:3212323=⨯⨯=C ,1032134535=⨯⨯⨯⨯=C ,154321345646=⨯⨯⨯⨯⨯⨯=C ,…,观察上面的计算过程,寻找规律并计算=610C .【答案】21012.观察下列各式并找规律,再猜想填空:()()()()223322332248a b a ab b a b x y x xy y x y +-+=++-+=+, ,则()()2223469a b a ab b +-+= ______ .【答案】33827a b + 13.观察下列计算:,,,……从计算结果中找规律,利用规律计算_______________ 【答案】14.已知: 233212C ⨯=⨯=3,35543123C ⨯⨯=⨯⨯=10,3565431234C ⨯⨯⨯=⨯⨯⨯=15,…,观察上面的计算过程,寻找规律并计算:34C =_____. 【答案】4. 15.已知:2332312C ⨯==⨯,3554310123C ⨯⨯==⨯⨯,466543151234⨯⨯⨯==⨯⨯⨯C ,…,观察上面的计算过程,寻找规律并计算C 106=_____. 【答案】21016.找规律:﹣12,2,﹣92,8,﹣252 ,18…,则第7个数为_____;第n 个数为_____(n 为正整数)【答案】﹣492 (﹣1)nn 22.17.观察烟花燃放图形,找规律:依此规律,第n 个图形中共有_________个★. 【答案】2+2n18.找规律,并按规律填上第五个数:,169,87,45,23-- . 【答案】-113219.观察下面的一列数,从中寻找规律,然后按规律填写接下去的3个数.12,34-,56,78-,910,________,________,________,… 【答案】1112-1314 1516- 20.观察表一,寻找规律,表二、表三、表四分别是从表一中截取的一部分,则a b m -+=_____.【答案】4321.观察表一,寻找规律.表二、表三、表四分别是从表一中截取的一部分,其中a+b+c 的值为 .【答案】7622.观察下面的一列数,从中寻找规律,然后按规律写出接下去的三个数.12 ,-34 ,56 ,-78 ,910,… ________,…【答案】-1112;1314;−1516. 23.找规律.下列图中有大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第n 幅图中共有________个.【答案】2n -124.观察下列各组勾股数,并寻找规律:①4,3,5; ②6,8,10; ③8,15,17; ④10,24,26 …… 请根据你发现的规律写出第⑦组勾股数:____________. 【答案】16,63,6525.用火柴棒按以下方式搭“小鱼” .…………搭1条“小鱼”需用8根火柴棒,搭2条“小鱼”需用14根火柴棒,搭3条“小鱼”需用20根火柴棒……观察并找规律,搭10条“小鱼”需用火柴棒的根数为 . 【答案】62 26.观察下列计算111122=-⨯ ,1112323=-⨯,1113434=-⨯,1114545=-⨯,……, (1)第n 个式子是_____________________________________; (2)从计算结果中找规律,利用规律计算:112⨯+123⨯+134⨯+145⨯+…+120092010⨯ 【答案】(1)()11111n n n n =-++;(2)20092010. 27.探究:()21112222122-=⨯-⨯=, () 3222? 2-==, ()4322? 2-==,……(1)请仔细观察,写出第4个等式; (2)请你找规律,写出第n 个等式;(3)计算:012201620172018222222+++⋅⋅⋅⋅⋅⋅++-. 【答案】(1)544442222122-=⨯-⨯=;(2)12222122n n n n n +-=⨯-⨯=;(3)-128.阅读下文,寻找规律:已知1x ≠时, ()()2111x x x -+=-,()()23111x x x x -++=-, ()()234111x x x x x -+++=-……(1)填空: ()1(x - 5)1x =-. (2)观察上式,并猜想:①()()211n x x x x -+++⋅⋅⋅+= . ②()()10911x x x x -++⋅⋅⋅++= . (3)根据你的猜想,计算:①()()234512122222-+++++= . ②23420161+3+3+3+33⋅⋅⋅⋅⋅⋅=_____________________【答案】(1)2341+x x x x +++(2)11n x+-; 111x -(3)612- (或 -63); 20173-1229.小明同学在一次找规律的游戏中发现如下的数字和规律,请你按照所给的式子,解答下列问题:21342+== 213593++== 21357164+++== 213579255++++==()1试猜想:135791129++++++⋯+=①______.()()135********n n ++++++⋯+-++=②______.()2用上述规律计算:2123255759+++⋯++=______.【答案】(1)①225;②(n+1)²(2)80030.找规律并解答问题.(1)按下图方式摆放黑色围棋子,填一填,每个图共需几枚棋子.(2)根据你发现的规律,算一算第13个图,共需要( )枚棋子.【答案】(1)详见解析;(2)40枚.31.观察表一,寻找规律.表二、表三分别是从表一中选取的一部分,则a=,ba+= .表一表二表三【答案】17=a2372=+ba32.细观察,找规律.下列各图中的1MA与nNA平行.()1图①中的12A A∠+∠=______ 度,图②中的123A A A∠+∠+∠=______ 度,图③中的1234A A A A ∠+∠+∠+∠=______ 度, 图④中的12345A A A A A ∠+∠+∠+∠+∠=______ 度,⋯,第⑩个图中的12311A A A A ∠+∠+∠+⋯+∠=______ 度()2第n 个图中的1231n A A A A +∠+∠+∠+⋯+∠=______ ()3请你证明图②的结论.【答案】(1)180;360;540;720;1800;(2)180n °;(3)详见解析. 33.找规律:(1)填空:41=________;42=______;43=______;44=______;45=________;46=________;…(2)你发现4的幂的个位数字有什么规律? (3)4250的个位数是什么数字?为什么?【答案】(1)4, 16, 64,256,1224,4896;(2)是循环数;(3)6. 34.观察等式找规律: ①第1个等式:22﹣1=1×3; ②第2个等式:42﹣1=3×5; ③第3个等式:62﹣1=5×7; ……(1)写出第5个等式: ; 第6个等式: ;(2)写出第n 个等式(用字母n 表示): ; (3)求111113355740254027++++⨯⨯⨯⨯的值.【答案】(1)102﹣1=9×11;122﹣1=11×13;(2)4n 2﹣1=(2n ﹣1)(2n+1);(3)2013402735.观察表l ,寻找规律.表2是从表l 中截取的一部分,其中a ,b ,c 的值分别为( )A.20,25,24B.25,20,24C.18,25,24D.20,30,25【答案】A36.阅读下文,寻找规律.计算:(1﹣x)(1+x)=1﹣x2,(1﹣x)(1+x+x2)=1﹣x3,(1﹣x)(1+x+x2+x3)=1﹣x4….(1)观察上式,并猜想:(1﹣x)(1+x+x2+…+x n)= .(2)根据你的猜想,计算:1+3+32+33…+3n= .(其中n是正整数)【答案】(1)1﹣x n+1,(2)﹣.37.如图,观察由棱长为1的小立方体摆成的图形,寻找规律:如图①中:共有1个小立方体,其中1个看得见,0个看不见;如图②中:共有8个小立方体,其中7个看得见,1个看不见;如图③中:共有27个小立方体,其中19个看得见,8个看不见;…,则第⑥个图中,看得见的小立方体有_____个.【答案】9138.找规律.一张长方形桌子可坐6人,按下图方式讲桌子拼在一起。
七年级找规律经典题汇总带答案

一、数字排列规律题1、观察下列各算式: 1+3=4=22,1+3+5=9=23,1+3+5+7=16=24… 按此规律 (1)试猜想:1+3+5+7+…+2005+2007的值 ?(2)推广: 1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少 ?2、下面数列后两位应该填上什么数字呢? 2 3 5 8 12 17 __ __3、请填出下面横线上的数字。
1 1 2 3 5 8 ____ 214、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个( )二、几何图形变化规律题1、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球 个.2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是 (填图形名称). 三、数、式计算规律题 1、已知下列等式:① 13=12; ② 13+23=32; ③ 13+23+33=62; ④ 13+23+33+43=102 ; 由此规律知,第⑤个等式是 . 2、观察下面的几个算式:1+2+1=4, 1+2+3+2+1=9, 1+2+3+4+3+2+1=16, 1+2+3+4+5+4+3+2+1=25,… 根据你所发现的规律,请你直接写出下面式子的结果: 1+2+3+…+99+100+99+…+3+2+1=____. 3、,,,,已知:24552455154415448338333223222222⨯=+⨯=+⨯=+⨯=+规律发现专题训练……1.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案:第(4)个图案中有黑色地砖4块;那么第(n )个图案中有白色..地砖 块。
2.我国著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事非。
初一数学找规律题及答案

初一数学找规律题及答案归纳法——找规律研究归纳法——找规律的具体方法和步骤是:(1)通过对几个特例的分析,寻找规律并归纳;(2)猜想符合规律的一般性结论;(3)验证或证明结论是否正确。
下面通过举例来说明这些问题。
一、数字排列规律题1、观察下列各算式:1+3=4=22,1+3+5=9=32,1+3+5+7=16=42按此规律1)猜想:1+3+5+7+…+2005+2007的值是多少?2)推广:1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少?2、下面数列后两位应该填上什么数字呢?xxxxxxxx____3、请填出下面横线上的数字。
____214、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个数是什么?5、有一串数字xxxxxxxx___第6个是什么数?6、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是().A.1 B.2 C.3 D.47、100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1.那么这100个数中“ ”的个数为_________个.二、几何图形变化规律题1、观察下列球的排列规律(其中●是实心球,○是空心球):从第1个球起到第2004个球止,共有实心球个.2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是(填图形名称).三、数、式计算规律题1、已知下列等式:①13=12;②13+23=32;③13+23+33=62;④13+23+33+43=102;由此规律知,第⑤个等式是.2、观察下面的几个算式:1+2+1=4。
1+2+3+2+1=9。
1+2+3+4+3+2+1=16。
1+2+3+4+5+4+3+2+1=25,…根据你所发现的规律,请你直接写出下面式子的结果:1+2+3+…+99+100+99+…+3+2+1=____.3、1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+n1n n1,其中n是正整数。
(完整版)七年级找规律经典题汇总带答案
29、观察下列图形,根据变化规律推测第 100 个与第 个图形位置相同.
- 11 -
(完整版)七年级找规律经典题汇总带答案(word 版可编辑修改)
30、如图,用火柴棒按以下方式搭小鱼,搭 1 条小鱼用 8 根火柴棒,搭 2 条小鱼用 14
4、34 .考虑时,可以从第一个数开始,每 3 个数加一个括号(1,2,3)(,2,3,4)(,3,4,5),…… 一共加了 33 个括号,剩下的一个必是第 100 个。每个括号的第一个数分别是 1,2, 3,……因此第 100 个数必然是 34. 二、 1、602 2、圆 三、1、13 23 33 43 53 152
22、观察下列图形的排列规律(其中☆,□,●分别表示五角星、正方形、圆)●□☆●●□☆
●□☆●●□☆●…若第一个图形是圆,则第 2008 个图形是 (填名 称). 23、下列图中有大小不同的菱形,第 1 幅图中有 1 个菱形,第 2 幅图中有 3 个菱形,第 3 幅图中有 5 个菱形,按照图示的规律摆下去,则第 n 幅图中有 个菱形.
a
a
规律发现专题训练
1.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案:第(4)个
图案中有黑色地砖 4 块;那么第( n )个图案中有白色地砖
块.
……
2。我国著名数学家华罗庚曾说过:“数形结合百般好,
第3题
隔裂分家万事非。”如图,在一个边长为 1 的正方形纸版
上,依次贴上面积为 1 , 1 ,1 ,…, 1 的矩形彩色纸片(n 为大于 1 的整数)。请你
根据你所发现的规律,请你直接写出下面式子的结果: 1+2+3+…+99+100+99+…
七年级找规律试题及答案
七年级找规律试题及答案
一、选择题
1. 下列数列中,哪一个是按照规律排列的?
A. 2, 4, 8, 16, 32
B. 1, 3, 5, 7, 11
C. 3, 6, 12, 24, 48
D. 2, 5, 8, 11, 14
答案:A
2. 观察下列数列,找出缺失的数字。
2, 4, 8, 16, ?
A. 32
B. 24
C. 18
D. 20
答案:A
二、填空题
3. 完成下列数列:1, 2, 4, 8, _, _, 128。
答案:16, 32
4. 找出下列数列的规律,并填写缺失的数字:3, 7, 15, 31, _, _。
答案:63, 127
三、解答题
5. 一个数列的前几项是:2, 5, 8, 11, 14, ... 请找出数列的第10
项。
答案:第10项是23。
6. 观察下列数列,找出规律并写出下一个数字:1, 4, 9, 16, 25, 36, _。
答案:49
四、应用题
7. 一个等差数列的前三项分别是2, 5, 8,求这个数列的第10项。
答案:第10项是23。
8. 一个等比数列的前三项分别是3, 6, 12,求这个数列的第5项。
答案:第5项是48。
五、思考题
9. 一个数列的前几项是:1, 2, 4, 7, 11, ... 请找出数列的第100项。
答案:第100项是2584。
10. 一个数列的前几项是:1, 1, 2, 3, 5, 8, 13, ... 请找出数列的第10项。
答案:第10项是55。
十道初中数学找规律的题型及解题思路
十道初中数学找规律的题型及解题思路这里有10道初中数学找规律的题目,涵盖了常见的数列、图形等多种类型,希望能帮助学生更好地掌握找规律的技巧:数列找规律1.等差数列:1.1, 4, 7, 10, ... 下一个数是多少?2.100, 97, 94, ... 第10个数是多少?2.等比数列:1.2, 4, 8, 16, ... 第8个数是多少?2.81, 27, 9, ... 第6个数是多少?3.混合数列:1.1, 4, 9, 16, 25, ... 下一个数是多少?(提示:考虑每个数的平方)2.2, 5, 10, 17, ... 下一个数是多少?(提示:观察相邻两数的差)4.周期数列:1.1, 2, 3, 1, 2, 3, ... 第20个数是多少?2.A, B, C, A, B, C, ... 第100个数是多少?图形找规律图形的变化:1.一组图形,每个图形由小方块组成,观察图形的变化规律,画出下一个图形。
图形的旋转:1.一个图形不断旋转,观察旋转的规律,画出旋转后的图形。
图形的翻转:1.一个图形不断翻转,观察翻转的规律,画出翻转后的图形。
数字与图形结合数字与图形对应:1.一组图形,每个图形对应一个数字,找出数字与图形之间的对应关系。
图形中的数字规律:1.一个图形中包含多个数字,找出数字之间的规律。
综合题型1.数字和图形的综合:1.一组图形和数字交替出现,找出数字和图形之间的关系。
解题技巧:•观察:仔细观察数列或图形的变化规律,找出其中的共同点和差异点。
•比较:比较相邻的数或图形,找出它们的递增、递减或其他变化关系。
•联想:将题目与以前学过的知识联系起来,寻找解题思路。
•归纳:根据观察和比较的结果,归纳出一般性的规律。
•验证:将得到的规律代入后面的数或图形中进行验证,确保规律的正确性。
注意事项:•找规律题的答案可能不唯一,只要找到一种合理的规律即可。
•遇到困难时,可以尝试从不同的角度去观察和分析。
七年级数学找规律题
七年级数学找规律题归纳—猜想~~~找规律给出几个具体的、特殊的数、式或图形,要求找出其中的变化规律,从而猜想出一般性的结论.解题的思路是实施特殊向一般的简化;具体方法和步骤是(1)通过对几个特例的分析,寻找规律并且归纳;(2)猜想符合规律的一般性结论;(3)验证或证明结论是否正确,下面通过举例来说明这些问题.一、数字排列规律题1、观察下列各算式:1+3=4=2的平方,1+3+5=9=3的平方,1+3+5+7=16=4的平方…按此规律(1)试猜想:1+3+5+7+…+2005+2007的值?(2)推广: 1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少?2、下面数列后两位应该填上什么数字呢?2 3 5 8 12 17 __ __3、请填出下面横线上的数字。
1 123 5 8 ____ 214、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个数是什么?5、有一串数字 3 6 10 15 21 ___ 第6个是什么数?6、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是().A.1 B.2 C.3 D.47、100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“0”的个数为 _________个.二、几何图形变化规律题1、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球个.2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是(填图形名称).三、数、式计算规律题1、已知下列等式:① 13=12;② 13+23=32;③ 13+23+33=62;④ 13+23+33+43=102;由此规律知,第⑤个等式是.2、观察下面的几个算式:1+2+1=4,1+2+3+2+1=9,1+2+3+4+3+2+1=16,1+2+3+4+5+4+3+2+1=25,…根据你所发现的规律,请你直接写出下面式子的结果:1+2+3+…+99+100+99+…+3+2+1=____.…规律发现专题训练1.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案:第(4)个图案中有黑色地砖4块;那么第(n )个图案中有白色..地砖 块。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
找规律专题练习1、你喜欢吃拉面吗?拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了很多细的面条,如下面草图所示。
这样捏合到第 次后可拉出64根细面条。
第一次捏合 第二次捏合 第三次捏合2、如下图,将一张正方形纸片,剪成四个大小形状一样的小正方形,然后将其中的一个小正方形再按同样的方法剪成四个小正方形,再将其中的一个小正方形剪成四个小正方形,如此循环实行下去; (1)填表:剪的次数1 23 4 5 正方形个数(2)如果剪n 次,共剪出多少个小正方形? (3)如果剪了100次,共剪出多少个小正方形? (4)观察图形,你还能得出什么规律?3、小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数的和是 .–6 –4 –3 –2 -1 0 1 2 4 5 x0.010.1110100100021001x-(1)根据上表结果,描述所求得的一列数的变化规律 (2)当x 非常大时,2100x的值接近于什么数? 5、现有黑色三角形“▲”和“△”共200个,按照一定规律排列如下: ▲ ▲△△▲△▲▲△△▲△▲▲……则黑色三角形有 个,白色三角形有 个。
6、 仔细观察下列图形.当梯形的个数是n 时,图形的周长是 . 11 12 7、用火柴棒按如下方式搭三角形:(1) 填写下表:(2) 照这样的规律搭下去,搭n 个这样的三角形需要______根火柴棒8、把编号为1,2,3,4,…的若干盆花按右图所示摆放,花盆中的花按红、黄、蓝、紫的颜色依次循环排列,则第8行从左边数第6盆花的颜色为___________色. 9、已知一列数:1,―2,3,―4,5,―6,7,… 将这列数排成下列形式:第1行 1第2行 -2 3第3行 -4 5 -6第4行 7 -8 9 -10第5行 11 -12 13 -14 15 … …按照上述规律排下去,那么第10行从左边数第5个数等于 . 10、观察下列算式:23451=+⨯ ,24462=+⨯,25473=+⨯,24846⨯+=,请你在察规律之后并用你得到的规律填空:250___________=+⨯, 第n 个式子呢? ___________________11、一张长方形桌子可坐6人,按下列方式讲桌子拼在一起。
①张桌子拼在一起可坐______人。
3张桌子拼在一起可坐____人,n 张桌子拼在一起可坐______人。
②一家餐厅有40张这样的长方形桌子,按照上图方式每5张桌子拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐______人。
③若在②中,改成每8张桌子拼成1张大桌子,则共可坐_________人。
12、用计算器计算下列各式,并将结果填写在横线上。
① 1×7×15873= ② 2×7×15873= ③ 3×7×15873= ④ 4×7×15873=你发现了什么规律?把你发现的规律用简练的语言写出来; 13、观察下列顺序排列的等式:9×0+1=19×1+2=11 9×2+3=21 9×3+4=31 9×4+5=41 ……猜想:第n 个等式(n 为正整数)应为 .14、 一个两位数的个位数是a ,十位数字是b ,请用代数式表示这个两位数是__________________。
15、 观察下列各式:31=3,32=9,33=27,34=81,35=243,36=729…你能从中发现底数为3的幂的个位数有什么规律吗?根据你发现的规律回答:32004的个位数字是 .16、观察下列各式,你会发现什么规律?3×5=15,而15=241-。
5×7=35,而35=261- ……11×13=143,而143=2121-将你猜想到的规律用只含一个字母的式子表示出来:_______。
17、问题:你能比较20052006和20062005的大小吗?为了解决这个问题,我们先把它抽象成数学问题,写出它的一般形式,即比较n n+1和(n+1)n 的大小(n 为正整数),我们从n=1,n=2,n=3……这些简单的情况入手,从中发现规律,经过归纳,猜出结论。
(1)通过计算,比较下列各组数字大小①12______22 ②23______32 ③ 34________43④45______54 ⑤54______65 ⑥67_________76(2)把第(1)题的结果经过归纳,你能得出什么结论?你能用只含有一个字母的式子表示吗?(3)根据上面的归纳猜想得到的结论,试比较两个数的大小(1分)20052006________20062005(填”>”,”<”, “=”)18、为了美化城市,某商场在门前的空地上用花盆按如图所示的方式搭正方形,(1) 填写下表(2) 按这个规律搭下去,搭第n 层正方形,需要________________盆花? 19、下面有三组数,请你填上合适的运算符号,使每一组数的结果都为10。
(1) 1 5 5 9 =10 ; (2) 3 3 3 3 =10 ; (3) 1 1 9 9 =1020、小红和小花在玩一种计算的游戏,计算的规则是dcba=ad -bc 。
现在轮到小红计算4321 的值,请你帮忙算一算得多少?21、黑蚂蚁和红蚂蚁都认为自己跑得比对方快,刚好它们看到地上的几个半圆(图1),于是它们决定比一比。
黑蚂蚁沿着大半圆从甲处跑到乙处;红蚂蚁沿着两个小半圆也从甲处跑到乙处。
两只蚂蚁同时起跑,说也奇怪,两只蚂蚁同时到达了乙处。
(1) 两只蚂蚁请你协助判断:谁跑得快?(2)两只蚂蚁对你的判断结果很不满意,决定再到(图2)的几个半圆处再比赛一次,请你猜一猜,哪一只蚂蚁先从甲处跑到乙处?22.(1)3个球队实行单循环赛(参赛的每一个队都与其它所有各队比赛一场),总的比赛场数是多少?4个球队呢?m 个球队呢?(代数式表示出来)(2)当m=12时,总共比赛几场? 23.按一定规律排列的一串数:112312345123,,,,,,,,,,,, (133355555777)------中,第98个数是_____________14.下面的算式里,符号○、△、和□分别代表三个不同的自然数,这三个数的和是________24.一群整数朋友按照一定的规律排成一排,可排在□位置的数跑掉了,请帮它们把跑掉的朋友找回来。
(1)5,8,11,14,□,20; (2)1,3,7,15,31,63,□; (3)1,1,2,3,5,8,□,21 25.下列两列数:2,4,6,8,10,12,……1994;6,13,20,27,34, (1994)这两列数中,相同的数的个数是( ) A 、142 B 、143 C 、284 D 、28526.一串数字的排列规律是:第一个数是20,从第二个数起,每一个数比前一个数小8(1)第10个数是多少?(2)第n 个数是多少?(3)第几个数是—6027.某仓库堆放一批圆木,一共20层,第一层3根,每往下一层多1根,问这堆圆木一共有多少根?28星期日 星期一 星期二 星期三 星期四 星期五 星期六 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1920 21 22 23 24 25 262728293031(1) 从左下角到右上角的三个数字之和为45,那么这9个数的和是多少?这9个日期中最后一天是1月几日?(2) 用这样的方框能否圈出总和为162的9个数?29.观察下列数据,按某种规律在横线上填上适当的数:1,43-,95,167-,259, ,… 30.如图,△ABC 中,D 是边BC 上的中点, F 是线段CD 的中点,E 是边AC 的中点,则A EFDCB△ □○ 1111181=+++图中有_______条线段,有________个角,若△DEF的面积是2,则△ABC的面积是________31.平面内两两相交的6条直线,其交点个数最少为m个,最多为n个,则m+n等于()A、12B、16C、20D、以上都不对32.如图,能够看成是边长为4的小正方形的巧克力糖,请你用尽可能多的不同方法把它分成形状、大小完全相同的四块,要求不把正方形糖块划破(至少五种方法)33.在某月日历上一个竖列相邻的五个数之和为80,这五个数是______________________34.某月日历有一竖列四个日期,其中第二个日期与第四个日期的和是36,那么第三个日期是___________35.今年暑假,李老师一家三口人外出旅行一周,这个周各天的日期之和是91,那么李老师是_________号回家的36.如果这个月的5号是星期三,则20号是星期_________37.三个连续偶数中,n是最小的一个,这三个数的和为_________。
38.下列图形中三角形的个数是()A.4个B.6个C. 9个D.10个39、至少找出下列几何体的4个共同点40、观察公式:公式1:3223333)(axaaxxax+++=+公式2:4322344464)(axaaxaxxax++++=+(1)这两个公式有什么特点?(2)利用公式计算:)21()21(24)21(26)21(24232234-+-⨯⨯+-⨯⨯+-⨯⨯+41、下面有三组数,请你填上合适的运算符号,使每一组数的结果都为10。
(1) 1 5 5 9 =10 ;(2)3 3 3 3 =10 ;(3)1 1 9 9 =10 42.造一个含有字母p和q的代数式,使得不论p、q取何值,代数式的值永远不是正的。
43.图是2002年6月份的日历,现用一矩形在日历中任意框出4个数 a b ,请用一个等式表示,a、b、c、d之间的关系__________。
c d44.右图,是用火柴棒摆成的一个大三角形,它是由九个小三角形组成的,试将1、2、3、4、5、6、7、8、9分别填入这9个小三角形哪(每个小三角形内只填一个数),要求靠近大三角形每条边的每五个数相加的和相等,请想一想,怎样填45.王答应了大臣的一个要求:即在国际象棋棋盘上“第1格放一粒米,第二格放2粒米,第3格放4粒米,然后是8粒、16粒、32粒……一直到64格”。
但是不久国王九发现国库里没有这么多米,不过国王的话不能不算数,国王又不好意思向别人借,怎么办呢?请你帮国王想一个好办法来解决这个问题。
(办法必须合乎情理,有创意者可适当多加分。
办法多者亦可多加分)46. 如果连结多边形的一边上一点与其余各顶点可将某多边形分割成2004个三角形,求该多边形的边数.47. 如图1-26,在∆ABC 中,点D,E,F 分别是AB,BC,AC 三边中点,图中与∆BOD 面积相等的三角形有几个?EB C48. 观察图1-27中有几个三角形?由此你发现三角形的个数有什么规律呢?一个三角形 3个三角形 ______个三角形 ______个三角形_________个三角形(n 个点) 49. 求个数(1) (2)(1)图1-28(1)中有多少个三角形? (2)图1-28(2)中有多少个四边形?50. 如图1-29所示,图①是一个三角形,分别连结这个三角形三边的中点(将这条边分为相等的两部分的点)得到图②;再分别连结图②中间的小三角形三边的中点,得到图③,按此方法继续下去,请你根据图中三角形个数的规律,完成下列问题① ② ③ 图1-29 (1) 将下表填写完整.(2) 在第n 个图形中有几个三角形?(用含n 的代数式表示) 51、如图,哪些图形经过折叠能够围成一个长方体?(1) ( 2) (3) (4)(5)(6)52、下列图形经过折叠能否围成一个正方体?(1)(2)(3)(4)53、某种细胞每过30分便由1个分裂成2个,经过5小时,这种细胞由1个能分裂成个。