第二十章数据的分析知识点总结与典型例题

合集下载

人教版八年级下册 第20章 数据的分析 整章复习讲义

人教版八年级下册 第20章 数据的分析 整章复习讲义

第20章数据的分析整章复习知识点1 算术平均数1.一组数据2,3,6,8,11的平均数是.2.西安市某一周的日最高气温(单位:℃)分别为35,33,36,33,32,32,37,这周的日最高气温的平均数是℃.3.2015年至2019年某城市居民的汽车拥有量依次为11,13,15,19,x(单位:万辆),若这五个数的平均数为16,则x的值为.4.已知1,2,3,4,x1,x2,x3的平均数是8,那么x1+x2+x3的值为.知识点2 加权平均数1.某学习小组共有学生5人,在一次数学测验中,有2人得85分,2人得90分,1人得70分,该学习小组的平均分为分.2.某水果店销售11元,18元,24元三种价格的水果,根据水果店一个月这三种水果销售量的统计图(如图),可计算出该店当月销售出水果的平均价格是元.3.某招聘考试分笔试和面试两种,其中笔试按60%、面试按40%计算加权平均数作为总成绩.小明笔试成绩为90分,面试成绩为85分,那么小明的总成绩为分.4.某市号召居民节约用水,为了解居民用水情况,随机抽查了20户家庭某月的用水量,结果如下表:则这20户家庭的该月平均用水量为吨.5.一种什锦糖由价格12,16,20(单位:元/千克)的三个品种的糖果混合而成,三种糖果的比例为5∶2∶3,则什锦糖的价格应为元/千克.知识点3中位数与众数1.某8种食品所含的热量值分别为120,134,120,119, 126,120,118,124,则这组数据的众数为.2.五名学生一分钟跳绳的次数分别为189,195,163,184,201,该组数据的中位数是.3.已知一组数据4,x,5,y,7,9的平均数为6,众数为5,则这组数据的中位数是.4.一组数据1,3,2,7,x,2,3的平均数是3,则该组数据的众数为.5.广州市某中学组织数学速算比赛,5个班级代表队的正确答题数如图,则这5个正确答题数所组成的一组数据的中位数是.6.2018年国家将扩大公共场所免费上网范围,某小区响应号召调查小区居民上网费用情况,随机抽查了20户家庭的月上网费用,结果如下表:.知识点4方差的计算及应用1.某排球队6名场上队员的身高(单位:cm)是180,184, 188,190,192,194.现用一名身高为186 cm的队员换下场上身高为192 cm的队员,与换人前相比,场上队员的身高()A.平均数变小,方差变小B.平均数变小,方差变大C.平均数变大,方差变小D.平均数变大,方差变大2.从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是s2甲=1.5,s2乙=2.6,s2丙=3.5,s2丁=3.68,你认为派谁去参赛更合适()A.甲B.乙C.丙D.丁3.样本数据1,2,3,4,5,则这个样本的方差是.4.甲、乙两名运动员进行了5次百米赛跑测试,两人的平均成绩都是13.3秒,而s2甲=3.7,s2乙=6.25,则两人中成绩较稳定的是.5.市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):(2)分别计算甲、乙六次测试成绩的方差;(3)根据(1),(2)计算的结果,你认为推荐谁参加省比赛更合适,请说明理由.6.为了从甲、乙两名学生中选拔一人参加今年六月份的全县中学生数学竞赛,每个月对他们的学习水平进行一次测验,如图是两人赛前5次测验成绩的折线统计图.(1)分别求出甲、乙两名学生5次测验成绩的平均数及方差;(2)如果你是他们的辅导教师,应选派哪一名学生参加这次数学竞赛.请结合所学统计知识说明理由.知识点5数据的分析综合题1.学校准备从甲、乙两位选手中选择一位选手代表学校参加所在地区的汉字听写大赛,学校对两位选手从表达能力、阅读理解、综合素质和汉字听写四个方面做了测试,他们各自的成绩(百分制)如下表:从他们的这一成绩看,应选派谁?(2)如果表达能力、阅读理解、综合素质和汉字听写分别赋予它们2,1,3和4的权,请分别计算两名选手的平均成绩,从他们的这一成绩看,应选派谁?2.甲、乙两人在5次打靶测试中命中的环数如下:甲:88789乙:597109(1)填写下表:(2)教练根据这5次成绩,选择甲参加射击比赛,教练的理由是什么?(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差(填“变大”“变小”或“不变”).3.某校要从八年级一班和二班中各选取10名女同学组成礼仪队,选取的两班女生的身高如下:(单位:厘米)一班:168167170165168166171168167170二班:165167169170165168170171168167(1)补充完成下面的统计分析表:(2)请选一个合适的统计量作为选择标准,说明哪一个班能被选取.4.某校八年级学生开展踢毽子比赛活动,每班派5名同学参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀,如下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个).统计发现两班总分相等,此时有同学建议,可以通过考查数据中的其他信息作为参考,请你解答下列问题:(1)计算两班的优秀率;(2)求两班比赛数据的中位数;(3)两班比赛数据的方差哪一个小?(4)根椐以上三条信息,你认为应该把冠军奖状发给哪一个班?简述理由.第二十章数据的分析◆知识点1算术平均数1.62.343.224.46◆知识点2加权平均数1.842.15.33.884.5.55.15.2◆知识点3中位数与众数1.1202.1893.5.54.35.156.100元,105元 ◆知识点4 方差的计算及应用 1.A 2.A 3.2 4.甲5.解:(1)甲的平均成绩是(10+8+9+8+10+9)÷6=9, 乙的平均成绩是(10+7+10+10+9+8)÷6=9.(2)甲的方差=16×[(10-9)2+(8-9)2+(9-9)2+(8-9)2+(10-9)2+(9-9)2]=23. 乙的方差=16×[(10-9)2+(7-9)2+(10-9)2+(10-9)2+(9-9)2+(8-9)2]=43. (3)推荐甲参加省比赛更合适,理由如下:两人的平均成绩相等,说明实力相当;但甲的六次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加比赛更合适.6.解:(1)根据折线图的数据可得x 甲=15×(65+80+80+85+90)=80, x 乙=1×(70+90+85+75+80)=80,s 甲2=15×(152+0+0+52+102)=70,s 乙2=15×(102+102+52+52+0)=50.(2)分析可得甲、乙两人成绩的平均数相等,但乙的成绩方差小,故比较稳定,选乙参加. ◆知识点5 数据的分析综合题 1.解:(1)x 乙=(73+80+82+83)÷4=79.5,∵80.25>79.5,∴应选派甲.(2)x 甲=(85×2+78×1+85×3+73×4)÷(2+1+3+4)=79.5, x 乙=(73×2+80×1+82×3+83×4)÷(2+1+3+4)=80.4,∵79.5<80.4,∴应选派乙.2.解:(1)甲:8 乙:8 9(2)因为他们的平均数相等,而甲的成绩的方差小,发挥比较稳定,所以选择甲参加射击比赛. (3)变小3.解:(1)一班:3.2 二班:168 (2)选择方差做标准,∵一班方差<二班方差,∴一班能被选取.4.解:(1)甲班的优秀率是35×100%=60%;乙班的优秀率是25×100%=40%.(2)甲班5名学生比赛成绩的中位数为100个; 乙班5名学生成绩的中位数为97个.(3)x 甲=15×500=100(个),x 乙=15×500=100(个);s 甲2=15×[(100-100)2+(98-100)2+(110-100)2+(89-100)2+(103-100)2]=46.8,s 乙2=15×[(89-100)2+(100-100)2+(95-100)2+(119-100)2+(97-100)2]=103.2.(4)因为甲班5人比赛成绩的优秀率比乙班高、中位数比乙班大、方差比乙班小,应该把冠军奖状发给甲班.11/ 11。

初二数学下册(人教版)第二十章数据的分析20.2知识点总结含同步练习及答案

初二数学下册(人教版)第二十章数据的分析20.2知识点总结含同步练习及答案
解:丙.
四、课后作业
(查看更多本章节同步练习题,请到快乐学)
1. 数据 −1 , −2 , 0 , 1 , 2 的标准差是 ( A.1
答案: D
)
C.0 D.√2
B.2
(Байду номын сангаас
)
2. 数据 0 、 1 、 2 、 3 、 x 的平均数是 2 ,则这组数据的标准差是 ( A.2
答案: B
1 [(x1 − ¯ ¯)2 + (x2 − ¯ ¯)2 + ⋯ + (xn − ¯ ¯)2 ] 来衡量这组数据波动的大小,并把它叫做这 x x x n 组数据的方差(variance),记作 s2 .方差越大,数据波动越大;方差越小,数据波动越小. s2 =
而标准差(standard deviation)就是方差的算术平方根.极差是指一组测量值内最大值与最小值之 差.
答案: D
) 比较小.
C.众数 D.方差
B.平均数
4. 在一次射击测试中,甲、乙、丙、丁的平均环数均相同,而方差分别为 8.7 , 6.5 , 9.1 , 7.7 ,则 这四人中,射击成绩最稳定的是 ( A.甲
答案: B
)
C.丙 D.丁
B.乙
高考不提分,赔付1万元,关注快乐学了解详情。
例题: 已知样本数据 1 ,2 ,3 ,4 ,5 ,下列说法不正确的是( A. 平均数是 3 B. 中位数是 3 C. 众数是 5 解:C.
) D. 方差是 2
甲、乙、丙三组各有 7 名成员,测得三组成员体重数据的平均数是 58,方差分别为 s2 = 36, 甲
= 25.4,s2 = 16.则数据波动最小的一组是_____. s2 乙 丙
初二数学下册(人教版)知识点总结含同步练习题及答案

初二数学下册(人教版)第二十章数据的分析20.1知识点总结含同步练习及答案

初二数学下册(人教版)第二十章数据的分析20.1知识点总结含同步练习及答案
答案: B 解析: A.1.65 米是该班学生身高的平均水平,正确;
)
B.因为小华的身高是 1.66 米,不是中位数,所以班上比小华高的学生人数不会超过 25 人,错 误; C.这组身高数据的中位数不一定是 1.65 米,正确; D.这组身高数据的众数不一定是 1.65 米,正确.
高考不提分,赔付1万元,关注快乐学了解详情。
数据的集中趋势
三、知识讲解
1.数据的集中趋势 描述: 平均数 把一组数据的总和除以这组数据的个数所得的商叫做这组数据的平均数.若 n 个数 x 1 ,x ω n ,则
平均数(weighted average). 众数 一组数据中出现次数最多的那个数据值就是众数(mode). 中位数 将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则称处于中间位 置的数为这组数据的中位数(median);如果数据的个数是偶数,则称中间两个数据的平均数为 这组数据的中位数. 例题: 数据 35,38,37,36,37,36,37,35 的众数是( A. 35 B. 36 C. 37 D. 38 解:C. )
初二数学下册(人教版)知识点总结含同步练习题及答案
第二十章 数据的分析 20.1 数据的集中趋势
一、学习任务 1. 理解平均数、众数、中位数的概念,会求出一组数据的平均数、众数、中位数,并能理解加 权平均数,会在生活中运用加权平均数. 2. 体会平均数、众数、中位数的差别,根据不同的情境选择适合的数据代表数据做出判断和预 测. 二、知识清单
4. 小华所在的九年级一班共有 50 名学生,一次体检测量了全班学生的身高,由此求得该班学生的平均身 高是 1.65 米,而小华的身高是 1.66 米,下列说法错误的是 ( A.1.65 米是该班学生身高的平均水平 B.班上比小华高的学生人数不会超过 25 人 C.这组身高数据的中位数不一定是 1.65 米 D.这组身高数据的众数不一定是 1.65 米

人教版八年级数学下册第二十章数据的分析【知识梳理素材】

人教版八年级数学下册第二十章数据的分析【知识梳理素材】

第二十章数据的分析【知识梳理】第20章数据的分析20.1 数据的集中趋势算术平均数(1)平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.加权平均数平均数的计算方法中位数将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.中位数仅与数据的排列位置有关,某些数据的移动对中位数没有影响,中位数可能出现在所给数据中也可能不在所给的数据中出现,当一组数据中的个别数据变动较大时,可用中位数描述其趋势.众数一组数据中出现次数最多的数据叫做众数.求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.众数不易受数据中极端值的影响.众数也是数据的一种代表数,反映了一组数据的集中程度,众数可作为描述一组数据集中趋势的量..20.2 数据的波动程度极差概念:一组数据中的最大数据与最小数据的差叫做这组数据的极差。

即极差=最大值-最小值.意义:能够反映数据的变化范围,是最简单的一种度量数据波动情况的量,极差越大,波动越大。

极差的优势在于计算简单,但它受极端值的影响较大.方差概念:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.计算方差的方法:(1)基本公式:(2)简化计算公式(Ⅰ):此公式的记忆方法是:方差等于原数据平方的平均数减去平均数的平方。

(3)简化计算公式(Ⅱ):意义:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.20.3 课题学习体质健康测试中的数据分析统计量的选择(1)一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定.但这并不是绝对的,有时多数数据相对集中,整体波动水平较小,但个别数据的偏离仍可能极大地影响极差、方差或标准差的值.从而导致这些量度数值较大,因此在实际应用中应根据具体问题情景进行具体分析,选用适当的量度刻画数据的波动情况,一般来说,只有在两组数据的平均数相等或比较接近时,才用极差、方差或标准差来比较两组数据的波动大小.(2)平均数、众数、中位数和极差、方差在描述数据时的区别:平均数:表示数据的总体水平中位数:表示数据的中等水平众数:表示数据的普遍情况方差、标准差:表示数据的离散程度,方差更能反映情况。

人教版初中八年级数学下册第二十章《数据的分析》知识点总结(含答案解析)

人教版初中八年级数学下册第二十章《数据的分析》知识点总结(含答案解析)

一、选择题1.为评估一种农作物的种植效果,选了8块地作试验田,这8块地的亩产量(单位:kg )分别为1x ,2x ,…,8x ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A .1x ,2x ,…,8x 的平均数B .1x ,2x ,…,8x 的方差C .1x ,2x ,…,8x 的中位数D .1x ,2x ,…,8x 的众数2.小王在清点本班为偏远贫困地区的捐款时发现,全班同学捐款的钞票情况如下:100元的3 张,50元的9张,10元的23张,5元的10张.在这些不同面额的钞票中,众数是( )A .10B .23C .50D .1003.甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好都是9.2环,方差分别是20.56S =甲,20.45S =乙,20.50S =丙,20.60S =丁;则成绩最稳定的是( )A .甲B .乙C .丙D .丁4.某中学规定学生的学期体育成绩满分为100分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次为95,90,85.则小桐这学期的体育成绩是( ) A .88.5B .86.5C .90D .90.55.如果将所给定的数据组中的每个数都减去一个非零常数,那么该数组的 ( ) A .平均数改变,方差不变 B .平均数改变,方差改变C .平均数不变,方差改变D .平均数不变,方差不变6.某次数学趣味竞赛共有10道题目,每道题答对得10分,答错或不答得0分. 人数 2 5 13 10 7 3 成绩(分)5060708090100全班40名同学的成绩的中位数和众数分别是( ) A .75,70 B .70,70 C .80,80 D .75,80 7.一组数据,6、4、a 、3、2的平均数是5,这组数据的方差为( ) A .8 B .5 C .6 D .3 8.已知数据x ,4,0,3,-1的平均数是1,那么它的众数是( )A .4B .0C .3D .-19.通过统计甲、乙、丙、丁四名同学某学期的四次数学测试成绩,得到甲、乙、丙、丁三明同学四次数学测试成绩的方差分别为S 甲2=17,S 乙2=36,S 丙2=14,丁同学四次数学测试成绩(单位:分).如下表:则这四名同学四次数学测试成绩最稳定的是( ) A .甲B .乙C .丙D .丁10.下列说法正确的是( )A .中位数就是一组数据中最中间的一个数B . 8. 99,1010,11,,这组数据的众数是9 C .如果123,,,,n x x x x ⋯的平均数是1,那么()()()121110n x x x -+-+⋯+-= D .一组数据的方差是这组数据的极差的平方 11.八(1)班45名同学一天的生活费用统计如下表:A .15B .20C .21D .2512.为了比较甲乙两足球队的身高谁更整齐,分别量出每人身高,发现两队的平均身高一样,甲、乙两队的方差分别是1.7、2.4,则下列说法正确的是( ) A .甲、乙两队身高一样整齐 B .甲队身高更整齐C .乙队身高更整齐D .无法确定甲、乙两队身高谁更整齐13.体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一位同学的成绩比较稳定,通常要比较两名同学成绩的( ) A .平均数B .方差C .众数D .中位数14.某班体育委员记录了第一小组七位同学定点投篮(每人投10次)的情况,投进篮筐的个数为6,9,5,3,4,8,4,这组数据的众数是( ) A .3B .4C .5D .815.为了解某小区“全民健身”活动的开展情况,随机对居住在该小区的40名居民一周的体育锻炼时间进行了统计,结果如下表:这40名居民一周体育锻炼时间的众数和中位数是( ) A .14,5B .14,6C .5,5D .5,6第II 卷(非选择题)请点击修改第II卷的文字说明参考答案二、填空题16.将一组数据中的每一数减去40后,所得新的一组数据的平均数是2,则原来那组数据的平均数_______________.17.图中显示的是某商场日用品柜台10名售货员4月份完成销售额(单位:千元)的情况,根据统计图,我们可以计算出该柜台的人均销售额为___________千元.18.已知一组数据为1-、x、0、1、2-的平均数为0,则x=__________这组数据的标准差为___________.19.甲、乙两个篮球队队员身高的平均数都为2.07米,方差分别是2S甲、2S乙,且22S S>甲乙,则队员身高比较整齐的球队是_____.20.若一组数据4,,5,,7,9x y的平均数为6,众数为5,则这组数据的方差为__________.21.某班体育委员对本班所有学生一周锻炼时间(单位:小时)进行了统计,绘制了统计图,如图所示,根据统计图提供的信息,下列推断不正确的是__________________①该班学生共有44人;②.该班一周锻炼时间为10小时的学生最多;③该班学生一周锻炼时间的中位数是11;④该班学生一周锻炼的平均时间为910111213115++++=小时.22.已知一组数据为:5,3,3,6,3则这组数据的方差是______.23.某班45名同学的数学平均分是80分,其中女生有20名,她们的数学平均分为82分,那么这个班男同学的数学平均分为______分.24.某样本数据是:2,2,x,3,3,6如果这个样本的众数为2,那么这组数据的方差是______25.一组数据:3、5、8、x、6,若这组数据的极差为6,则x的值为__________. 26.某班一次数学竞赛考试成绩如下表所示,已知全班共有38人,且众数为60分,中位数为70分,则x2-2y=_________.成绩30405060708090100(分)人数235x6y34三、解答题27.英语老师对八年级某班级全班同学进行口语测试,并按10分制评分,将评分结果制成了如图两幅统计图(不完整).请根据图表信息,解答下列问题:(1)求该班级学生总人数,并将条形统计图补充完整.(2)求该班学生口语测试所得分数的平均数、中位数、众数.(3)若全年级共有260人,请估计得分在9分及以上的同学有多少人?28.“绿水青山就是金山银山”,北京市民积极参与义务植树活动.小武同学为了了解自己小区300户家庭在2018年4月份义务植树的数量,进行了抽样调查,随即抽取了其中30户家庭,收集的数据如下(单位:棵):1 123 2 3 2 3 34 3 3 4 3 35 3 4 3 4 4 5 4 5 3 4 3 4 5 6(1)对以上数据进行整理、描述和分析:①绘制如下的统计图,请补充完整;②求这30户家庭2018年4月份义务植树数量的平均数是和中位数分别是多少?(2)“互联网+全民义务植树”是新时代首都全民义务植树组织形式和尽责方式的一大创新,2018年首次推出义务植树网上预约服务,小武同学所调查的这30户家庭中有7户家庭采用了网上预约义务植树这种方式,由此可以估计该小区采用这种形式的家庭有多少户?29.某校需要选出一名同学去参加温州市“生活中的数学说题”比赛,现有5名候选人参加该校举办的模拟说题比赛,挑选出成绩最高者参加说题比赛.已知5名候选人模拟说题比赛成绩情况如表所示.某校5名候选人模拟说题比赛成绩情况(1)5名候选人模拟说题比赛成绩的中位数是;(2)由于C、E两名候选人成绩并列第一;所以学校决定根据两人平时成绩、任课老师打分、模拟说题比赛成绩按2:3:5的比例最后确定成绩,最终谁将参加说题比赛.已知C、E两名候选人平时成绩、任课老师打分情况如表所示.30.八(2)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表(单位:分):甲789710109101010乙10879810109109)甲队成绩的中位数是分,乙队成绩的众数是分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4 分2,则成绩较为整齐的是队.。

(完整版)第二十章数据分析知识点总结与典型例题

(完整版)第二十章数据分析知识点总结与典型例题

目录一、数据的代表 (2)考向1:算数平均数 (2)考向2:加权平均数 (3)考向3:中位数 (5)考向4:众数 (6)二、数据的波动 (7)考向5:极差 (7)考向6:方差 (9)三、统计量的选择 (11)考向7:统计量的选择 (11)数据的分析知识点总结与典型例题一、数据的代表1、算术平均数:把一组数据的总和除以这组数据的个数所得的商. 公式:nx x x n +⋅⋅⋅++21 使用:当所给数据1x ,2x ,…,n x 中各个数据的重要程度相同时,一般使用该公式计算平均数.2、加权平均数:若n 个数1x ,2x ,…,n x 的权分别是1w ,2w ,…,n w ,则nn n w w w w x w x w x +⋅⋅⋅+++⋅⋅⋅++212211,叫做这n 个数的加权平均数. 使用:当所给数据1x ,2x ,…,n x 中各个数据的重要程度(权)不同时,一般选用加权平均数计算平均数.权的意义:权就是权重即数据的重要程度.常见的权:1)数值、2)百分数、3)比值、4)频数等。

3、组中值:(课本P128)数据分组后,一个小组的组中值是指这个小组的两个端点的数的平均数,统计中常用各组的组中值代表各组的实际数据.4、中位数:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.意义:在一组互不相等的数据中,小于和大于它们的中位数的数据各占一半.5、众数:一组数据中出现次数最多的数据就是这组数据的众数.特点:可以是一个也可以是多个.用途:当一组数据中有较多的重复数据时,众数往往是人们所关心的一个量.6、平均数、中位数、众数的区别:平均数能充分利用所有数据,但容易受极端值的影响;中位数计算简单,它不易受极端值的影响,但不能充分利用所有数据;当数据中某些数据重复出现时,人们往往关心众数,但当各个数据的重复次数大致相等时,众数往往没有意义.※典型例题:考向1:算数平均数1、数据-1,0,1,2,3的平均数是( C )A .-1B .0C .1D .52、样本数据3、6、x 、4、2的平均数是5,则这个样本中x 的值是( B )A .5B .10C .13D .153、一组数据3,5,7,m ,n 的平均数是6,则m ,n 的平均数是( C )A .6B .7C .7.5D .154、若n 个数的平均数为p ,从这n 个数中去掉一个数q ,余下的数的平均数增加了2,则q 的值为( A )A .p-2n+2B .2p-nC .2p-n+2D .p-n+2思路点拨:n 个数的总和为np ,去掉q 后的总和为(n-1)(p+2),则q=np-(n-1)(p+2)=p-2n+2.故选A .5、已知两组数据x 1,x 2,…,x n 和y 1,y 2,…,y n 的平均数分别为2和-2,则x 1+3y 1,x 2+3y 2,…,x n +3y n 的平均数为( A )A .-4B .-2C .0D .2考向2:加权平均数6、如表是10支不同型号签字笔的相关信息,则这10支签字笔的平均价格是( C )A .1.4元B .1.5元C .1.6元D .1.7元7、对某校八年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分4个等级,将调查结果绘制成如下条形统计图和扇形统计图.根据图中信息,这些学生的平均分数是( C )A .2.2B .2.5C .2.95D .3.0思路点拨:参加体育测试的人数是:12÷30%=40(人),成绩是3分的人数是:40×42.5%=17(人),成绩是2分的人数是:40-3-17-12=8(人), 则平均分是:95.2404123172813=⨯+⨯+⨯+⨯(分) 8、为了调查某一路口某时段的汽车流量,记录了15天同一时段通过该路口的汽车辆数,其中有2天是142辆,2天是145辆,6天是156辆,5天是157辆,那么这15天通过该路口汽车平均辆数为( C )A .146B .150C .153D .16009、某校为了了解学生的课外作业负担情况,随机调查了50名学生,得到他们在某一天各自课外作业所用时间的数据,结果用右面的条形图表示,根据图中数据可得这50名学生这一天平均每人的课外作业时间为( B )A.0.6小时 B.0.9小时 C.1.0小时 D.1.5小时10、某学校举行理科(含数学、物理、化学、生物四科)综合能力比赛,四科的满分都为100分.甲、乙、丙三人四科的测试成绩如下表:综合成绩按照数学、物理、化学、生物四科测试成绩的1.2:1:1:0.8的比例计分,则综合成绩的第一名是( A )A.甲 B.乙 C.丙 D.不确定11、某班四个学习兴趣小组的学生分布如图①②,现通过对四个小组学生寒假期间所读课外书情况进行调查,并制成各小组读书情况的条形统计图③,根据统计图中的信息:这四个小组平均每人读书的本数是( C )A.4 B.5 C.6 D.712、某次射击训练中,一小组的成绩如下表所示:若该小组的平均成绩为8.7环,则成绩为9环的人数是( D )A.1人 B.2人 C.3人 D.4人思路点拨:设成绩为9环的人数为x,则有7+8×3+9x+10×2=8.7×(1+3+x+2),解得x=4.故选D.13、下表中若平均数为2,则x等于( B )A.0 B.1 C.2 D.3考向3:中位数14、在数据1、3、5、5、7中,中位数是( C )A.3 B.4 C.5 D.715、六个数6、2、3、3、5、10的中位数为( B )A.3 B.4 C.5 D.616、已知一组数据:-1,x,1,2,0的平均数是1,则这组数据的中位数是( A ) A.1 B.0 C.-1 D.2思路点拨:∵-1,x,1,2,0的平均数是1,∴(-1+x+1+2+0)÷5=1,解得:x=3,将数据从小到大重新排列:-1,0,1,2,3最中间的那个数数是:1,∴中位数是:1.17、若四个数2,x,3,5的中位数为4,则有( C )A.x=4 B.x=6 C.x≥5 D.x≤5思路点拨:找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求。

八年级数学下册第二十章数据的分析知识点归纳总结(精华版)(带答案)

八年级数学下册第二十章数据的分析知识点归纳总结(精华版)(带答案)

八年级数学下册第二十章数据的分析知识点归纳总结(精华版)单选题1、小刘利用空闲时间到外地某建筑公司打工,公司承诺:正常上班的工资为200元/天,不能正常上班(如下雨)的工资为80元/天,如果某月(30天)正常上班的天数占80%,则当月小刘的日平均工资为()A.140元B.160元C.176元D.182元答案:C分析:根据平均数的计算公式即可得.解:由题意得:当月正常上班的天数为30×80%=24(天),不能正常上班的天数为30−24=6(天),则当月小刘的日平均工资为24×200+6×80=176(元),30故选:C.小提示:本题考查了求平均数,熟记公式是解题关键.2、某校航模兴趣小组共有40位同学,他们的年龄分布如表:B.众数、中位数C.平均数、方差D.中位数、方差答案:B分析:根据有40位同学,而13、14岁的共5+18=23位同学,可得众数;然后利用中位数的定义可确定这组数据的中位数,从而可对各选项进行判断.解:∵共有40位同学,13、14岁的共5+18=23位同学,14岁的占18位同学,∴14为众数,∴第20个数和第21个数都是14,∴数据的中位数为14.故选:B.小提示:本题考查了中位数,众数,平均数与方差,解题的关键是熟知它们的定义.3、佳佳同学5次上学途中所花时间(单位:min)x,y,10,11,9.已知这组数据的平均数为10,方差为2,则x2+y2的值为()A.192B.200C.208D.400答案:C解:∵x,y,10,11,9这组数据的平均数为10,∴x+y+10+11+9=5×10,∴x+y=20,∵x,y,10,11,9这组数据的方差是2,∴1[(x-10)2+(y-10)2+(10-10)2+(11-10)2+(9-10)2] =25x2-20x+100+y2-20y+100+0+1+1=10∴x2+y2=10+20(x+y)-100-100-1-1=10+20×20-100-100-1-1=208,故选:C.小提示:考查了平均数、方差和代数式求值.熟练掌握平均数与方差的计算公式是解题的关键.4、小明将自己家1月份至6月份的用水量绘制成了如图所示的折线统计图,那么小明家这6个月用水量的平均数和中位数分别是()A.10吨,12.5吨B.10吨,9.5吨C.9吨,10.5吨D.8吨,9.5吨答案:B分析:从图中得到6个月用水量的6个数据,然后根据平均数的概念计算这6个数据的平均数就可得到平均用水量,再将6个数据按从小到大的顺序排列,中间两个数的平均数就是中位数.解:这6个月的平均用水量:(8+12+10+15+6+9)÷6=10(吨),把这组数据按从小到大的顺序排列为:6,8,9,10,12,15,中位数为:(9+10)÷2=9.5(吨)故选:B.小提示:此题主要考查了折线图的应用以及平均数和中位数求法,找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.5、某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分高中下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5ℎ~25.5ℎ之间;②这200名学生参加公益劳动时间的中位数在20ℎ~30ℎ之间;③这200名学生中的高中生参加公益劳动时间的中位数可能在20ℎ~30ℎ之间;④这200名学生中的初中生参加公益劳动时间的中位数一定在20ℎ~30ℎ之间.所有合理推断的序号是()A.①②③④B.①②④C.①②③D.①④答案:B分析:平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.解:①解这200名学生参加公益劳动时间的平均数:①(24.5×97+25.5×103)÷200=25.015,一定在24.5~25.5之间,正确;②由统计表类别栏计算可得,各时间段人数分别为 15,60,51,62,12,则中位数在20~30之间,故②正确.③由统计表计算可得,高中学段栏各时间段人数分别为0−15,35,15,18,1,当0⩽t<10时间段人数为 0 时,中位数在10~20之间;当0⩽t<10时间段人数为 15 时,中位数在10~20之间,故③错误.④由统计表计算可得,初中学段栏0⩽t<10的人数在0~15之间,当人数为 0 时中位数在20~30之间;当人数为 15 时,中位数在20~30之间,故④正确.故选:B.小提示:本题考查了中位数与平均数,正确理解中位数与平均数的意义是解题的关键.6、已知一组数据1,2,3,4,5,a,b的平均数是4,若该组数据的中位数小于4,则a的值可能是()A.7B.8C.9D.10答案:D分析:由平均数定义可得a+b的值,再由中位数的定义可知a、b中必有一个是小于4的,即可得出答案.解:∵数据1,2,3,4,5,a,b的平均数是4,∴1+2+3+4+5+a+b=7×4=28,∴a+b=13,将此组数据由小到大排列,则第4个数据即为中位数,又∵该组数据的中位数小于4,∴a,b两数中必有一个值小于4,∵a+b=13,∴a,b两数中较大的数的值大于9,∴a的值可能是10.故选:D.小提示:本题考查了平均数定义:所有数的总和除以数的个数;中位数定义:将一组数据从小到大排列,若奇数个数据则中间的就是中位数,若偶数个数据,则取中间两个数的平均数作为中位数;熟练掌握平均数和中位数定义是解题的关键.7、数据10,3,a,7,5的平均数是6,则a等于().A.3B.4C.5D.6答案:C分析:利用平均数的计算公式进行计算即可.解:由题意得:10+3+a+7+55=6,解得:a=5;故选C.小提示:本题考查平均数.熟练掌握平均数的计算方法:数据总和÷数据个数是解题的关键.8、某商店连续5天销售口罩的盒数分别为9,11,13,12,11,关于这组数据,以下结论正确的是()A.众数是11B.平均数是11C.中位数是12D.方差是107答案:A分析:根据中位数、众数、平均数、方差的计算方法分别求出结果再进行判断即可.解:将这5个数从小到大排列9,11,11, 12,13,最中间的数为11,因此中位数为11,出现次数最多的是11,因此众数是11,这7个数的平均数为9+11+11+12+13=565,方差为15×[(9−565)2+(11−565)2+(13−565)2+(12−565)2+(11−565)2]=4425.故选:A.小提示:本题考查中位数、众数、平均数、方差,掌握对应的计算方法是解题的关键.9、某单位定期对员工的专业知识、工作业绩、出勤情况三个方面进行考核(考核的满分均为100分),三个方面的重要性之比依次为3:5:2.小王经过考核后所得的分数依次为90、88、83分,那么小王的最后得分是()A.87B.87.5C.87.6D.88答案:C分析:将三个方面考核后所得的分数分别乘上它们的权重,再相加,即可得到最后得分. 小王的最后得分为:90×33+5+2+88×53+5+2+83×23+5+2=27+44+16.6=87.6(分), 故选C .小提示:本题考查了加权平均数,数据的权能够反映数据的相对“重要程度”,要突出某个数据,只需要给它较大的“权”,权的差异对结果会产生直接的影响.10、如果将一组数据中的每个数都减去5,那么所得的一组新数据( ) A .众数改变,方差改变 B .众数不变,平均数改变 C .中位数改变,方差不变 D .中位数不变,平均数不变 答案:C分析:由每个数都减去5,那么所得的一组新数据的众数、中位数、平均数都减少5,方差不变,据此可得答案.解:如果将一组数据中的每个数都减去5,那么所得的一组新数据的众数、中位数、平均数都减少5,方差不变, 故选:C .【小提示】本题主要考查方差,解题的关键是掌握方差、众数、中位数和平均数的定义. 填空题11、已知一组数据x 1,x 2,x 3,x 4,x 5的方差是14,那么另一组数据2x 1-2,2x 2-2,2x 3-2,2x 4-2,2x 5-2的方差是____________. 答案:1分析:根据方差的变化规律可得:数据2x 1-2,2x 2-2,2x 3-2,2x 4-2,2x 5-2的方差是22×14,再进行计算即可.解:∵x 1,x 2,x 3,x 4,x 5的方差是:14,∴另一组数据2x1,2x2,2x3,2x4,2x5的方差是:22×14=1,∴另一组数据2x1-2,2x2-2,2x3-2,2x4-2,2x5-2的方差是:1;所以答案是:1.小提示:本题考查了方差的知识,掌握当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变;当数据都乘以一个数(或除以一个数)时,方差变为这个数的平方倍是解题的关键.12、生物学研究表明,植物光合作用速率越高,单位时间内合成的有机物越多,为了解甲、乙两个品种大豆的光合作用速率,科研人员从甲、乙两个品种的大豆中各选五株,在同等实验条件下,测量它们的光合作用速率(单位:μmol⋅m﹣2⋅s﹣1),结果统计如下:答案:乙分析:分别求甲、乙两品中的方差即可判断;解:S甲2=15[(32−25)2+(30−25)2+(25−25)2+(18−25)2+(20−25)2]=29.6S乙2=15[(28−25)2+(25−25)2+(26−25)2+(24−25)2+(22−25)2]=4S甲2>S乙2∴乙更稳定;所以答案是:乙.小提示:本题主要考查根据方差判断稳定性,分别求出甲、乙的方差,方差越小越稳定,解本题的关键在于知道方差的求解公式.13、某校八年级甲、乙两班举行电脑汉字输入比赛,两个班参加比赛的学生每分钟输入汉字的个数经统计和计算后结果如下表:①甲、乙两班学生的平均水平相同;②乙班优秀人数比甲班优秀人数多(每分钟输入汉字达150个以上为优秀);③甲班学生比赛成绩的波动比乙班学生比赛成绩的波动大.上述结论正确的是___________(填序号).答案:①②③分析:根据中位数,平均数和方差的意义,逐一判断即可.解:由于乙班学生每分钟输入汉字的中位数为151,说明有一半以上的学生都达到每分钟150个及以上,而甲班学生的中位数为149,说明不到一半的学生达到150个及以上,说明乙班优秀人数比甲班优秀人数多,故②正确;由平均数和方差的意义可知①③也正确.故答案是:①②③.小提示:本题主要考查中位数,平均数和方差,掌握中位数和方差的意义,是解题的关键.14、如果一组数据中有3个6、4个−1,2个−2、1个0和3个x,其平均数为x,那么x=______.答案:1分析:利用平均数的定义,列出方程即可求解.解:根据题意得3×6+4×(−1)+2×(−2)+0+3x=x,13解得:x=1,所以答案是:1小提示:本题考查了平均数的概念.平均数是指在一组数据中所有数据之和再除以数据的个数.15、学校举行物理科技创新比赛,各项成绩均按百分制计,然后按照理论知识占20%,创新设计占50%,现场展示占30%计算选手的综合成绩(百分制),某同学本次比赛的各项成绩分别是:理论知识85分,创新设计88分,现场展示90分,那么该同学的综合成绩是______分.答案:88分析:利用加权平均数的求解方法即可求解.综合成绩为:85×20%+88×50%+90×30%=88(分),所以答案是:88.小提示:此题主要考查了加权平均数的求法,解题的关键是理解各项成绩所占百分比的含义.解答题16、市体校射击队要从甲、乙两名射击队员中挑选一人参加省级比赛,因此,让他们在相同条件下各射击10次,成绩如图所示.为分析成绩,教练根据统计图算出了甲队员成绩的平均数为8.5环、方差为1.05,请观察统计图,解答下列问题:(1)先写出乙队员10次射击的成绩,再求10次射击成绩的平均数和方差;(2)根据两人成绩分析的结果,若要选出总成绩高且发挥稳定的队员参加省级比赛,你认为选出的应是,理由是:.答案:(1)乙队员10次射击的成绩分别为6,7,7,8,8,8,9,9,10,10;乙10次射击成绩的平均数:8.2,方差:1.56;(2)甲;平均数高,且成绩稳定.分析:(1)根据平均数的公式“平均数=所有数之和再除以数的个数”乙队员10次射击的平均数;方差就是各变量值与其均值离差平方的平均数,根据方差公式计算即可;(2)根据甲和乙的平均数和方差,选择平均数高和方差较小的同学即可. (1)解:乙队员10次射击的成绩分别为6,7,7,8,8,8,9,9,10,10; 则乙10次射击成绩的平均数=(6+2×7+3×8+2×9+2×10)÷10=8.2, 方差=110[(6−8.2)2+2×(7−8.2)2+3×(8−8.2)2+2×(9−8.2)2+2×(10−8.2)2]=1.56;(2)∵8.5>8.2,S 甲2=1.05,S 乙2=1.56, ∴S 甲2<S 乙2,∴甲的平均数高,且成绩稳定, ∴选择甲同学参加射击比赛.所以答案是:甲;平均数高,且成绩稳定.小提示:本题主要考查了平均数、方差的计算公式及应用等知识,熟练掌握平均数和方差的计算是解决问题的关键.17、某校为了强化学生的环保意识,校团委在全校举办了“保护环境,人人有责”知识竞赛活动,初、高中根据初赛成绩,各选出5名选手组成初中代表队和高中代表队进行复赛,复赛成绩如图所示. 根据以上信息解答下列问题:(1)高中代表队五名学生复赛成绩的中位数为___________分; (2)分别计算初中代表队、高中代表队学生复赛成绩的平均数;(3)已知高中代表队学生复赛成绩的方差为20,请计算初中代表队学生复赛成绩的方差,并结合两队成绩的平均数和方差分析哪个队的复赛成绩较好.答案:(1)95(2)初中代表队的平均数为90分,高中代表队的平均数为95分(3)初中代表队学生复赛成绩的方差是40,高中代表队成绩较好分析:(1)根据中位数的定义可得答案;(2)按照平均数的计算方法计算即可;(3)计算初中代表队的方差,再比较即可.(1)解:五个人的成绩从小到大排列为:90、90、95、100、100.第3个数为中位数,所以中位数是95;所以答案是:95;(2)解:高中代表队的平均数为(90+90+95+100+100)÷5=95(分),初中代表队的平均数为(80+90+90+90+100)÷5=90(分);(3)×[(80−90)2+(90−90)2+(90−90)2+(90−90)2+(100−解:初中代表队的方差为1590)2]=40.∵95>90,20<40,∴高中代表队成绩较好.小提示:本题考查数据的收集与整理,熟练掌握中位数、平均数、方差的计算方法是解题关键.18、2021年4月,教育部办公厅在《关于进一步加强中小学生体质健康管理工作的通知》中明确要求保障学生每天校内、校外各1小时体育活动时间.某校为了解本校学生校外体育活动情况,随机对本校100名学生某天的校外体育活动时间进行了调查,并按照体育活动时间分A,B,C,D四组整理如下:(1)制作一个适当的统计图,表示各组人数占所调查人数的百分比;(2)小明记录了自己一周内每天的校外体育活动时间,制作了如下折线统计图.请计算小明本周内平均每天的校外体育活动时间;(3)若该校共有1400名学生,请估计该校每天校外体育活动时间不少于1小时的学生人数.答案:(1)见解析(2)64分钟(3)980名分析:(1)用扇形统计图表示各组人数占所调查人数的百分比;(2)根据平均数的计算方法进行计算即可;(3)样本估计总体,求出样本中每天校外体育活动时间不少于1小时的学生所占的百分比即可.(1)解:由于各组人数占所调查人数的百分比,因此可以采用扇形统计图;(2)=64(分),解:55+65+63+57+70+75+637答:小明本周内平均每天的校外体育活动时间为64分钟;(3)1400×60+10=980(名),100答:该校1400名学生中,每天校外体育活动时间不少于1小时的大约有980名.小提示:本题考查统计图的选择,频数分布表以及平均数,掌握各种统计图的特点以及加权平均数的计算方法是正确解答的前提.。

人教版八年级下册第二十章数据的分析经典题型总结(77张ppt)

人教版八年级下册第二十章数据的分析经典题型总结(77张ppt)
灯泡,它们的使用寿命如下表所示.这批灯泡的平均使用寿命是 多少?
使用寿命 600≤x 1 000≤x 1 400≤x 1 800≤x 2 200≤x x/h <1 000 <1 400 <1 800 <2 200 <2 600
灯泡只数
5
10
12
17
6
解:据上表得各小组的组中值,于是
x = 800 5+1200 10+1600 12+2000 17+2400 6 50
数据的分析经典题型总结
一.利用加权平均数解答实际问题
一次演讲比赛中,评委将从演讲内容,演讲能力,演讲效 果三个方面为选手打分,各项成绩均按百分制,然后再按演讲 内容占50%,演讲能力占40%,演讲效果占10%的比例,计算 选手的综合成绩(百分制).进入决赛的前两名选手的单项成 绩如下表所示:
选手 演讲内容 演讲能力 演讲效果
解:x 0.8 0.9 1.2 1.3 0.8 0.9 1.11.0 1.2 0.8 1 10
1×20000×70%=14000(千克). 答:这塘鱼的产量是14000千克.
某班学生期中测试数学成绩各分数段人数统计表如下:
分数段 40≤x<60 60≤x<80 80≤x<100 100≤x≤120
A
85
95
95
请确定两人的名次. B
95
85
95
选手 演讲内容 演讲能力 演讲效果
A
85
95
95
B
95

50%
85 40%
95 10%
解:选手A的最后得分是
8550% 95 40% 9510% 42.5 38 9.5 90, 50% 40% 10%
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录一、数据的代表 ........................................................... 错误!未指定书签。

考向1:算数平均数 .................................................... 错误!未指定书签。

考向2:加权平均数 .................................................... 错误!未指定书签。

考向3:中位数........................................................ 错误!未指定书签。

考向4:众数.......................................................... 错误!未指定书签。

二、数据的波动 ........................................................... 错误!未指定书签。

考向5:极差.......................................................... 错误!未指定书签。

考向6:方差.......................................................... 错误!未指定书签。

三、统计量的选择.......................................................... 错误!未指定书签。

考向7:统计量的选择错误!未指定书签。

数据的分析知识点总结与典型例题一、数据的代表 1、算术平均数:把一组数据的总和除以这组数据的个数所得的商.公式:nx x x n+⋅⋅⋅++21使用:当所给数据1x ,2x ,…,n x 中各个数据的重要程度相同时,一般使用该公式计算平均数. 2、加权平均数:若n 个数1x ,2x ,…,n x 的权分别是1w ,2w ,…,n w ,则nnn w w w w x w x w x +⋅⋅⋅+++⋅⋅⋅++212211,叫做这n 个数的加权平均数.使用:当所给数据1x ,2x ,…,n x 中各个数据的重要程度(权)不同时,一般选用加权平均数计算平均数. 权的意义:权就是权重即数据的重要程度.常见的权:1)数值、2)百分数、3)比值、4)频数等。

3、组中值:(课本P128)数据分组后,一个小组的组中值是指这个小组的两个端点的数的平均数,统计中常用各组的组中值代表各组的实际数据. 4、中位数:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数. 意义:在一组互不相等的数据中,小于和大于它们的中位数的数据各占一半. 5、众数:一组数据中出现次数最多的数据就是这组数据的众数. 特点:可以是一个也可以是多个.用途:当一组数据中有较多的重复数据时,众数往往是人们所关心的一个量. 6、平均数、中位数、众数的区别:平均数能充分利用所有数据,但容易受极端值的影响;中位数计算简单,它不易受极端值的影响,但不能充分利用所有数据;当数据中某些数据重复出现时,人们往往关心众数,但当各个数据的重复次数大致相等时,众数往往没有意义. ※典型例题:考向1:算数平均数1、数据-1,0,1,2,3的平均数是( C ) A .-1B .0C .1D .52、样本数据3、6、x 、4、2的平均数是5,则这个样本中x 的值是( B )A .5B .10C .13D .153、一组数据3,5,7,m ,n 的平均数是6,则m ,n 的平均数是( C )A .6B .7C .7.5D .154、若n 个数的平均数为p ,从这n 个数中去掉一个数q ,余下的数的平均数增加了2,则q 的值为( A )A .p-2n+2B .2p-nC .2p-n+2D .p-n+2思路点拨:n 个数的总和为np ,去掉q 后的总和为(n-1)(p+2),则q=np-(n-1)(p+2)=p-2n+2.故选A .5、已知两组数据x 1,x 2,…,x n 和y 1,y 2,…,y n 的平均数分别为2和-2,则x 1+3y 1,x 2+3y 2,…,x n +3y n 的平均数为( A )A .-4B .-2C .0D .2考向2:加权平均数6、如表是10支不同型号签字笔的相关信息,则这10支签字笔的平均价格是( C )A .1.4元B .1.5元C .1.6元D .1.7元7、对某校八年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分4个等级,将调查结果绘制成如下条形统计图和扇形统计图.根据图中信息,这些学生的平均分数是( C )A .2.2B .2.5C .2.95D .3.0思路点拨:参加体育测试的人数是:12÷30%=40(人),成绩是3分的人数是:40×42.5%=17(人), 成绩是2分的人数是:40-3-17-12=8(人),则平均分是:95.2404123172813=⨯+⨯+⨯+⨯(分)8、为了调查某一路口某时段的汽车流量,记录了15天同一时段通过该路口的汽车辆数,其中有2天是142辆,2天是145辆,6天是156辆,5天是157辆,那么这15天通过该路口汽车平均辆数为( C ) A .146B .150C .153D .16009、某校为了了解学生的课外作业负担情况,随机调查了50名学生,得到他们在某一天各自课外作业所用时间的数据,结果用右面的条形图表示,根据图中数据可得这50名学生这一天平均每人的课外作业时间为( B )A .0.6小时B .0.9小时C .1.0小时D .1.5小时10、某学校举行理科(含数学、物理、化学、生物四科)综合能力比赛,四科的满分都为100分.甲、乙、丙三人四科的测试成绩如下表:综合成绩按照数学、物理、化学、生物四科测试成绩的1.2:1:1:0.8的比例计分,则综合成绩的第一名是( A )A.甲B.乙C.丙D.不确定11、某班四个学习兴趣小组的学生分布如图①②,现通过对四个小组学生寒假期间所读课外书情况进行调查,并制成各小组读书情况的条形统计图③,根据统计图中的信息:这四个小组平均每人读书的本数是( C )A.4B.5C.6D.712、某次射击训练中,一小组的成绩如下表所示:若该小组的平均成绩为8.7环,则成绩为9环的人数是( D )A.1人B.2人C.3人D.4人思路点拨:设成绩为9环的人数为x,则有7+8×3+9x+10×2=8.7×(1+3+x+2),解得x=4.故选D.13、下表中若平均数为2,则x等于( B )A.0B.1C.2D.3考向3:中位数14、在数据1、3、5、5、7中,中位数是( C )A.3B.4C.5D.715、六个数6、2、3、3、5、10的中位数为( B )A.3B.4C.5D.616、已知一组数据:-1,x,1,2,0的平均数是1,则这组数据的中位数是( A )A.1B.0C.-1D.2思路点拨:∵-1,x,1,2,0的平均数是1,∴(-1+x+1+2+0)÷5=1,解得:x=3,将数据从小到大重新排列:-1,0,1,2,3最中间的那个数数是:1,∴中位数是:1.17、若四个数2,x,3,5的中位数为4,则有( C )A.x=4B.x=6C.x≥5D.x≤5思路点拨:找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求。

如果是偶数个则找中间两位数的平均数。

故分情况讨论x与其他三个数的大小.18、某市一周每天最高气温(单位:℃)情况如图所示,则这组表示最高气温数据的中位数(B)A.22B.24C.25D.27思路点拨:把这组数据从小到大排列为:20,22,22,24,25,26,27,最中间的数是24,则中位数是24;故选B.19、为了解九年级学生的视力情况,某校随机抽取50名学生进行视力检查,结果如下:这组数据的中位数是( B )A.4.6B.4.7C.4.8D.4.9思路点拨:∵共有50名学生,∴中位数是第25和26个数的平均数,∴这组数据的中位数是(4.7+4.7)÷2=4.7;故选B.20、已知某校女子田径队23人年龄的平均数和中位数都是13岁,但是后来发现其中一位同学的年龄登记错误,将14岁写成15岁,经重新计算后,正确的平均数为a岁,中位数为b岁,则下列结论中正确的是( A )A.a<13,b=13B.a<13,b<13C.a>13,b<13D.a>13,b=13思路点拨:∵原来的平均数是13岁,∴13×23=299(岁),∴正确的平均数a=231-299<13,∵人数为23人,是奇数。

原来的中位数13岁,将14岁写成15岁,最中间的数还是13岁,∴b=13;故选A.考向4:众数21、有一组数据:1,3,3,4,5,这组数据的众数为( B )A.1B.3C.4D.522、若一组数据8,9,10,x,6的众数是8,则这组数据的中位数是( B )A.6B.8C.8.5D.923、某中学随机调查了15名学生,了解他们一周在校参加体育锻炼时间,列表如下:则这15名同学一周在校参加体育锻炼时间的中位数和众数分别是( D )A .6,7B .7,7C .7,6D .6,6思路点拨:∵共有15个数,最中间的数是第8个数,∴这15名同学一周在校参加体育锻炼时间的中位数是6, ∵6出现的次数最多,出现了6次, ∴众数是6;故选D .24、七名学生在一分钟内的跳绳个数分别是:150、140、100、110、130、110、120,设这组数据的平均数是a ,中位数是b ,众数是c ,则有( D )A .c >b >aB .b >c >aC .c >a >bD .a >b >c25、学校“清洁校园”环境爱护志愿者的年龄分布如图,那么这些志愿者年龄的众数是( D )A .12岁B .13岁C .14岁D .15岁二、数据的波动 1、极差:一组数据中的最大数据与最小数据的差叫做这组数据的极差. 2、方差:各个数据与平均数之差的平方的平均数,记作2s .用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,计算公 式是:()()()[]2222121x x x x x x ns n -+⋅⋅⋅+-+-=意义:方差(2s)越大,数据的波动性越大,方差越小,数据的波动性越小.结论:①当一组数据同时加上一个数a 时,其平均数、中位数、众数也增加a ,而其方差不变; ②当一组数据扩大k 倍时,其平均数、中位数和众数也扩大k 倍,其方差扩大2k 倍. 3、标准差:(课本P146) 标准差是方差的算术平方根.()()()nx x x x xxs n 22221-+⋅⋅⋅+-+-=※典型例题:考向5:极差1、某班数学学习小组某次测验成绩分别是63,72,49,66,81,53,92,69,则这组数据的极差是( B )A.47B.43C.34D.292、若一组数据-1,0,2,4,x的极差为7,则x的值是( D )A.-3B.6C.7D.6或-3思路点拨:∵数据-1,0,2,4,x的极差为7,∴当x是最大值时,x-(-1)=7,解得x=6,当x是最小值时,4-x=7,解得x=-3,故选D.3、一次英语测试后,随机抽取九年级某班5名学生的成绩如下:91,78,98,85,98.关于这组数据说法正确的是( A )A.中位数是91B.平均数是91C.众数是91D.极差是78思路点拨:A、将数据从小到大排列为:78,85,91,98,98,中位数是91,故本选项正确;B、平均数是(91+78+98+85+98)÷5=90,故本选项错误;C、众数是98,故本选项错误;D、极差是98-78=20,故本选项错误;故选:A.4、某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如表:则50个数据的极差和众数分别是( C )A.15,20B.3,20C.3,7D.3,55、王明同学随机抽某市10个小区所得到的绿化率情况,结果如下表:则关于这10个小区的绿化率情况,下列说法错误的是( C )A.中位数是25%B.众数是25%C.极差是13%D.平均数是26.2%6、某射击小组有20人,教练根据他们某次射击命中环数的数据绘制成如图的统计图,则这组数据的众数和极差分别是( D )A.10、6B.10、5C.7、6D.7、57、在“大家跳起来”的乡村学校舞蹈比赛中,某校10名学生参赛成绩统计如图所示.对于这10名学生的参赛成绩,下列说法中错误的是()A.众数是90B.中位数是90C.平均数是90D.极差是15思路点拨:∵90出现了5次,出现的次数最多,∴众数是90;故A正确;∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是(90+90)÷2=90;故B正确;∵平均数是(80×1+85×2+90×5+95×2)÷10=89;故C错误;极差是:95-80=15;故D正确.综上所述,C选项错误.8、某企业1~5月份利润的变化情况图所示,以下说法与图中反映的信息相符的是( C )A.1~2月份利润的增长快于2~3月份利润的增长B.1~4月份利润的极差于1~5月份利润的极差不同C.1~5月份利润的众数是130万元D.1~5月份利润的中位数为120万元思路点拨:A、1~2月份利润的增长为10万元,2~3月份利润的增长为20万元,慢于2~3月,故选项错误;B、1~4月份利润的极差为130-100=30万元,1~5月份利润的极差为130-100=30万元,极差相同,故选项错误;C、1~5月份利润,数据130出现2次,次数最多,所以众数是130万元,故选项正确;D、1~5月份利润,数据按从小到大排列为100,110,115,130,130,中位数为115万元,故选项错误.9、如图是H市2013年3月上旬一周的天气情况,右图是根据这一周每天的最高气温绘制的折线统计图,下列说法正确的是( B )A.这周中温差最大的是星期一B.这周中最高气温的众数是25℃C.这周中最高气温的中位数是25℃D.折线统计图可以清楚地告诉我们这一周每天气温的总体情况思路点拨:A∵星期三温差是7℃,∴这一周中温差最大的一天是星期三,故本选项错误;B、∵在这组数据中25℃出现的次数最多,出现了3次∴这周中最高气温的众数是25℃,故本选项正确;C、将这组数据按大小排列:25,25,25,26,26,27,28,处于最中间的是26,则中位数是:26℃,故本选项错误;D 、折线统计图可以清楚地告诉我们这一周每天气温的变化情况,故本选项错误.考向6:方差10、一组数据:-2,-1,0,1,2的方差是( B )A .1B .2C .3D .4 思路点拨:11、数据0,-1,6,1,x 的众数为-1,则这组数据的方差是( B )A .2B .534C .2D .526思路点拨:因为众数为-1,所以x=-1.12、某校将举办一场“中国汉字听写大赛”,要求各班推选一名同学参加比赛,为此,初三(1)班组织了五轮班级选拔赛,在这五轮选拔赛中,甲、乙两位同学的平均分都是96分,甲的成绩的方差是0.2,乙的成绩的方差是0.8.根据以上数据,下列说法正确的是( A )A .甲的成绩比乙的成绩稳定B .乙的成绩比甲的成绩稳定C .甲、乙两人的成绩一样稳定D .无法确定甲、乙的成绩谁更稳定 13、四名运动员参加了射击预选赛,他们成绩的平均环数x 及其方差2s 如表所示.如果选出一个成绩较好且状态稳定的人去参赛,那么应选( B )A .甲B .乙C .丙D .丁思路点拨:由于乙的方差较小、平均数较大,故选乙.答案为选项B.14、甲、乙两名同学进行了6轮投篮比赛,两人的得分情况统计如下:下列说法不正确的是( D )A .甲得分的极差小于乙得分的极差B .甲得分的中位数大于乙得分的中位数C .甲得分的平均数大于乙得分的平均数D .乙的成绩比甲的成绩稳定15、如图是某选手10次射击成绩条形统计图,根据图中信息,下列说法错误的是( B )A .平均数为7B .中位数为7C .众数为8D .方差为416、在2014年的体育中考中,某校6名学生的体育成绩统计如图,则这组数据的众数、中位数、方差依次是( A )A .18,18,1B .18,17.5,3C .18,18,3D .18,17.5,117、样本方差的计算式()()()[]222212303030201-+⋅⋅⋅+-+-=n x x x s 中,数字20和30分别表示样本中的( C )A .众数、中位数B .方差、标准差C .样本中数据的个数、平均数D .样本中数据的个数、中位数18、如果一组数据a 1,a 2,…,a n 的方差是2,那么一组新数据2a 1,2a 2,…,2a n 的方差是( C ) A .2B .4C .8D .1619、某气象小组测得连续五天的日最低气温并计算出平均气温与方差后,整理得出下表(有两个数据被遮盖).被遮盖的两个数据依次是( C ) A .2℃,2B .3℃,56C .3℃,2D .2℃,58三、统计量的选择※典型例题:考向7:统计量的选择1、有19位同学参加歌咏比赛,所得的分数互不相同,取得前10位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学的( B ) A .平均数B .中位数C .众数D .方差2、歌唱比赛有二十位评委给选手打分,统计每位选手得分时,会去掉一个最高分和一个最低分,这样做,肯定不会对所有评委打分的哪一个统计量产生影响( C ) A .平均分B .众数C .中位数D .极差3、某商场对上月笔袋销售的情况进行统计如下表所示:经理决定本月进笔袋时多进一(表D.0.2)---绿化(子单位)工程质量竣工验收报告表29804些蓝色的,经理的这一决定应用了哪个统计知识( D )A.平均数B.方差C.中位数D.众数4、体育课上,两名同学分别进行了5次立定跳远测试,要判断这5次测试中谁的成绩比较稳定,通常需要比较这两名同学成绩的( D )A.平均数B.中位数C.众数D.方差5、期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”,上面两位同学的话能反映处的统计量是( D )A.众数和平均数B.平均数和中位数C.众数和方差D.众数和中位数6、下列选项中,能够反映一组数据离散程度的统计量是( D )A.平均数B.中位数C.众数D.方差世上没有一件工作不辛苦,没有一处人事不复杂。

相关文档
最新文档