七年级数学上册有理数科学计数法知识点及习题

合集下载

七年级上册数学第一章《有理数》知识点及典型例题

七年级上册数学第一章《有理数》知识点及典型例题

新浙教版七年级上册数学第一章《有理数》知识点及典型例题知识框图有理数自然数分数计数测量标号或排序定义作用用以计量事物的件数或表示事物次序的数可以看做两个整数相除。

所有的分数都可以化为有限小数或无限循环小数,但并不是所有的小数都可以化为分数,如圆周率有理数的分类整数分数零正整数负整数正分数负分数正有理数数负有理数零负整数负分数正整数正分数或具有相反意义的量如升高3米与下除2米;盈利3万与亏损5万;收入4万与支出8万等为了表示具有相反意义的量,把一种意义的量规定为正,与之意义相反的量规定为负数轴绝对值有理数大小的比较自然数规定了原点、单位长度、和正方向的直线叫做数轴;相反数两个数只有符号不同,称其中一个数为另一个数的相反数互为相反数的两个数所对应的点在数轴上的位置关系绝对值的概念绝对值的法则数轴比较法法则比较法将考点与相应习题联系起来考点一、关于“……说法正确的是……”的题型(只可能是选择题)1、下列语句:①带“-”号的数是负数;②如果a为正数,则-a一定是负数;③不存在既不是正数又不是负数的数;④ 00C表示没有温度,正确的有()个A.0B.1C.2D.32、下列说法不正确的是()A.数轴是一条直线;B.表示-1的点,离原点1个单位长度;C.数轴上表示-3的点与表示- 1的点相距2个单位长度;D.距原点3个单位长度的点表示—3或3。

3、下列说法中不正确的是()A.-5表示的点到原点的距离是5;B. 一个有理数的绝对值一定是正数;C. 一个有理数的绝对值一定不是负数;D. 互为相反数的两个数的绝对值一定相等.4、如图:下列说法正确的是()A.a比b大B.b比a大C.a、b一样大D.a、b的大小无法确定5、若|a+b|=-(a+b),下列结论正确的是()A.a+b≤0B.a+b<0C.a+b=0D.a+b>06、下列说法:①一个数的绝对值的相反数一定是负数;②只有负数的绝对值是它的相反数;③正数和零的绝对值都等于它本身;④互为相反数的两个数的绝对值相等,错误的个数是( )A.3个B.2个C.1个D.0个7、如果a表示有理数,那么下列说法中正确的是()A.+a与-(-a)互为相反数B. +a与-a一定不相等C.-a一定是负数D. -(+a)与+(-a)一定相等8、已知字母、表示有理数,如果+=0,则下列说法正确的是()A.、中一定有一个是负数B.、都为0C.与不可能相等D.与的绝对值相等9、下列说法正确的是()A. -|a|一定是负数B. 只有两个数相等时,它们的绝对值才相等C. 若|a|=|b|,则a与b互为相反数D. 若一个数小于它的绝对值,则这个数为负数10、给出下面说法:①互为相反数的两个数绝对值相等;②一个数的绝对值等于它本身,这个数不是负数;③若|m|>m,则m<0;④若|a|>|b|,则a>b,其中正确的有()A.①②③B.①②④C.①③④D.②③④考点二、具有相反意义的量、相反数、数轴、绝对值、有理数的分类等概念的直接考题1、某项科学研究,以45分钟为1个时间单位,并记每天上午10时为0,10时以前记为负,10时以后记为正,例如9:15记为-1,10:45记为1等等,以此类推,上午7:45应记为2、在时钟上,把时针从钟面数字“12”按顺时针方向拨到“6”,计做拨了“+”周,那么,把时针从“12”开始,拨了“”周后,该时针所指的钟面数字是3、若a与b互为相反数,则下列式子:①a+b=0;②a=-b;③|a|=|-b|;④a=b,其中一定成立的序号为4、数轴上到数-1所表示的点的距离为5的点所表示的数是5、绝对值最小的有理数是;绝对值最小的整数是;| 3.14 -π|= _________6、写出所有不小于-4并且小于3.2的整数:7、绝对值小于6且大于3的整数有()A.1个B.2个C.3个D.4个8、下面关于0的说法:①是整数,也是有理数;②是正数,不是负数;③不是整数,是有理数;④是整数,也是自然数,正确的是()A.①②B.②③C.①④D.①③9、在15,,0.15,-30,-12.8,-,-1.010010001,,-3.12112111211112……,-3.141414……中,负分数的个数是()A.3个B.4个C.5个D.6个10、一滴墨水洒在一个数轴上,根据图中标出的数值,判断墨迹盖住的整数点的个数是(1)判断墨迹盖住的整数共有多少个?并说明理由。

有理数-科学记数法近似数以及科学记数法综合习题大全

有理数-科学记数法近似数以及科学记数法综合习题大全

【有理数】【科学记数法】1、科学计数法:一个大于10的数就记成 的形式,其中101≤≤a ,n 是正整数;2、近似数:一个与实际宽度非常接近的数;准确数(精确数):一个与实际完全相符的数;➢ 近似数【基础练习】1、判断下列各数,哪些是准确数,哪些是近似数:(1)初一(2)班有43名学生,数学期末考试的平均成绩是82.5分;(2)某歌星在体育馆举办音乐会,大约有一万二千人参加;(3)通过计算,直径为10cm 的圆的周长是31.4cm ;(4)检查一双没洗过的手,发现带有各种细菌80000万个;(5)1999年我国国民经济增长7.8%.2、指出下列各问题中的准确数和近似数,以及近似数各精确到哪一位?(1)某厂1998年的产值约为1500万元,约是1978年的12倍;(2)某校初一(2)班有学生52人,平均身高约为1.57米,平均体重约为50.5千克;(3)我国人口约12亿人;(4)一次数学测验,初一(1)班平均分约为88.6分,初一(2)班约为89.0分.3、数学课上,老师给出了下列的数据:(1)小明今年买了5本书; (2)2002年美国在阿富汗的战争每月耗费10亿美元;(3)这次测验小红得了95分;(4)地球上煤储量为15亿吨以上;(5)小明买了一本数学书字数有18万字.上述数据中,精确的有___________,近似的有___________.4、近似数6.0的准确值x 的取值范围是 ( )A.5.5<x<6.4B.5.95≤x ≤6.05C.5.95≤x<6.05D.5.95<x<6.055、某人体重56.4千克,这个数是个近似数,那么这个人的体重x (千克)的范围是( ).A.56.39<x ≤56.44B.56.35≤x <56.45C.56.41<x <56.50D.56.44<x <56.596、近似数3.70所表示的准确值a 的范围是( )A. B.C. D.3.700 3.705a <≤7、若数a 的近似数为1.6,则下列结论正确的是( )A. 1.6a =B.C. D.8、下列由四舍五入得到的近似数各精确到哪一位:(1) 4.200 (2) 0.0034 (3)4.78万 (4)3.012亿 (5)3.695 3.705a ≤< 3.60 3.80a ≤<3.695 3.705a <≤ 1.55 1.65a ≤<1.55 1.56a <≤ 1.55 1.56a ≤<71005.3⨯9、根据1999年的统计,在香港的英国人和其他外国人约为13.56万人,你认为这个数字( )A.精确到万位B.精确到百分位C.精确到百位D.精确到千位10、数字3.86精确到___________位.11、4.0万精确到___________位.12、由四舍五入法得到的近似数为8.01×410,精确到( ).A.万位B.百分位C.万分位D.百位13、用四舍五入法得到的近似数4.609万,下列说法正确的是( )A.它精确到千分位B.它精确到0.01C.它精确到万位D.它精确到十位14、由四舍五入得到近似数3.00万是 ( )A .精确到万位,有l 个有效数字B .精确到个位,有l 个有效数字C .精确到百分位,有3个有效数字D .精确到百位,有3个有效数字15、对于四舍五入得到的近似数3.20×510,下列说法正确的是( )A.有3个有效数字 ,精确到百分位B. 有6个有效数字 ,精确到个位C.有2个有效数字 ,精确到万位D.有3个有效数字 ,精确到千位16、下列说法中错误的是( )A.0.05有3个有效数字 ,精确到百分位B. 50有2个有效数字 ,精确到个位C.13万有2个有效数字,精确到万位D.6.32×105有3个有效数字,精确到千位31017、用四舍五入法取下列各数的近似数:(1)0.507 (精确到百分位)(2)86400 (保留两个有效数字)(3)0.02866 (精确到0.001)(4)1.99 (精确到0.1)18、2.00956精确到0.001的近似值是().A.2.099B.2.0996C.2.1D.2.10019、用四舍五入法取近似值,2012.9精确到十位的近似数是______________;保留两个有效数字的近似数是____________。

苏教 七上 有理数乘方、科学计数法、混合运算 知识点+例题+练习

苏教 七上 有理数乘方、科学计数法、混合运算 知识点+例题+练习
A.1种 B.2种 C.3种 D.4种
4.若0<x<1,则x,x2,x3的大小关系是 ( )
A.x<x2<x3B. x2<x3<x C. x3<x2< x D.x< x3< x2
5.下列各组数:①-52与(-5)2;②(-3)3与-33;③-(-0.3)5与0.35;④0100与0200;
⑤(-1)3与(-1)2.其中相等的有 ( )
8.若123 000 000=1.23×10n,则n=__________.
9.用科学记数法表示下列各数:
(1)7 000 000; (2)-92 000; (3)3 004 000;
10.写出下列用科学记数法表示的数的原数:
(1)3×102; (2)-9.6×105; (3)-7.003×105.
6.用科学记数法表示下列各数:
(1)50300=_____________; (2)-20030=__________;
(3)18.01×10=___________; (4)-0.045 01×104=___________.
7.写出下列用科学记数法表示的数的原数:
(1)4.06×105=__________; (2)-2.35×106=___________.
随练:
1.(-3)4表示 ( )
A.4个(-3)相乘的积 B.-3乘4的积
C.3个(-4)相乘的积 D.4个(-3)相加的和
2.若x=2,则 的值是 ( )
A. B.1 C.4 D.8
3.下列对于an的读法:①a的n次幂;②n个a相乘;③a的n次方;④n个a相加;⑤以a为底,n为指数.其中正确的有 ( )
注:(1)负数也可以用科学记数法表示,“ ”照写,其它与正数一样,如 = ;

2.3.2 科学记数法【新课标版】七年级上册数学

2.3.2  科学记数法【新课标版】七年级上册数学
第二章 有理数的运算
2.3.2 科学计数法
学习目标
1.了解科学记数法的现实意义,学会用科学记数法 表示较大的数. 2.会用科学记数法表示的数进行简单的运算.
导入新课
生活中常常遇到比100万还大的数, 如:太阳半径约为696000000米,光的 速度约为300000000米/秒等等,这些大 数书写起来非常不便,也容易写错。
当堂训练
能力提升题
已知光的传播速度为300000000 m/s,太阳光到达地球 的时间大约是500 s,试计算太阳与地球的距离大约是多少 千米.(结果用科学记数法表示)
答案:1.5×108km
当堂训练 拓广探索题
已知1平方千米的土地1年内从太阳得到的能量相当于燃 烧1.3亿千克煤所产生的能量,那么我国960万平方千米土地 上1年内从太阳得到的能量相当于燃烧a×10n千克煤所产生 的能量,求a,n的值.
巩固练习
填一填: 6.74×105的原数有__6__位整数;
-3.251×107原数有__8__位整数;
9.6104×1012原数有_1_3__位整数.
探究新知
素养考点 3 科学记数法的实际应用
例3 废旧电池对环境的危害十分巨大,一粒纽扣电池能污 染600立方米的水(相当于一个人一生的饮水量).某班有50 名学生,如果每名学生一年丢弃一粒纽扣电池,且都没有 被回收,那么被该班学生一年丢弃的纽扣电池能污染的水 量用科学记数法表示为___3_×__1_0_4__立方米.
当堂训练
解:1.3亿=1.3×108,960万平方千米=9.6×106平方千米 9.6×106×1.3×108=1.248×1015
所以a=1.248,n=15.
课堂小结
1.用科学计数法表示较大的数应注意以下两点: (1)1≤a<10 (2)当大数是大于10的整数时,n为整数位减去1.

初一数学1-4有理数的混合运算、科学计数法和近似数知识点、经典例题及练习题带答案(最新整理)

初一数学1-4有理数的混合运算、科学计数法和近似数知识点、经典例题及练习题带答案(最新整理)

环球雅思教育学科教师讲义讲义编号: GE—ZBM 副校长/组长签字:签字日期:学员编号:年级:课时数:3学员姓名:辅导科目:学科教师:课题有理数的混合运算、科学计数法和近似数授课日期及时段教学目的掌握混合运算的运算法则和近似数重难点有理数的混合运算【考纲说明】1、掌握有理数的加减法法则和有理数混合运算的运算步骤。

2、注意有理数混合运算符号混淆问题。

3、掌握科学计数法的表示方法和近似数的表示。

4、本部分在中考中占3-5分。

【趣味链接】科学计数法的前身我们追溯到五千年到八千年前看一看,这时,四大文明古国都早已从母系社会过渡到父系社会了,生产力的发展导致国家雏形的产生,生产规模的扩大则刺激了人们对大数的需要.比如某个原始国家组织了一支部队,国王陛下总不能老是说:“我的这支战无不胜的部队共计有9名士兵!”于是,慢慢地就出现了“十”、“百”、“千”、“万”这些符号.在我国商代的甲骨文上就有“八日辛亥允戈伐二千六百五十六人”的刻文.即在八日辛亥那天消灭敌人共计2656人.在商周的青铜器上也刻有一些大的数字.以后又出现了“亿”、“兆”这样的大数单位. 而在古罗马,最大的记数单位只有“千”.他们用M表示一千.“三千”则写成“MMM”.“一万”就得写成“MMMMMMMMMM”.真不敢想象,如果他们需要记一千万时怎么办,难道要写上一万个M不成?然而,古希腊有一位伟大的学者,他却数清了“充满宇宙的沙子数”,那就是阿基米德.他写了一篇论文,叫做《计沙法》,在这篇文章中,他提出的记数方法,同现代数学中表示大数的方法很类似.他从古希腊的最大数字单位“万”开始,引进新数“万万(亿)”作为第二阶单位,然后是“亿亿”(第三阶单位),“亿亿亿”(第四阶单位),等等,每阶单位都是它前一阶单位的1亿倍.【知识梳理】一、有理数的混合运算1、有理数的加法法则:2、有理数的加法运算定律:.3、有理数减法法则及表达式:.4、有理数减法符号的确定及表示:.5、有理数加减法混合运算应注意的问题:.二、科学计数法1、把一个大于10的数表示成a×10n的形式(其中a是整数数位只有一位的数,n是正整数,且0<a<10),使用的是科学记数法。

人教版七年级上册数学-第1章 有理数 第3课时 科学计数法

人教版七年级上册数学-第1章 有理数 第3课时 科学计数法
∴(1)中的煤大约发 出1.152×1016 度电.
第一章
有理数
1.5 有理数的乘方 第3课时 科学计数法
基础过关 能力提升 核心素养
基础过关
•知识点1 用科学记数法表示数
1.近年来,我国5G 发展取得明显成效,截至2021年 5月底,全国 建设开通5G 基站达81.9万个,将数 据81.9万用科学记数法表C
示为 (
)
A.819×103
B.81.9×104
国参与新冠肺炎疫情防控的志愿者约为 8810000,将 数 据 8810000 科 学 记 数8.81法×1表06 示 为_____________ .
•知识点2 还原原数
4.如果用科学记数法得到的数是9.687×106,那么 原来的数 B 是( )
A.968700
B.9687000
C.96870
D.96870000
5.中国航母辽宁舰是中国人民海军第一艘可以搭载 固定 翼 飞 机 的 航
空 母 舰,该 舰 的 满 载 排 水 量 为 6.75×104 吨,这个用科学记数法
表示的数据的原数为
B
D.6750000吨
能力提升
6.今年 5月份在贵阳召开了国际大数据产业博览 会,据统计,到5月
(4)-234000000.
(1)-3.65×105 与-1.02×106;
解:∵ -1.02×106 = -10.2×105, -3.65> -10.2,∴-3.65×105>-1.02×106
(2)1.45×102021 与9.8×102020.
解:∵1.45×102021=14.5×102020,14.5>9.8,∴ 1.45×102021>9.8×102020.

七年级数学第一章有理数知识梳理和典型题型

七年级数学第一章有理数知识梳理和典型题型

七年级数学第一章有理数知识梳理和典型题型一.正负数的定义,有理数的分类。

1. 大于零的数叫 , 在正数前加一个“- ”号的数叫做 , 既不是正数,也不是负数.2. 和 统称为有理数. 有理数的分类为:典型题目1.把下列各数填在相应的大括号里(8分)。

32,763-,7.7,24-,08.0-,1415.3-,0,85,π5正数集合:{}⋯ ;负数集合:{}⋯ ; 整数集合:{}⋯ ;负分数集合:{}⋯ 。

2. 如果水库的水位高于正常水位2m 时,记作+2m ,那么低于正常水位3m 时,应( ).A .+3mB .-3mC .+13D .13- 3.下列说法正确的是( )A .有最小的正数B .有最小的自然数C .有最大的有理数D .无最大的负整数4. 一种零件的内径尺寸在图纸上是10±0.05(m ), 加工要求最大不超过_______, 最小不低于___________.二.数轴,相反数,绝对值。

1.规定了 、 和 的直线叫数轴。

所有的有理数都可以用数轴上的 表示,但并不是所有的点都表示有理数.数轴上的原点表示数________,原点左边的数表示 ,原点及原点右边的数表示 .在原点右边,越靠近原点的点表示的数越 (填“大”或“小”),在原点左边,越靠近原点的点表示的数越 (填“大”或“小”)。

2.有理数的大小比较:⑴在数轴上表示的两个数,右边的数总比左边的数 .⑵正数都 0,负数都 0,正数 一切负数; ⑶两个负数比较大小, .3. 数a 的相反数是 . 的相反数大于它本身, 的相反数小于它本身, 的相反数等于它本身. 的倒数等于它本身.4. 一个数a 的绝对值是指数轴上表示数a 的点与 距离,记作 .①一个正数的绝对值是 ; 即:如果a >0,则|a | = ; ②一个负数的绝对值是 ; 如果a <0,则|a | = ;③0的绝对值是 . 如果a = 0,则|a | = .⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数⎧⎧⎫⎨⎪⎪⎩⎪⎪⎪⎪⎨⎬⎪⎪⎧⎪⎪⎨⎪⎪⎭⎩⎩正整数正有理数正分数有理数零负整数负有理数负分数12()有限小数;()无限循环小数.反之:若一个数的绝对值是它本身,则这个数是 ;若一个数的绝对值是它相反数,则这个数是 ;即若||a a =,则a 0;若||a a =-,则a 0.典型题型1.下列各图中,是数轴的是( ) A.B.C. D.-1 0 1 -1 0 12.在数轴上距离原点2个单位长度的点所表示的数是 ( ) A .2 B .2- C .2或2- D .1或1-3.a 、b 是有理数,它们在数轴上的对应点的位置如图所示,把a 、-a 、b 、-b 按从小到大的顺序排列为 ( )A .-b<-a<a<bB .-a<-b<a<bC .-b<a<-a<bD .-b<b<-a<a 4.21-的相反数是 .绝对值是 .倒数是 . 5.下列各对数中,互为相反数的是 ( )A .()2.5-+与2.5- B.()2.5++与2.5-C .()2.5--与2.5 D.2.5与+(+5.2)6.绝对值等于2的数是___________. 相反数等于本身的数是_____________.倒数等于本身的数是___________.平方等于本身的数是 .立方等于本身的数是 .7. 如果a 与1互为相反数,则a 等于 ( )A .2B .2C .1D .-1 8.在数轴上表示下列各数及它们的相反相数,并根据数轴上点的位置把它们按从小到大的顺序排列。

数学人教版(2024)版七年级初一上册 2.3.2 科学记数法 课时练 含答案01

数学人教版(2024)版七年级初一上册 2.3.2 科学记数法 课时练 含答案01

第二章 有理数的运算2.3.2 科学记数法一、单选题1.5月19日,“为爱奔跑”2024澜沧江——湄公河合作的大理马拉松浪漫开跑,全体参赛选手及赛事工作者超16000人.他们跑进大理的绝美风景,用脚步丈量苍洱大地.16000用科学记数法可以表示为( )A .31610´B .41.610´C .51.610´D .50.1610´2.2024年清明节假期,国内游客出游花费539.5亿元,较2019年同期增长12.7%,“539.5亿”用科学记数法表示为( )A .8539.510´B .85.39510´C .105.39510´D .110.539510´3.2024年元旦假期,国内跨年旅游市场焕发活力,假日期间,合肥全市接待游客187.6万人次,187.6万用科学记数法表示应为( )A .71.87610´B .41.87610´C .61.87610´D .6187.610´4.山西省2024年政府工作报告中指出,2024年我省将着力构建新型电力系统,加快5个在建煤电项目建设,完成煤电机组“三改联动”630万千瓦.其中“630万千瓦”用科学记数法表示为( )A .463010´千瓦B .66.310´千瓦C .56.310´千瓦D .56310´千瓦5.5210000000用科学记数法可表示为( )A .100.52110´B .95.2110´C .852.110´D .752110´6.掩膜版,是生产OLED (有机发光二极管)显示屏所需的核心零部件,决定着屏幕分辨率和成像质量,它的生产技术要求极高,一片手机屏幕大小的掩膜版上要开200万个以上的微孔,200万用科学记数法表示为( )A .7210´B .40.210´C .52010´D .6210´7.据党中央2024年发布的中国共产党党内统计公报,截至2023年12月底,全国约共有党员9675万.数据9675万用科学记数法表示为( )A .79.67510´B .39.67510´C .49.67510´D .69.67510´8.随着全球新一轮科技革命和产业变革的蓬勃发展,新能源汽车已经成为全球汽车产业转型发展的主要方向,根据中国乘用车协会的统计数据2024年第一季度,中国新能源汽车销量为209万辆,同比增长31.8%,市场占有率达到31.1%,其中209万用科学记数法表示为( )A .42.0910´B .420.910´C .520.910´D .62.0910´9.车田江水库位于湖南省新化县油溪河上游,占地面积约30平方公里.大坝总库容1.275亿立方米,设计灌溉面积10.53万亩,是一座以灌溉为主,结合发电、防洪、养殖等综合效益的大(二)型水利工程.10.53万用科学记数法表示为( )A .60.105310´B .51.05310´C .410.5310´D .61.05310´10.我国自主研发的C919国产大飞机可储存约186000升燃油,将数据186000用科学记数法表示应为( )A .50.18610´B .51.8610´C .418.610´D .318610´二、填空题11.作为中国非常重要的制造业基地,长沙拥有工程机械、汽车及零部件、新材料、电 子信息等七大千亿级制造业产业集群,数字经济总量突破450000000000元.数据“450000000000”用科学记数法表示为 .12.“植”此青绿,共建美丽中国向“新”而行.今年,“加强生态文明建设,推进绿色低碳发展”被写进了2024年政府工作报告.今年全国计划完成国土绿化任务1亿亩,其中,造林5400万亩.数据5400万用科学记数法表示为 .13.今年春节电影在网络上持续引发热议,据国家电影局2月18日发布数据,2024年春节档电影票房达8016000000元,创造了新的春节档票房纪录.其中数据8016000000用科学记数法表示为 .14.据报道,2024年“五一”假期全国国内旅游出游合计294000000人次.数字294000000用科学记数法表示为 ;15.2024年全国新注册登记的新能源汽车预计约有1335万辆,将数据1335万用科学记数法表示为.16.据陕西省国资委报道,2023年,省属企业充分发挥“顶梁柱”“压舱石”作用,实现营业收入同比增长5.8%,利润总额超出年度目标任务9940000000元,数据9940000000用科学记数法表示为.17.我国海洋经济复苏态势强劲.在建和新开工海上风电项目建设规模约3600万千瓦,比上一年同期翻一番,将36000000用科学记数法表示应为.18.党的二十大报告提出,要坚持以文塑旅、以旅彰文,推进文化和旅游深度融合发展.湖南是文化旅游资源大省,深挖红色文化、非遗文化和乡村文化,推进文旅产业赋能乡村振兴.湖南红色旅游区2023年接待游客约165000000人次,则165000000用科学记数法可表示为.19.“神威·太湖之光”超级计算机运算速度达每秒16´次,它工作1h可进行9.310次运算.(结果用科学记数法表示)20.数字340000000科学记数法表示为.三、解答题21.卫星绕地球运动的速度是3´走过的路310s´,求卫星绕地球运行47.910m/s程.(结果用科学记数法表示.)22.“一粥一饭当思来之不易”,勤俭节约是中华民族的传统美德,一粒大米虽然微不足道,但聚少成多,数量大了也是非常可观的.为了让同学们体会到节约爱护每一粒粮食的重要性,老师组织同学们进行了实际测算,称得1000粒大米约重20克.(1)一粒大米约重多少克?(2)全国按14亿人口,若每人每餐节约一粒大米,则每餐大约能节约大米多少千克?(3)若把(2)中节约的大米卖成钱,按5元/千克计算,则大约可卖得多少万元?参考答案1.B2.C3.C4.B5.B6.D7.A8.D9.B10.B11.114.510´12.75.410´13.98.01610´14.82.9410´15.71.33510´16.99.9410´17.73.610´18.81.6510´19.20334810.´20.83.410´21.解:由题意可得,4378()()7.91031023.710 2.3710´´´=´=´ (米).答:卫星绕地球运行4310s ´所行的路程是82.3710´米.22.(1)解:201000002.¸=(克),答:一粒大米约重0.02克.(2)解:870.021410 2.810´´=´(克),742.810 2.810´=´克千克,答:每餐大约能节约大米42.810´千克.(3)解:452.8105 1.410´´=´(元),5元万元,´=1.41014答:大约可卖得14万元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

知识点:
1、科学计数法:把一个大于10的数表示成a×10n的形式(其中a大于或等于1且小于10,n就是正整数)。

例如567000000=5、67×108
2、(1)近似数:接近准确数但与准确数有区别。

例如学校约有200名同学参加了数学辅导班,而实际参加数学辅导班的有213人。

(2)近似数与准确数的接近程度,可以用精确度表示。

按四舍五入法对圆周率π取近似数时,有
π≈3(精确到个位)
π≈3、1(精确到0、1,或叫做精确到十分位)
π≈3、14(精确到0、01,或叫做精确到百分位)
π≈3、142(精确到 ,或叫做精确到 )
π≈3、1416(精确到 ,或叫做精确到 )
(3)一般地,一个近似数,四舍五入到哪一位,就说这个近似数_______到哪一位;
科学记数法
1、填空
(1)一般地,一个大于10的数可以表示成a×10n的形式,其中1≤|a|<10,n就是正整数,这种记数方法叫做________、
(2)a与n的取法:在a×10n形式中,n就是原数整数位数减1,a的范围就是________、
2、我省各级人民政府非常关注“三农问题”。

截止到年底,我省农村居民年人均纯收入已连续二十一年位居全国各省区首位,据统计局公布的数据,年我省农村居民年人均纯收入约6 660元,用科学记数法应记为( )
A、0、666 0×104元
B、6、660×103元
C、66、60×102元
D、6、660×104元
3、用科学记数法表示下列各数、
(1)503 000; (2)200 000; (3)-981、2; (4)0、023×109、
4、2002年5月15日,我国发射的海洋1号气象卫星进入预定轨道后,若绕地球运行的速度为7、9×103米/秒,则运行2×102秒走过的路程就是(用科学记数法表示)( )
A、 15、8×105米
B、 1、58×105米
C、 0、158×107米
D、 1、58×106米
5、地球绕太阳转动每小时通过的路程约就是1、1×105千米,用科学记数法表示地球转动一天(24小时)通过的路程约就是( )
A、0、264×107千米
B、2、64×106千米
C、26、4×105千米
D、264×104千米
6、用科学记数法表示下列各数:
(1)1 000 000; (2)57 000 000;
(3)-851 340; (4)-12 300、
7、下列用科学记数法表示出来的数,原数就是多少?
(1)7、2×105; (2)-3、07×104; (3)5、2×102、
8、 (1)用科学记数法表示1 080 000 000 000;
(2)用科学记数法表示数2、01×106的原数就是什么?
近似数与有效数字
1、台湾就是我国最大的岛屿,总面积为35 989、76平方千米、用科学记数法应表示为(保留三个有效数字)( )
A、3、59×106平方千米
B、3、60×106平方千米
C、3、59×104平方千米
D、3、60×104平方千米
2、填空
(1)一般地,一个近似数,四舍五入到哪一位,就说这个近似数_______到哪一位;
(2)一个近似数,从左边第一个不就是0的数字起,到末位数字止,所有的数字都叫做这个数的_________;
(3)除了四舍五入法,常用的近似数的取法还有两种,_______与_______、
3、判断下列各题中哪些就是精确数,哪些就是近似数、
(1)某班有32人;
(2)半径为10 cm的圆的面积约为314 cm2;
(3)张明的身高约为1、62米;
(4)取π为3、14、
4、用四舍五入法取近似值,0、012 49精确到0、001的近似数就是______,保留三个有效数字的近似数就是______、
5、用四舍五入法得到的近似值0、380精确到_______位,48、68万精确到_____位、
6、用四舍五入法取近似值, 396、7精确到十位的近似数就是________;保留两个有效数字的近似数就是_______、
7、下列由四舍五入得到的数各精确到哪一位?各有哪几个有效数字?
(1)54、9; (2)0、070 8; (3)6、80万; (4)1、70×106
8、用四舍五入法,求出下列各数的近似数、
(1)0、632 8(精确到0、01); (2)7、912 2(精确到个位);
(3)47 155(精确到百位); (4)130、06(保留4个有效数字);
(5)460 215(保留3个有效数字); (6)1、200 0(精确到百分位)、
9、有玉米45、2吨,用5吨的卡车一次运完,需要多少辆卡车?
10、计算:
(1)(-1、25)×(-12
9
)×(-2、5)×(+
9
11
)×32;
(2)(-105)×[3
5
-
4
7
-(-
5
3
)]-178×6、67-7、67×(-178)、
【巩固练习】
1、填空:
(1)地球上的海洋面积为36 100 000千米2,用科学记数法表示为_______;
(2)光速约3×108米/秒,用科学记数法表示的数的原数就是_________、
2、据测算,我国每天因土地沙漠化造成的经济损失为1、5亿元、若一年按365天计算,用科学记数法表示我国一年因沙漠化造成的经济损失为( )
A、5、475×1011(元)
B、5、47 5×1010(元)
C、0、547 5×1011(元)
D、5 475×108(元)
3、设n为正整数,则10n就是( )
A、10个n相乘
B、10后面有n个零
C、a=0
D、就是一个(n+1)位整数
4、分别用科学记数法表示下列各数:
(1)100万; (2)10 000; (3)44;
(4)679 000; (5)30 000; (6)113、2、
5、已知a=2,b=3,求(a b-b a)(b a-a b)、
7、少林武术节开幕式上有一个大型团体操的节目,表演要求在队伍变成10行、15行、18行、24行时,队形都能成为矩形、教练最少要挑选多少演员?
8、聪明一休萌发了个奇怪的念头,她想造一个巨形图书馆,这个图书馆大约有1 0001 000 000本书就够了、这些书中包含了过去的、现在的与未来的所有著作,包括地球上的,也包括许多星球上住着的能说话、会印刷与学习数学的居民们所用的各种书籍、您能想象一下1 0001 000 000这个数有多大不?能用科学记数法把这个数表示出来不?
9、近似数0、020有_____个有效数字,4、998 4精确到0、01的近似值就是_____、
10 、地球上陆地的面积为149 000 000平方千米,用科学记数法表示为_____、
11、若有理数a,b满足|3a-1|+b2=0,则a(b+1)的值为________、
12、年我国国内生产总值(GDP)为22 257亿美元,用科学记数法表示约为________亿美元(四舍五入保留三个有效数字)、
13、下列由四舍五入得到的近似数,各精确到哪一位?
(1)29、75; (2)0、002 402; (3)3、7万;
(4)4 000; (5)4×104; (6)5、607×102、
14、下列各近似数有几个有效数字?分别就是哪些?
(1)43、8; (2)0、030 800;
(3)3、0万; (4)4、2×103
15、按四舍五入法,按括号里的要求对下列各数求近似值、
(1)3、595 2(精确到0、01);
(2)29、19(精确到0、1);
(3)4、736×105(精确到千位)、
16、把一个准确数四舍五入就可得到一个近似数,这个准确数就就是这个近似数的真值、试说明近似数1、80与1、8有什么不同,其真值有何不同?
17、求近似数16、4,1、42,0、387 4,2、561 8的与(结果保留三个有效数字)、
18、甲、乙两学生的身高都就是1、7×102 cm,但甲学生说她比乙高9 cm、问有这种可能不、若有,请举例说明、。

相关文档
最新文档