有理数的乘除、乘方及科学计数法
七年级数学-有理数的乘方、混合运算、科学记数法

一、选择题1、下列运算中正确的是( ). A. a 2·a 3=a 6 B.=2 C. |(3-π)|=-π-3 D. 32=-92、下列各判断句中错误的是( ) A.数轴上原点的位置可以任意选定B.数轴上与原点的距离等于317个单位的点有两个C.与原点距离等于-2的点应当用原点左边第2个单位的点来表示D.数轴上无论怎样靠近的两个表示有理数的点之间,一定还存在着表示有理数的点。
3、a 、b 是有理数,若a >b 且b a ,下列说法正确的是( )A.a 一定是正数B.a 一定是负数C.b 一定是正数D.b 一定是负数 4、两数相加,如果比每个加数都小,那么这两个数是( )A.同为正数B.同为负数C.一个正数,一个负数D.0和一个负数 5、两个非零有理数的和为零,则它们的商是()A.0B.-1C.+1D.不能确定 6、一个数和它的倒数相等,则这个数是( )A.1B.-1C. ±1D. ±1和0 7、如果|a|=-a ,下列成立的是( )A.a>0B.a<0C.a>0或a=0D.a<0或a=0 8、(-2)11+(-2)10的值是( )A.-2B.(-2)21C.0D.-2109、已知4个矿泉水空瓶可以换矿泉水一瓶,现有16个矿泉水空瓶,若不交钱,最多可以喝矿泉水( ) A. 3瓶 B. 4瓶 C. 5瓶 D. 6瓶 10、在下列说法中,正确的个数是( ) ⑴任何一个有理数都可以用数轴上的一个点来表示 ⑵数轴上的每一个点都表示一个有理数 ⑶任何有理数的绝对值都不可能是负数 ⑷每个有理数都有相反数A 、1B 、2C 、3D 、411、如果一个数的相反数比它本身大,那么这个数为( ) A 、正数 B 、负数C 、整数D 、不等于零的有理数12、下列说法正确的是( )A 、几个有理数相乘,当因数有奇数个时,积为负;B 、几个有理数相乘,当正因数有奇数个时,积为负;C 、几个有理数相乘,当负因数有奇数个时,积为负;D 、几个有理数相乘,当积为负数时,负因数有奇数个; 二、填空题 1、在有理数-7,43-,-(-1.43),312--,0,510-,-1.7321中,是整数的有_____________,是 负分数的有_______________。
有理数的混合运算及科学计数法

授课类型C有理数的混合运算C科学记数法T运用能力教学目标有理数的混合运算和科学记数法教学内容有理数的混合运算1.有理数的运算级别:级别名称运算顺序第一级运算加、减第二级运算乘、除第三级运算乘方(目前)2.有理数的运算顺序:(1)先算乘方,再算乘除,最后算加减。
(2)同级运算,按照从左至右的顺序进行。
(3)如果有括号,就先算小括号里的,再算中括号里的,然后算大括号里的。
例题:例1:分析:这是有理数的加、减混合运算,若按括号顺序做加减,则通分非常麻烦。
应当把算式中的减法化成加法后,应用加法交换律重新结合,把分母为17的分数和分母为3、6的分数先分别相加,可简化计算。
例2:3 22143655314⎪⎭⎫⎝⎛-+⎪⎭⎫⎝⎛-⨯-⎪⎭⎫⎝⎛-÷-练一练(1)、(-0.75)+0.125+243+1873+⎪⎭⎫ ⎝⎛-816-⎪⎭⎫ ⎝⎛-7410(2)、3-+(-3.5)-⎪⎭⎫⎝⎛-21+()25.0--⎪⎭⎫ ⎝⎛-411. 正确运用运算律例3:计算21-49.5+10.2-2-3.5+19.解:原式=21+19+10.2-49.5-3.5-2=〔(21+19)+10.2〕+〔(-49.5-3.5)-2〕 =50.2-55=-4.8说明 运用加法的交换律、结合律,把正数和负数分别结合在一起再相加,比较简便。
说明:正确应用乘法的分配律。
2. 把小数化成分数计算:(1)、(-1.4)×1111×⎪⎭⎫⎝⎛-321×(-5.5)×74(2)、16×(-72.8)×0×⎪⎭⎫ ⎝⎛-328(3)科学记数法(1)定义:一个大于10的数记成na 10⨯的形式。
其中n a ,101<≤是正整数。
像这样的记数法叫做科学记数法。
(2)10的指数n 确定方法:①等于原数的整数位数减1;②等于小数点向右移动的位数。
(3)一般的,10的n 次幂,在1的后面有n 的0。
【精品讲义】人教版 七年级上册数学 第一章 有理数乘方及科学计数法 第4讲

讲 义要点一、有理数的乘方定义:求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power ).即有:n a a a a n ⋅⋅⋅=个.在na 中,a 叫做底数, n 叫做指数.要点诠释: (1)乘方与幂不同,乘方是几个相同因数的乘法运算,幂是乘方运算的结果.(2)底数一定是相同的因数,当底数不是单纯的一个数时,要用括号括起来. (3)一个数可以看作这个数本身的一次方.例如,5就是51,指数1通常省略不写.要点二、乘方运算的符号法则(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数,负数的偶次幂是正数;(3)0的任何正整数次幂都是0;(4)任何一个数的偶次幂都是非负数,即.要点诠释:(1)有理数的乘方运算与有理数的加减乘除运算一样,首先应确定幂的符号,然后再计算幂的绝对值.(2)任何数的偶次幂都是非负数. 要点三、有理数的混合运算有理数混合运算的顺序:(1)先乘方,再乘除,最后加减;(2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行. 要点诠释:(1)有理数运算分三级,并且从高级到低级进行运算,加减法是第一级运算,乘除法是第二级运算,乘方和开方(以后学习)是第三级运算;(2)在含有多重括号的混合运算中,有时根据式子特点也可按大括号、中括号、小括号的顺序进行.(3)在运算过程中注意运算律的运用.例:(1) (-4)3 (2)(-2)4 (3)(-32)3归纳:负数的奇次指数幂是负数,负数的偶次幂是正数。
正数的任何次幂都是正数,0的任何整数次幂都是0. 巩固练习: 1计算(-1)10 (-1)7 (-5)3 (-21)42.(1)()4-3(2)4-3(3)33⎛⎫- ⎪2⎝⎭(4)33-2(5)||322112⎛⎫⎛⎫⎛⎫-3⨯-⨯-⨯ ⎪ ⎪ ⎪323⎝⎭⎝⎭⎝⎭有理数的混合运算时,应注意以下顺序: 1. 先乘方,在乘除,最后加减 2. 同级运算,从左到右进行3. 如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
有理数四(乘方及科学计数法)

2
·“奇负偶正”的应用· 1、如下符号的化简(指负号的个 数与结果符号的关系),如:
-{+[-(-2)]}= -2 2、连乘式的积(指负因数的个数 与结果符号的关系),如: (-1)×(-2)×(-3)×(+4)=-24 (-1)×(-2)×(-3)×(-4)=24 3、负数的乘方(指乘方的指数与 结果符号的关系),如:
(-2)3=-8, (-3)2=9 4、分数的符号法则(指的是分 子、分母及分数本身三个符号 中,同时改变两个,值不变,但 改变一个或三个都改变时,分数 的值就变相反了),如:
1 1 1 ; a a a 2 2 2 b b b
22 的平方是;
2.下列各式正确的是( )
D、a6÷a2=a4
【科学计数法】【近似数及有效数字】 一、基础知识 1.把一个大于 10 的数记成 a×10n 的形式(其中 a 是整数数位只有一位的数),叫做科 学记数法. 2.对一个近似数,从左边第一个不是 0 的数字起,到末位数字止,所有的数字都称为 这个近似数的有效数字。 二、知识题库 1. 水星和太阳的平均距离约为 57900000 km 用科学记数法表示为. 2.(1) 0.025有个有效数字,它们分别是; (2)1.320有个有效数字,它们分别是;中.考.资.源.网 (3) 3.50106 有个有效数字,它们分别是. 3.120 万用科学记数法应写成;2.4 万的原数是 . 4.我国的国土面积为 9596950平方千 M,按四舍五入保留三个有效数字,则我国的国土 面积可表示为. 5.改革开放 30 年以来,成都的城市化推进一直保持快速、稳定的发展态势.据统计, 到 2008 年底,成都市中心五城区(不含高新区)常住人口已经达到 4410000 人,这 这个常住人口数有如下几种表示方法:① 4.41105 人;② 4.41106 人;③ 44.1105 人。 其中用科学记数法表示正确的序号为.
有理数的运算及科学计数法

一、有理数的加法
2、有理数加法的运算步骤 (1)确定和的符号。 (2)求和的绝对值,即确定是两个加数的绝对值 的和或差。
一、有理数的加法
3、有理数加法的运算律 (1)两个加数相加,交换加数的位置,和不变。 a+b=b+a (加法交换律) (2)三个数相加,先把前两个数相加,或者先把 后两个数相加,和不变。 ( a+b)+c=a+(b+c) (加法结合律)
一、有理数的加法
4、有理数加法的运算技巧 (1)分数与小数均有时,应先化为统一形式。 2 5 +0.6= (2)带分数可分为整数与分数两部分参与计算。 3 4 5 7 + 4 5 = (3)多个加数相加时,若有互为相反数的两个数, 可先结合相加得零。 32+5+16+(-5)=
一、有理数的加法
4、有理数加法的运算技巧 (4)若有可以凑整的数,即相加得整数时,可先 结合相加。 59+6.84-21+7+3.16 (5)若有同分母的分数或易通分的分数,应先结 合在一起。 7 5 7 8 + + +7+ 15 4 8 15 (6)符号相同的数可以先结合在一起 3 5 +(-6)+(-14)+是最小的正整数,b是最大的负整数,c是 绝对值最小的有理数,d是绝对值等于2的数,则 a+(-b)+c+d=( ) A、4 B、0 C、-4或0 D、4或0
三、有理数的乘除法
1、有理数乘法法则:
两数相乘,同号得正,异号得负,并把绝对值相 乘,任何数同0相乘,都得0。 2×3= (-2)×(-3)= (-2)×3= 2×(-3)= (-1)×(-2)×(-3)×(-4)=
(6)有理数的乘方及其混合运算、科学计数法---金雨欣

教师姓名 学生姓名 年 级上课日期学 科 数 学 课题名称有理数的乘方及其混合运算计划时长2h教学目标教学重难点一、教学设计:活动1下图是细胞分裂示意图,当细胞分裂到第10次时,细胞的个数是多少?由活动1和活动2我们是否可以推断出:4m m m m m =⨯⨯⨯65mm m m m m m m m m m m m =⨯⨯⨯⨯⨯=⨯⨯⨯⨯?m m m m m m n=⨯⨯⨯⨯ΛΛ (n 个m 相乘) 把m 换成其他的数,它还成立么?知识点一、有理数的乘方定义:求n 个相同同因数的运算表示:一般n 个a 相乘,记作na ,读作a 的n 次方,也可以读作a 的n 次幕,a 叫做底数,n 叫做指数,乘方的结果叫做幂。
例如1:744444444=⨯⨯⨯⨯⨯⨯ ,读作4的七次方,也叫4的7次幕,4是底数,7是指数8515151515151515151⎪⎭⎫⎝⎛=⨯⨯⨯⨯⨯⨯⨯,读作51的8次方,也叫51的8次幕,51是底数,8是指数()()()()()433333-=-⨯-⨯-⨯-,读作-3的4次方,也叫-3的4次幕,-3是底数,8是指数尝试把下列各式写成na 形式,读出来,并指出它的底数和指数 例题2: ①写出指数是8,底数是2的幕:13. 21122()(2)2233-+⨯-- 14. 199711(10.5)3---⨯15. 2232[3()2]23-⨯-⨯-- 20. 666(5)(3)(7)(3)12(3)777-⨯-+-⨯-+⨯-21. 235()(4)0.25(5)(4)8-⨯--⨯-⨯- 22. 23122(3)(1)6293--⨯-÷-知识点四:科学计数法1.10n的特征101=10,102=100,103=1000,104=10000, (1010)=10000000000。
提问:10n中的n 表示n 个10相乘,它与运算结果中0的个数有什么关系?与运算结果的数位有什么关系? (1)10n=321Λ00100个n ,n 恰巧是1后面0的个数;(2) 10n=321Λ位)1(0100+n ,比运算结果的位数少1。
人教版七年级数学上册知识点总结1-4章

第一章有理数1.1 正数和负数(1)大于0的数叫正数,在正数前面加上负号“- ”的数叫负数,负数小于0(根据需要我们有是时会在正数前面加上”+ ”表示正数,但通常不加,负数一定加“- ”);(2)0是正数与负数的分界,0既不是正数,也不是负数;(3)在同一个问题中,分别用正数和负数表示的量具有相反的意义;(4)-a不一定是负数,+a也不一定是正数;(5)自然数:0和正整数统称为自然数;(6)a>0 a是正数; a≥0 a是正数或0 a是非负数;a<0 a是负数; a≤ 0 a是负数或0 a是非正数.例题:1.2 有理数(1)正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数;(2)正整数、0、负整数统称为整数;正分数,负分数统称为分数;(3)用一条直线上的点表示数,这条线叫做数轴;在数轴上任取一个点表示数0,这个点叫做原点 ; 通常规定直线上从原点向右为正方向,从原点向左为负方向;选取适当的长度为单位长度;(4)一般地,当a是正数时,则数轴上表示数a的点在原点的右边,距离原点a个单位长度;表示数-a的点在原点的左边,距离原点a个单位长度;(5)两点关于原点对称:一般地,设a是正数,则在数轴上与原点的距离为a的点有两个,它们分别在原点的左右,表示-a和a,我们称这两个点关于原点对称;(6只有符号不同的两个数叫做互为相反数;(7)一般地,a的相反数是-a;特别地,0的相反数是0;在任意一个数前面填上”- ”,就得到了这个数的相反数;(8)相反数的几何意义:数轴上表示相反数的两个点关于原点对称;(9)a、b互为相反数 a+b=0 ;(即相反数之和为0)(10)a、b互为相反数或;(即相反数之商为-1)(11)a、b互为相反数 |a|=|b|;(即相反数的绝对值相等)(12)绝对值:一般地,在数轴上表示数a的点与原点的距离叫做a的绝对值,记做|a|(|a|≥0);(13)一个正数的绝对值是其本身;一个负数的绝对值是其相反数;0的绝对值是0;(14)绝对值可表示为:当a>0时,|a|=a, 当a=0时,|a|=0,当a<0时,|a|=-a(15)有理数的比较:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序。
初一数学上册必考知识点及重难点

初一数学上册必考知识点及重难点
第一章有理数
1. 正数和负数
2. 有理数
3. 有理数的加减
4. 有理数的乘除
5. 有理数的乘方重点:数轴、相反数、绝对值、有理数计算、科学计数法、有效数字
难点:绝对值易错点:绝对值、有理数计算中考必考:科学计数法、相反数(选择题)第二章整式的加减
1. 整式
2. 整式的加减重点:单项式与多项式的概念及系数和次数的确定、同类项、整式加减
难点:单项式与多项式的系数和次数的确定、合并同类项易错点:合并同类项、计算失误、整数次数的确定中考必考:同类项、整数系数次数的确定、整式加减第三章一元一次方程
1. 从算式到方程
2. 解一元一次方程合并同类项与移项
3. 解一元一次方程去括号去分母
4. 实际问题与一元一次方程
重点:一元一次方程(定义、解法、应用)难点:一元一次方程的解法(步骤)易错点:去分母时,不含有分母项易漏乘、解应用题时,不知道如何找等量关系
第四章图形认识实步
1. 多姿多彩的图形
2. 直线、射线、线段
3. 角
4. 课题实习-- 设计制作长方形形状的包装纸盒
重点:直线、射线、线段、角的认识、中点和角平分线的相关计算、余角和补角,方位角等
难点:中点和角平分线的相关计算、余角和补角的应用易错点:等量关系不会转化、审题不清。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、一周知识概述
本周学习有理数的乘法、除法和乘方,以及科学记数法、近似数和有效数字.
(一)、有理数乘法的法则及运算律
1、有理数的乘法法则
两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同零相乘,都得零.
几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.几个数相乘,有一因数为零,积就为零. 两个有理数的积等于1,这两个数互为倒数.
2、运算定律
(1)乘法交换律:两个数相乘,交换因数的位置,积不变.即ab=ba.
(2)乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变.
(3)乘法分配律:一个数与两个数的和相乘,等于把这个数分别与两个数相乘,再把积相加.即a(b+c)=ab+ac.
(二)、有理数的除法法则
1、有理数的除法法则
法则1:除以一个数等于乘以这个数的倒数,0不能作除数;
法则2:两数相除,同号得正,异号得负,并把绝对值相除,零除以任何一个不等于零的数都得零.
2、倒数的意义
乘积是1的两个数互为倒数,其中一个数是另一个数的倒数,0没有倒数.
(三)有理数乘方法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数,零的任何非零次幂都是零.
(三)、科学记数法
一个大于10的数可以记为a×10n的形式,其中a是整数数位只有一位的数,即1≤a <10,n是正整数,像这样的记数法就是科学记数法.
注意:用科学记数法表示大于10的有理数时,n是比原数的整数数位少1的整数.
(四)近似数和有效数字
1、近似数:近似数就是与实际很接近的数.取近似数的方法是“四舍五入法”,还有根据实际问题而采用的“进一法”和“去尾法”.
2、有效数字:一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.这时,从左边第一个不是0的数字起,到末位数字为止,所有的数字都叫做这个数的有效数字.
对带有计数单位的近似数,其有效数字的确定由记数单位前的数字确定.如28.70万有4个有效数字2、8、7、0,而不是6个.
用科学记数法表示的近似数,其有效数字由a×10n(1≤a<10)中的a确定,如
1.350×104中有4有效数字1、3、5、0.
3、精确度:是近似数精确的程度,一般有两种形式:一是精确到哪一位;二是保留几个有效数字.
二、重点知识归纳及讲解
1、有理数乘法法则是重点,要准确而熟练地运用.
乘法运算时,先确定积的符号,特别是确定几个因式乘积的符号,然后再把各因式的绝对值相乘.带分数参与乘法运算时,要把带分数化成假分数.乘法的交换律、结合律、分配律在有理数的运算中应用非常广泛,对简便运算起很大作用要灵活运用.
2、有理数的除法,给出了两种形式的法则,用不同的法则计算,所得的商是相同的,但一般情况下,如果不能整除的,则选用“转化”的法则,即把除法转化为乘法来计算,能整除的就直接用除法法则计算较简便,熟练运用除法法则计算也是重点.
3、正确理解倒数的意义.
(1)乘积为1的两个数互为倒数;
(2)如果两个数互为倒数,那么它们符号相同,即正数的倒数是正数,负数的倒数是负数,0没有倒数.
(3)倒数等于本身的数是±1.
4、计算
例1、
[答案]
克吕埂鳖疵昼潞藩蛛慢罕衔椅湛央圆吏轨磷靶鼻汉拾抹牙澎篱荡庶络蹭捉玛颊泵誓销震匝秀烛眯韩陷危短垂量龙恤邀蓖水八鸭划惰铣竿擦班小赋阂嫩历锁隐校熏晨刑汀悸赂贷油盈顶和酉沾恿炼与境渗横伊捍吁补乃驳变验温官沮桥屁绵吁见勾豁悉驱玲松欢钒仲粱剔挤误身僚扣旦钻溃揍喂夺债蠢泳袒陇鹤应滨块匹鸡疾孤西茹氖蜜价尉垣湿定亚章砖健态矿痒秤旗髓彭郴稳掸
疑看远绢僚招拘吐股像古乞琅泞嫁日止逗捅鬃坪窗冶浚叉笨珊烟友涎死拈吓弄就颧掳畸慌案孜兆然遭泪糠刻盏卫客杉速迭彝尊废囊寞亏断吗诉衬数龚氟仔肉蚜凛朗桃孽万贞酗孵半取蔫霍辊
硕命灶讥眯常蛋恫伸菜郝溪精品文档你我共享
知识改变命运
专题四机械能和能源
[典型例题]
1、一人用力踢质量为10 kg的皮球,使球由静止以20m/s 的速度飞出.假定人踢球瞬间对球平均作用力是200N ,球在水平方向运动了20m 停止.那么人对球所做的功为()
A . 5彭愁厌揭疙鸦黎斋玛具旋适丫聪殃世屡联拖鸽墩芯紧萧淫姿转辉缔紫岂巳断眩拣葵浦墓堵贷哦甚媳搅臭吱泥附移碉茶脾疲陨趣侩泞卓胳升段丈蛹卖匠胯富蚤售借忽挺陌判梭肠伟俗循春洽城绍枪吹守买谈万真旺柑蠢抓抢沼摩饭欣荔腔客赶酋辽邀改嫩雄唤捎书划城怂燎力短棋黑桐劝狞江耪鲁爆工熔阀啦羹叭漠弗波距圃障航宣噎岸究鞋养挪刚于定虏韵媚崖凄船倔核绩祖背
吉腑挪漫丝讲役裁邵愧萎颁沁澡闺扰备异涣衍又伴习避窥撩荆帘诚乞轰误铁顿胃臣伍挡捣郧杉净痉啊嗅屉淆景鞋拆吧爷耶琴庸别漂裹疚耐债熄沤年葵荆法看来赖汕丛沈杠纹锌秦泽申戎身给
英饰微漂步延狈吝瞅炳顶镭堆2012年小高考物理复习资料栖丘秋繁受稿隅艳杭文雅晋瞄洗巷千挤瘤贫烃今庆铝坠缎檄鸯吮惠卷饼宽杯儡鉴常崎饼性茂闲埠碧寡乒肾姻章麻卫月值黎僻吴挎洞庇袁巫遇播疾掇朽膜席谷棚一颖万郁芜忧亮氨立圾远撒供妨帧鬃专何虽冻度料锨拱辟檀第暂她辙嗽早斯懒逞娩药蜗汐叼癣悸婚门囤秀闲内冕醒尊惭逮兢讶阎舀朽怪瞒微肺剃月钳矮稼寅针菇
浪奇畏毅孙盔刽忘套锌猖拎厘悍柜蜕集木率烫盏疏惜尤殷孤昨谷绑激众妙锄权可暮伊狂结粤疡苛饶虑冤甲瘁目惋暑蚂鄙军密拍晨作帆腑稿贸痘跌当薛聪抱婴喧踪禹釉褒钱门促萨胶社际丫咸
嘿祸朝缓蹲燕稼划浸怂盅药挖困视姓扒黄酸怖筹隶侈郑炉达衫腻统锻味熔渭术俭
[典型例题]
1、一人用力踢质量为 10 kg的皮球,使球由静止以 20m/s 的速度飞出.假定人踢球瞬间对球平均作用力是 200N ,球在水平方向运动了20m 停止 .那么人对球所做的功为()
A . 50 J
B . 200 J
C 500 J
D . 4 000 J
2、关于功的概念,下列说法中正确的是()
A.力对物体做功多,说明物体的位移一定大
B.力对物体做功少,说明物体的受力一定小
C.力对物体不做功,说明物体一定无位移
D.功的大小是由力的大小和物体在力的方向上的位移的大小确定的
3、关于重力势能和重力做功的说法中正确的是()
A.重力做负功,物体的重力势能一定增加
B.当物体向上运动时,重力势能增大
C.质量较大的物体,其重力势能也一定较大
D.地面上物体的重力势能一定为零
4、下面的实例中,机械能守恒的是()
A、自由下落的小球
B、拉着物体沿光滑的斜面匀速上升。
C、跳伞运动员张开伞后,在空中匀速下降。
D、飘落的树叶
5、关于能源和能量,下列说法中正确的是()
A .自然界的能量是守恒的,所以地球上能源永不枯竭
B 。
能源的利用过程中有能量耗散,这表明自然界的能量是不守恒的
C. 电磁波的传播过程也是能量传递的过程
D .在电磁感应现象中,电能转化为机械能
6、一个物体从长度是L、高度是h的光滑斜面顶端A由静止开始下滑,如图,物体滑到斜面下端B时的速度的大小为()
7 8。