连续周期正弦信号
信号基本知识

上一页 下一页
脉冲编码调制
对模拟信号的瞬时抽样值量化、编码,以 将模拟信号转化为数字信号
上一页 下一页
PCM通信系统由三个部分构成: (1)模/数变换 抽样——把模拟信号在时间上离散化,变为脉冲幅度 调制(PAM)信号。 量化——把PAM信号在幅度上离散化,变为量化值 (共有N个量化值)。 编码——用二进码来表示N个量化值。 (2)信道部分 包括传输线路及再生中继器。 (3)数/模变换 解码——是编码的反过程,解码后还原为PAM信号 低通一一收端低通的作用是恢复或重建原模拟信号。
任意一个周期为T0的周期函数f(t),只要满 足狄里赫利条件,就可以展开为傅里叶级 数f(t)=A0+∑Ancos(nw0t)+Bnsin(nw0t),其 中w0=2π/ T0 或者f(t)=C0+ ∑Cncos(nw0t+φn)
上一页 下一页
傅里叶级数的物理意义
周期信号经过傅里叶转化的实质是将周期 信号分解为不同频率的谐波分量的加权, 揭示了周期信号的实质 傅里叶分析的实质就是一种频域分析方法, 信号的频域是信号的内在本质,而时域只 是信号的外在形式 傅里叶级数就代表了当前谐波频率的幅值
上一页 下一页
抽样
抽样——是每隔一定的时间间隔T抽取 模拟信号的一个瞬时幅度值(样值) 抽样是由抽样门来完成的
上一页 下一页
上一页 下一页
上一页 下一页
话音信号频率范围:300∽3400Hz, =3400Hz,这时满足抽样定理的最低的抽 样频率应为6800Hz,为了留有一定的防 卫带,CCITT(ITU-T)规定话音信号的 抽样频率为=8000Hz,(防卫带为8000 一6800=1200Hz),。
周期信号及其频谱

50
2A
2 2A 2A
T O T2 2
2
2
30 0周O 期0三角3波0 50
2A t 2 70
(a)
(b)
2
a0 T
T 2 0
A
2A T
t
dt
A 2
4
an T
T 2 0
A
2A T
tcosn0tFra bibliotekt4A
n2
2
0
其幅频谱(单边谱)如图(a)所示。
n 1,3,5, n 2,4,6,
aanAn
(傅a) 里叶级数
可x知(tA) ,a0=0,an=0,Abnn=
2A n
1
cos
n
T
T
2
2
O
t
A
O 0 30 50 70 90
30 50 70 9 (b)
x(t)
4A
sin 0t
1 3
sin
30t(a)
1 5
sin
50t
1 7
sin
70t
(幅b)频谱
1.4 复数形式的傅里叶级数
傅里叶级数也可以表示成复指数形式的展开式。根据欧拉公式
若用复数形式表示,则根据
Cn
Cn
1 2
an
C0 a0
可求得如图(b)所示的幅频谱(双边谱)。
通过以上例题可以看出,周期信号有以下几个特点: (1)周期信号的频谱是由无限多条离散谱线组成的,每一条谱线 (单边谱)代表一个谐波分量。 (2)各次谐波的频率只能是基波频率的整数倍。 (3)谱线的高度表示了相应谐波分量的幅值大小。对于工程中常见 的周期信号,其谐波幅值的总趋势是随着谐波次数的增高而减小。当谐 波次数无限增高时,其幅值就趋于零。
FS,FT,DFS,DTFT,DFT,FFT的联系和区别

FS,FT,DFS,DTFT,DFT,FFT的联系和区别对于初学数字信号处理(DSP)的人来说,这几种变换是最为头疼的,它们是数字信号处理的理论基础,贯穿整个信号的处理。
学习过《高等数学》和《信号与系统》这两门课的朋友,都知道时域上任意连续的周期信号可以分解为无限多个正弦信号之和,在频域上就表示为离散非周期的信号,即时域连续周期对应频域离散非周期的特点,这就是傅里叶级数展开(FS),它用于分析连续周期信号。
FT是傅里叶变换,它主要用于分析连续非周期信号,由于信号是非周期的,它必包含了各种频率的信号,所以具有时域连续非周期对应频域连续非周期的特点。
FS和FT 都是用于连续信号频谱的分析工具,它们都以傅里叶级数理论问基础推导出的。
时域上连续的信号在频域上都有非周期的特点,但对于周期信号和非周期信号又有在频域离散和连续之分。
在自然界中除了存在温度,压力等在时间上连续的信号,还存在一些离散信号,离散信号可经过连续信号采样获得,也有本身就是离散的。
例如,某地区的年降水量或平均增长率等信号,这类信号的时间变量为年,不在整数时间点的信号是没有意义的。
用于离散信号频谱分析的工具包括DFS,DTFT和DFT。
DTFT是离散时间傅里叶变换,它用于离散非周期序列分析,根据连续傅里叶变换要求连续信号在时间上必须可积这一充分必要条件,那么对于离散时间傅里叶变换,用于它之上的离散序列也必须满足在时间轴上级数求和收敛的条件;由于信号是非周期序列,它必包含了各种频率的信号,所以DTFT对离散非周期信号变换后的频谱为连续的,即有时域离散非周期对应频域连续周期的特点。
当离散的信号为周期序列时,严格的讲,离散时间傅里叶变换是不存在的,因为它不满足信号序列绝对级数和收敛(绝对可和)这一傅里叶变换的充要条件,但是采用DFS(离散傅里叶级数)这一分析工具仍然可以对其进行傅里叶分析。
我们知道周期离散信号是由无穷多相同的周期序列在时间轴上组成的,假设周期为N,即每个周期序列都有N个元素,而这样的周期序列有无穷多个,由于无穷多个周期序列都相同,所以可以只取其中一个周期就足以表示整个序列了,这个被抽出来表示整个序列特性的周期称为主值周期,这个序列称为主值序列。
常见连续时间信号的频谱

19
1. 线性特性
若f1 (t) F F1 ( j); f 2 (t) F F2 ( j), 则af1 (t) bf 2 (t) F aF1 ( j) bF2 ( j) 其中a和b均为常数。
2020/2/29
20
3
2. 共轭对称特性
若 f (t) F F ( j)
1
F( j)
(π)
(π)
t -0
0
0
余弦信号及其频谱函数
2020/2/29
12
二、常见周期信号的频谱密度
2. 正弦型信号
sin 0t
1 (e j0t 2j
- e-j0t ) F - jπ[d (
- 0 ) - d (
0 )]
sin 0t 1
2020/2/29
(t)]
2π
n-
1d
T
(
-
n0
)
0
d (
n-
-
n0 )
dT (t)
单位冲激串
(1)
及其频谱函数
F[dT (t)] (0 )
2020/2/29 - T 0 T
t
-0 0 0
16
4.3、功率谱密度的性质
● 利用已知的基本公式和Fourier变换的性质等
dT
(t)
d
n-
(t
-
nT
)
1 T
e
n-
jn0t
F[d T
(t)]
2π
n-
1d
T
(
-
4_3 连续周期信号的频谱

x(t)不连续时,Cn按1/n的速度衰减 x(t)连续时,一阶导数不连续时,Cn按1/n2的速度衰减
连续周期信号的频谱特性
有效带宽
~ x (t )
集中信号大多数功率的频率范围
A T0
Cn
A
T0
O
2
2π
2π
2
T0
t
0
0 2 π T0
通常将包含主要谐波分量的频率范围 (0 ~ 2π/ ) 称为周期矩形信号的有效频带宽度 B 2p 信号的有效带宽和时域持续时间成反比。
Cn
n A Sa( 0 ) T0 2
周期矩形信号的频谱
连续周期信号的频谱
[例] 计算周期三角波信号指数形式的傅里叶级数展开式。
~ x (t )
-2 1
0
2
t
解:
1 Cn T0
T0 2 T 0 2
(t )e x
jn0t
dt
1 1 1 1 0 jn0 t jn0t jn0t x ( t )e d t ( t )e d t t e dt 0 1 2 1 2
Poisson求和公式
连续周期信号的频谱
~ x (t )
A
n A Cn Sa( 0 ) T0 2
2π
A T0
Cn
2π
T0
O
2
2
T0
t
0
周期矩形信号的时域波形
~ x (t )
周期矩形信号的频谱
Cn
1/ 2
信号与线性系统分析总结

•两个周期信号x(t),y(t)的周期分别为T1和T2,若其周期之比T1/T2为有理数,则其 和信号x(t)+y(t)仍然是周期信号,其周期为T1和T2的最小公倍数。
总结
➢ 能量信号与功率信号
将信号f (t)施加于1Ω电阻上,它所消耗的瞬时功率为| f (t) |2, 在区间(–∞ , ∞)的能量和平均功率定义为
-2 -1 0 1 2 3 ki
总结
例2 f1(k) ={0, 2 , 1 , 5,0} ↑k=1
f2(k) ={0, 3 , 4,0,6,0} ↑k=0
解:
3 , 4, 0, 6
×—————2 ,——1 ,—5 15 ,20, 0, 30
3 , 4, 0, 6 6 ,8, 0, 12 + ———————————— 6 ,11,19,32,6,30
总结
第二章 连续系统的时域分析
➢系统的时域求解,冲激响应,阶跃响应。
➢时域卷积: f1 (t) * f2 (t) f1 ( ) f2 (t )d
图解法一般比较繁琐,但若只求某一时刻卷积 值时还是比较方便的。确定积分的上下限是关
f1(-τ)
键。
f 1( τt )
2
f1(2-τ)
f1(t)、 f2(t)如图所示,已知f(t) = f2(t)* f1(t),求f(2) =?
*
d
n f 2 (t dtn
)
t
t
t
[
f1
(
)
*
f 2 ( )]d
[
f1 ( ) d ] *
f 2 (t)
f1 (t) *[
信号与系统—信号的频域分析

2. 指数形式傅立叶级数
连续时间周期信号可以用指数形式傅立叶级数表示为
f (t) Cn e jn0t
n =
其中
Cn
1 T
T 2 T
fT (t)e jn0t dt
2
n 1 两项的基波频率为f0,两项合起来称为信号的基波分量 n 2 的基波频率为2f0,两项合起来称为信号的2次谐波分量
n N 的基波频率为Nf0,两项合起来称为信号的N次谐波分量
3.卷积性质
若f1(t)和f2(t)均是周期为T0的周期信号,且 f1(t) C1n , f2 (t) C2n
则有 f1(t) * f2 (t) T0C1n C2n
4. 微分特性
若
则有
f (t) Cn
f '(t) jn0Cn
5. 对称特性
(1)若f(t)为实信号
则 | Cn || Cn | n n
• 周期信号f(t)可以分解为不同频率虚指数信号之和
fT (t) Cn e jn0t
n =
不同的时域信号,只是傅里叶级数的系数Cn不同, 因此通过研究傅里叶级数的系数来研究信号的特性。
Cn是频率的函数,它反映了组成信号各正弦谐波 的幅度和相位随频率变化的规律,称频谱函数。
2、频谱的表示
直接画出信号各次谐波对应的An、 Cn线状 分布图形,这种图形称为信号的频谱图。
)
例2 试计算图示周期三角脉冲信号的傅立叶级数展开式。
f (t)
-2 1 0 2
t
解: 该周期信号f (t)显然满足狄里赫勒的三个条件,Cn存在
Cn
1 T
T 2 T
f (t)e jn0t dt 1 ( 0 te jn0t dt 2 1
信号与系统常用公式

常用公式第一章判断周期信号方法两个周期信号x(t),y(t)的周期分别为T1和T2,若其周期之比T1/T2为有理数,则其和信号x(t)+y(t)仍然是周期信号,其周期为T1和T2的最小公倍数。
2/2/2/(2/),/N N M M N πβπβπβπβπβ==仅当为整数时正弦序列才具有周期当为有理数时 正弦序列仍具有周期性, 其周期为取使为整数的最小整数当2为无理数时 正弦序列不具有周期性,1、连续正弦信号一定是周期信号,而正弦序列不一定是周期序列。
2、两连续周期信号之和不一定是周期信号,而两周期序列之和一定是周期序列。
信号的能量 def2()E f t dt +∞-∞=⎰信号的平均功率 def2/2/21lim ()T T T P f t dt T +-→∞=⎰ 冲激函数的特性'''()()(0)()(0)()f t t f t f t δδδ=- ()()(0)()f t t f t δδ=()()()()f t t a f a t a δδ-=- ()()(0),f t t dt f δ∞-∞=⎰()()()f t t a dt f a δ∞-∞-=⎰()()11()()n n n at t a a δδ=g 001()()t at t t a aδδ-=- 000()()()()f k k k f k k k δδ-=-()()()()(1)(0)n n n t f t dt f δ∞∞=-⎰- ''()()(0)t f t dt f δ∞∞=-⎰-动态系统是线性系统的条件可分解性 {}{}{}{}()()()0,()(0),0f x y y y T f T x •=•+•=•+⎡⎤⎡⎤⎣⎦⎣⎦ 零状态线性 {}{}{}{}{}{}12120,()()0,()0,()T af t bf t aT f bT f +=•+•⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦ 零输入线性 {}{}{}{}{}{}1212(0)(0),0(0),0(0),0T ax bx aT x bT x +=+⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦判断系统时不变、因果、稳定的方法。