高三数学教案 函数与方程思想
高三数学总复习 函数及其表示教案

城东蜊市阳光实验学校2021届高三数学总复习函数及其表示教案A版1.(必修1P24练习5改编)假设f(x)=x-x2,那么f=________,f(n+1)-f(n)=________.答案:-2n2.(必修1P29习题8改编)假设函数f(x)和g(x)分别由下表给出:那么f(g(1))=____________,满足g(f(x))=1的x值是________.答案:31解析:f(g(1))=f(2)=3;由g(f(x))=1,知f(x)=2,所以x=1.3.(必修1P31练习4)以下列图象表示函数关系y=f(x)的有________.(填序号)答案:①④解析:根据函数定义,定义域内任意的一个自变量x的值都有唯一一个y与之对应.4.(必修1P31练习3改编)用长为30cm的铁丝围成矩形,假设将矩形面积S(cm2)表示为矩形一边长x(cm)的函数,那么函数解析式为____________,其函数定义域为______________.答案:S=x(15-x)x∈(0,15)解析:矩形的另一条边长为15-x,且x>0,15-x>0.5.(必修1P32习题7改编)函数f(x)=假设f(a)=a,那么实数a=________.答案:或者者-1解析:假设a≥0,那么1-a=a,得a=;假设a<0,那么=a,得a=-1.1.函数的定义一般地,设A、B是两个非空的数集,假设按照某种对应法那么f,对于集合A中的每一个元素x,在集合B中都有唯一的一个元素y和它对应,这样的对应叫做从A到B的一个函数,通常记为y=f(x),x∈A.2.函数的三要素函数的构成三要素为定义域、值域、对应法那么.由于值域是由定义域和对应法那么决定的,所以假设两个函数的定义域和对应法那么完全一致,我们就称这两个函数是同一函数.3.函数的表示方法表示函数的常用方法有列表法、解析法、图象法.4.分段函数在定义域内不同部分上,有不同的解析式,像这样的函数通常叫做分段函数.分段函数的定义域是各段自变量取值集合的并集,值域是各段上函数值集合的并集.5.映射的概念一般地,设A、B是两个非空的集合,假设按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射.[备课札记]题型1函数的概念例1判断以下对应是否是从集合A到集合B的函数.(1)A=B=N*,对应法那么f:x→y=|x-3|,x∈A,y∈B;(2)A=[0,+∞),B=R,对应法那么f:x→y,这里y2=x,x∈A,y∈B;(3)A=[1,8],B=[1,3],对应法那么f:x→y,这里y3=x,x∈A,y∈B;(4)A={(x,y)|x、y∈R},B=R,对应法那么:对任意(x,y)∈A,(x,y)→z=x+3y,z∈B.解:(1)对于A中的元素3,在f的作用下得到0,但0不属于B,即3在B中没有元素与之对应,所以不是函数.(2)集合A中的一个正数在集合B中有两个元素与之对应,所以不是函数.(3)由y3=x,即y=,因为A=[1,8],B=[1,3],对应法那么f:x→y,符合函数对应.(4)由于集合A不是数集,所以此对应法那么不是函数.以下说法正确的选项是______________.(填序号)①函数是其定义域到值域的映射;②设A=B=R,对应法那么f:x→y=+,x∈A,y∈B,满足条件的对应法那么f构成从集合A到集合B的函数;③函数y=f(x)的图象与直线x=1的交点有且只有1个;④映射f:{1,2,3}→{1,2,3,4}满足f(x)=x,那么这样的映射f一一共有1个.答案:①④解析:②中满足y=+的x值不存在,故对应法那么f不能构成从集合A到集合B的函数;③中函数y =f(x)的定义域中假设不含x=1的值,那么其图象与直线x=1没有交点.题型2函数的解析式例2求以下各题中的函数f(x)的解析式.(1)f(+2)=x+4,求f(x);(2)f=lgx,求f(x);(3)函数y=f(x)满足2f(x)+f=2x,x∈R且x≠0,求f(x);(4)f(x)是二次函数,且满足f(0)=1,f(x+1)=f(x)+2x,求f(x).解:(1)(解法1)设t=+2,那么=t-2,即x=(t-2)2,∴f(t)=(t-2)2+4(t-2)=t2-4,∴f(x)=x2-4(x≥2).(解法2)∵f(+2)=(+2)2-4,∴f(x)=x2-4(x≥2).(2)设t=+1,那么x=,∴f(t)=lg,即f(x)=lg(x>1).(3)由2f(x)+f=2x,①将x换成,那么换成x,得2f+f=,②①×2-②,得3f(x)=4x-,得f(x)=x-.(4)∵f(x)是二次函数,∴设f(x)=ax2+bx+c(a≠0).由f(0)=1,得c=1.由f(x+1)=f(x)+2x,得a(x+1)2+b(x+1)+1=(ax2+bx+1)+2x,整理,得(2a-2)x+(a+b)=0,由恒等式原理,知∴f(x)=x2-x+1.求以下函数f(x)的解析式.(1)f(1-x)=2x2-x+1,求f(x);(2)f=x2+,求f(x);(3)一次函数f(x)满足f(f(x))=4x-1,求f(x);(4)定义在(-1,1)内的函数f(x)满足2f(x)-f(-x)=lg(x+1),求f(x).解:(1)(换元法)设t=1-x,那么x=1-t,∴f(t)=2(1-t)2-(1-t)+1=2t2-3t+2,∴f(x)=2x2-3x+2.(2)(配凑法)∵f=x2+=2+2,∴f(x)=x2+2.(3)(待定系数法)∵f(x)是一次函数,∴设f(x)=ax+b(a≠0),那么f(f(x))=f(ax+b)=a(ax+b)+b=a2x+ab+b.∵f(f(x))=4x-1,∴解得或者者∴f(x)=2x-或者者f(x)=-2x+1.(4)(消去法)当x∈(-1,1)时,有2f(x)-f(-x)=lg(x+1),①以-x代替x得2f(-x)-f(x)=lg(-x+1),②由①②消去f(-x)得,f(x)=lg(x+1)+lg(1-x),x∈(-1,1).题型3分段函数例3实数a≠0,函数f(x)=(1)假设a=-3,求f(10),f(f(10))的值;(2)假设f(1-a)=f(1+a),求a的值.解:(1)假设a=-3,那么f(x)=所以f(10)=-4,f(f(10))=f(-4)=-11.(2)当a>0时,1-a<1,1+a>1,所以2(1-a)+a=-(1+a)-2a,解得a=-,不合,舍去;当a<0时,1-a>1,1+a<1,所以-(1-a)-2a=2(1+a)+a,解得a=-,符合.综上可知,a=-.如下列图,在边长为4的正方形ABCD的边上有一点P,沿着折线BCDA由点B(起点)向点A(终点)运动,设点P运动的路程为x,△ABP的面积为y.(1)求y与x之间的函数关系式;(2)画出y=f(x)的图象.解:(1)y=(2)y=f的图象如图.1.(2021·期末)假设函数f(x)=那么f(f(0))=________.答案:0解析:f(0)=30=1,f(f(0))=f(1)=log21=0.2.(2021·一模)定义在R上的函数f(x),对任意x∈R都有f(x+2)=f(x),当x∈(-2,0)时,f(x)=4x,那么f(2013)=________.答案:解析:由,f(x)是以2为周期的周期函数,故f(2013)=f(-1)=4-1=.3.(2021·期末)函数f(x)=那么使f(f(x))=2成立的实数x的集合为________.答案:{x|0≤x≤1或者者x=2}解析:当x∈[0,1]时,f(f(x))=f(2)=2成立;当x[0,1]时,f(f(x))=f(x)=x,要使f(f(x))=2成立,只需x=2.综上,实数x的集合为{x|0≤x≤1或者者x=2}.4.(2021·苏南四一模)函数f(x)=+++,那么f+f=________.答案:8解析:因为f(x)=+++=4-.设g(x)=+++,那么g(-5-x)=-,所以g(x)+g(-5-x)=0,从而f(x)+f(-5-x)=8,故f+f=8.1.函数f(x)=alog2x-blog3x+2,假设f=4,那么f(2014)的值是________.答案:0解析:∵f=alog2-blog3+2=-(alog22014-blog32014)+2=4,∴f(2014)=alog22014-blog32014+2=(-2)+2=0.2.函数f(x)=那么满足不等式f(f(x))>1的x的取值范围是________.答案:(4,+∞)解析:当x≤0时,2x∈(0,1],f(f(x))=log22x=x>1,不符合;当0<x≤1时,log2x≤0,f(f(x))=2log2x=x>1,不符合;当x>1时,log2x>0,f(f(x))=log2(log2x)>1,解得x>4.3.集合M={f(x)|存在实数t使得函数f(x)满足f(t+1)=f(t)+f(1)},那么以下函数(a、b、c、k都是常数):①y=kx+b(k≠0,b≠0);②y=ax2+bx+c(a≠0);③y=ax(0<a<1);④y=(k≠0);⑤y=sinx.其中属于集合M的函数是________.(填序号)答案:②⑤解析:对于①,由k(t+1)+b=kt+b+k+b,得b=0,矛盾,不符合;对于②,由a(t+1)2+b(t +1)+c=at2+bt+c+a+b+c,得t=,符合题意;对于③,由at+1=at+a1,所以at=,由于0<a<1,at=<0,无解;对于④,由=+k,无解;对于⑤,由sin(t+1)=sint+sin1,取t=2kπ,k∈Z,符合题意.综上,属于集合M的函数是②⑤.4.f(x)为二次函数,不等式f(x)+2<0的解集是,且对任意α、β∈R恒有f(sinα)≤0,f(2+cosβ)≥0,求函数f(x)的解析式.解:设f(x)=a(x+1)-2(a>0),∵函数f(x)对任意α、β∈R恒有f(sinα)≤0,f(2+cosβ)≥0,取sinα=1,cosβ=-1,那么f(1)≤0与f(1)≥0同时成立,∴f(1)=0,∴a=,∴f(x)=x2+x-.1.函数是特殊的映射,其特殊性在于集合A与B只能是非空数集,即函数是非空数集A到非空数集B 的映射;而映射不一定是函数从A到B的一个映射,A、B假设不是数集,那么这个映射不是函数.2.函数是一种特殊的对应,要检验给定的两个变量是否具有函数关系,只需要检验:①定义域和对应法那么是否给出;②根据给出的对应法那么,自变量在定义域中的每一个值,是否都有唯一确定的函数值.3.函数解析式的求解方法通常有:配凑法,换元法,待定系数法及消去法.用换元法求解时要特别注意新元的范围,即所求函数的定义域;而消去法表达的方程思想,即根据条件再构造出另外一个等式组成方程组,通过解方程组求出f(x).[备课札记]。
上海高三数学高考二轮复习教案函数方程专题之函数与不等式(2)含答案

沪教版(上海)高中数学度高三数学二轮复习函数方程专题之函数与不等式② 教学目标 理解并充分掌握基本的函数与不等式题型之间的转换问题,即函数题型用不等式来解,不等式题型用函数来做的思想.知识梳理函数与不等式(方程)是相互联系的,在一定条件下,他们可以相互转化,例如解方程()0f x =就是求函数的零点,解不等式()()f x g x >,就是当两个函数的函数值的大小关系确定后,求自变量的取值范围。
正确理解函数与不等式(方程)的这种对立统一关系,有利于提高综合运用知识分析问题和解决问题的能力.典例精讲例1.(★★★)已知函数()24f x mx =+,若在[2,1]-上存在唯一零点,则实数m 的取值范围是___________.解:由题意得:(2)(1)0f f -⋅≤,即(,2][1,)m ∈-∞-+∞例2.(★★★)函数3()log (3)1f x x =+-的图像恒过定点A ,若点A 在直线10mx ny ++=上,其中0mn >,则12m n+的最小值为___________. 解:由题意得点A 的坐标为(2,1)--,代入直线方程得:21m n +=.∴121244()(2)2244248n m n m m n m n m n m n m n +=++=+++=++≥+=,当且仅当4n m m n=.即1412m n ⎧=⎪⎪⎨⎪=⎪⎩时等号成立. 例3.(★★★)已知2()221f x x mx m =+++.(1)若函数有两个零点,且其中一个在区间(1,0)-,另一个在区间(1,2)内,求m 的取值范围(2)若函数的两个零点均在区间(0,1)内,求m 的取值范围.解:(1)(1)0122101(0)0210512(,)5(1)012210626(2)044210f m m m f m m f m m m f m m ->-++>⎧⎧⎧<-⎪⎪⎪<+<⎪⎪⎪⇒⇒⇒∈--⎨⎨⎨<+++<⎪⎪⎪>-⎪⎪⎪⎩>+++>⎩⎩. (2)221(22)1,2(1)x m x x m x --+=--=+.令1,(1,2)t x t =+∈. 所以221(1)11221212(2)()12222t t t m t t t t t t----+-=⋅=⋅=--+=-++. 所以212(1),222(1)3,122t m m m t +=--≤--<-<≤-. 课堂检测1.(★★)使2log ()1x x -<+成立的x 的取值范围是___________.解:结合函数图象可知:(1,0)x ∈-2.(★★★)设函数2()|45|f x x x =--,若在区间[1,5]-上,3y kx k =+的图像位于函数()f x 图像的上方,则实数k 的取值范围是___________.解:由题意得:2345kx k x x +>-++在区间[1,5]-上恒成立. 即:2453x x k x -++>+在区间[1,5]-上恒成立, 由2453x x x -+++在[1,5]-上的最大值为2,得出2k >. 3.(★★★)三位同学合作学习,对问题“已知不等式222xy ax y ≤+,对于[1,2],[2,3]x y ∈∈恒成立,求a 的取值范围”提出了各自的解题思路.甲说:“可视x 为变量,y 为常量来分析” .乙说:“寻找x 与y 的关系,再作分析”.丙说:“把字母a 单独放在一边,再作分析”.参考上述思路,或自己的其他解法,可求出实数a 的取值范围是___________.解:原式⇔ 22()y y a x x≥-在[1,2],[2,3]x y ∈∈上恒成立, 令[1,3]y t x=∈,则函数22t t -在[1,3]的最大值为1-,则1a ≥-. 4.(★★★★)已知二次函数2()f x ax bx c =++和一次函数()g x bx =-,其中,,a b c 满足a b c >>,0(,,)a b c a b c R ++=∈.(1)求证:两函数的图像交于不同的两点A 、B ;(2)求线段AB 在x 轴上的射影11A B 的长的取值范围.解:(1)222220444()y ax bx c ax bx c b ac b ac y bx⎧=++⇒++=⇒∆=-⇒∆=-⎨=-⎩. 因为a b c >>且0a b c ++=,所以0a >且0c <,20b ac ->,即0∆>.所以两函数图像有两个交点. (2)22221124()()13||221()2()24b ac a c ac c c c A B a a a a -+-===++=++ 因为0()()a b c b a c a a c c ++=⇒=-+⇒>-+>, 所以1(2,)2c a ∈--.故11||(3,23)A B ∈. 回顾总结1.在写不等式解集的时候一定要注意答案要写__________集合或区间形式.。
高三数学复习学案:第1讲 函数与方程思想

函数与方程是中学数学的重要概念,它们之间有着密切的联系.函数与方程的思想是中学数学的基本思想,主要依据题意,构造恰当的函数,或建立相应的方程来解决问题,是历年高考的重点和热点.1.函数的思想用运动和变化的观点,集合与对应的思想分析和研究具体问题中的数量关系,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题使问题获得解决.函数思想是对函数概念的本质认识.2.方程的思想在解决问题时,用事先设定的未知数沟通问题中所涉及的各量间的等量关系,建立方程或方程组,求出未知数及各量的值,或者用方程的性质去分析、转化问题,使问题获得解决.题型二 函数与方程思想在方程问题中的应用例2 如果方程cos 2x -sin x +a =0在(0,π2]上有解,求a 的取值范围.变式训练 已知方程9x -2·3x +(3k -1)=0有两个实根,求实数k 的取值范围.题型三 函数与方程思想在不等式问题中的应用例3 已知f (t )=log 2t ,t ∈[2,8],对于f (t )值域内的所有的实数m ,不等式x 2+mx +4>2m +4x 恒成立,求x 的取值范围.变式训练 设不等式2x -1>m (x 2-1)对满足|m |≤2的一切实数m 的取值都成立,求x 的取值范围.第1讲 函数与方程思想(推荐时间:60分钟)一、填空题1.双曲线x 29-y 216=1的两个焦点为F 1、F 2,点P 在双曲线上.若PF 1⊥PF 2,则点P 到x 轴的距离为________.2.对任意a ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值总大于零,则x 的取值范围是________.3.已知向量a =(3,2),b =(-6,1),而(λa +b )⊥(a -λb ),则实数λ=__________.4.方程m +1-x =x 有解,则m 的最大值为________.5.已知R 上的减函数y =f (x )的图象过P (-2,3)、Q (3,-3)两个点,那么|f (x +2)|≤3的解集为________.6.当x ∈(1,2)时,不等式x 2+mx +4<0恒成立,则m 的取值范围为__________.7.若关于x 的方程4cos x -cos 2x +m -3=0恒有实数解,则实数m 的取值范围是________.8.已知函数f (x )=(x -a )(x -b )-2,其中a <b ,且α,β(α<β)是函数f (x )的两个零点,则实数a ,b ,α,β的大小关系为________.9.已知等差数列{a n }共有10项,其奇数项的和为15,偶数项的和为30,则它的公差d =________.10.已知数列{a n }是递增数列,且对于任意的n ∈N *,a n =n 2+λn 恒成立,则实数λ的取值范围是__________.11.若存在a ∈[1,3],使得不等式ax 2+(a -2)x -2>0成立,则实数x 的取值范围是____________.12.已知函数f (x )=⎩⎨⎧-x 2, -3≤x ≤3,x 2-6,x <-3或x >3,若0<m <n ,且f (m )=f (n ),则mn 2的取值范围是________.二、解答题13.设P (x ,y )是椭圆x 24+y 22=1上的动点,定点M (12,0),求动点P 到定点M 距离的最大值与最小值.14.已知{a n }是一个等差数列,且a 2=1,a 5=-5.(1)求{a n }的通项公式;(2)求{a n }前n 项和S n 的最大值.15.已知二次函数f (x )=ax 2+bx (a ,b 为常数,且a ≠0)满足条件:f (x -1)=f (3-x ),且方程f (x )=2x 有等根.是否存在实数m ,n (m <n ),使f (x )定义域和值域分别为[m ,n ]和[4m,4n ],如果存在,求出m ,n 的值;如果不存在,说明理由.。
高考数学第1讲 函数与方程思想——骨肉相连

大二轮复习 数学(文)
应用(四) 构造“方程形式”,利用方程思想解决问题 (2018·全国卷Ⅲ)已知点 M(-1,1)和抛物线 C:y2=4x,
过 C 的焦点且斜率为 k 的直线与 C 交于 A,B 两点.若∠AMB=90°, 则 k=________.
大二轮复习 数学(文)
解析:由题意知,抛物线的焦点坐标为 F(1,0), 设直线方程为 y=k(x-1), 直线方程与 y2=4x 联立,消去 y, 得 k2x2-(2k2+4)x+k2=0. 设 A(x1,y1),B(x2,y2), 则 x1x2=1,x1+x2=2kk2+2 4.
大二轮复习 数学(文)
大二轮复习 数学(文)
解析:由余弦定理得 cos B=a2+2ca2c-b2,
∴a2+c2-b2=2accos
B.
又∵S= 43(a2+c2-b2),
∴12acsin B= 43×2accos B,∴tan B= 3, ∵B∈0,π2 ,∴∠B=π3 . 又∵∠C 为钝角,∴∠C=2π 3 -∠A>π2 ,∴0<∠A<π6 .
大二轮复习 数学(文)
3.设 0<a<1,e 为自然对数的底数,则 a,ae,ea-1 的大小关系为
( B) A.ea-1<a<ae
B.ae<a<ea-1
C.ae<ea-1<a
D.a<ea-1<ae
大二轮复习 数学(文)
解析:选 B.设 f(x)=ex-x-1,x>0,则 f′(x)=ex-1>0, ∴f(x)在(0,+∞)上是增函数,且 f(0)=0,f(x)>0, ∴ex-1>x,即 ea-1>a. 又 y=ax(0<a<1)在 R 上是减函数,得 a>ae, 从而 ea-1>a>ae.故选 B.
高三数学函数与方程2

绍兴一中分校高三备课组
一、专题主干知识整合:
函数思想就是用联系和变化的观点提炼出数学对象,抽象出 其数量特征,从而建立函数关系,把问题转化为函数问题,然后 再利用函数的概念和性质去分析问题,解决问题。
方程的思想就是从分析问题的数量关系入手,分析已知量和末 知量之间的制约和联系,从而把末知量转化为已知量的思想,在 解决问题时,先设定末知数,然后把它们当做已知数,根据问题 所涉及的各量间的制约关系、列出方程或方程组,从而求得末知 量的值。
例6:甲方是一农场,乙方是一工厂,由于乙 方生产需占用甲方的资源,因此甲方有权向乙 方索赔以弥补经济损失并获得一定净收入,在 乙方不赔付甲方的情况下,乙方的年利润x 与
年产量t(吨)满足函数关系 x 2000 t
若乙方每生产一吨产品必须赔付甲方s(元)(以 下称s为赔付价格),
(1)将乙方的年利润w(元)表示为年产量t(吨) 的函数,并求出乙方获得最大利润的年产量;
例4:设不等式2x-1>m( x 2 1 )对满足 m 2
的一切实数m的取值都成立,求x的取值范围。
例5:已知抛物线方程为 y 2 2x
1.设点A的坐标为 ( 2 ,0)求曲线上距点A最近的
3
点P的坐标及相应的距离 PA
;
2.设点A的坐标为(a,0),a R
求曲线上点到点A距离的最小值d,并写出 d=f(a)的函数表达式。
(2)甲方每年受乙方生产影响的经济损失金额 (元),在乙方按照获得最大利润的产量进 行生产的前提下,甲方要在索赔中获得最大 净收入,应向乙方要求的赔付价格s是多少?
例7:设f(x)是定义在 ,3上的减函数,已
知 f
(a
函数与方程思想和数形结合思想

函数与方程思想和数形结合思想主干知识整合1.函数与方程思想(1)函数思想的实质是抛开所研究对象的非数学特征,用联系和变化的观点提出数学对象,抽象其数学特征,建立各变量之间固有的函数关系,通过函数形式,利用函数的有关性质,使问题得到解决;(2)方程思想的实质就是将所求的量设成未知数,用它表示问题中的其他各量,根据题中隐含的等量关系,列方程(组),通过解方程(组)或对方程(组)进行研究,以求得问题的解决;(3)函数与方程思想在一定的条件下是可以相互转化的,是相辅相成的,函数思想重在对问题进行动态的研究,方程思想则是在动中求静,研究运动中的等量关系.2.数形结合思想(1)根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想,包含“以形助数”和“以数辅形”两个方面;(2)数形结合是数学解题中常用的思想方法,运用数形结合思想,使某些抽象的数学问题直观化、形象化,能够变抽象思维为形象思维,有助于把握数学问题的本质,发现解题思路,而且能避免复杂的计算与推理,大大简化了解题过程;(3)数形结合的重点是研究“以形助数”,这在解选择题、填空题中更显其优越,要注意培养这种思想意识,做到心中有图,见数想图,以开拓自己的思维视野. 【百度百科】函数思想/view/2045453.htm 【百度百科】属性结合/view/134322.htm 要点热点探究► 探究点一 列方程(组)解题例1 (1)公差不为零的等差数列{a n }的前n 项和为S n .若a 4是a 3与a 7的等比中项,S 8=32,则S 10等于( )A .18B .24C .60D .90(2)过抛物线y 2=2px (p >0)的焦点F 作倾斜角为45°的直线交抛物线于A ,B 两点,若线段AB 的长为8,则p =________.【分析】 (1)根据数列中的基本量方法,列方程组求数列的首项和公差;(2)根据弦长公式建立关于p 的方程.(1)C (2)2 【解析】 (1)由a 24=a 3a 7得(a 1+3d )2=(a 1+2d )(a 1+6d ),得2a 1+3d =0,再由S 8=8a 1+562d =32得2a 1+7d =8,则d =2,a 1=-3,所以S 10=10a 1+902d =60.故选C.(2)设A (x 1,y 1),B (x 2,y 2),由题意可知过焦点的直线方程为y =x -p2,联立有⎩⎪⎨⎪⎧y 2=2px ,y =x -p 2,消元后得x 2-3px +p 24=0.又|AB |=x 1+x 2+p =8,解得p =2.► 探究点二 使用函数方法解决非函数问题例2 (1)已知{a n }是一个等差数列,且a 2=1,a 5=-5,则数列{a n }前n 项和S n 的最大值是________.(2)长度都为2的向量OA →,OB →的夹角为60°,点C 在以O 为圆心的圆弧AB (劣弧)上,OC →=mOA →+nOB →,则m +n 的最大值是________.【分析】 (1)根据方程思想求出数列的首项和公差,建立S n 关于n 的函数;(2)将向量坐标化,建立m +n 关于动向量OC →的函数关系.(1)4 (2)233 【解析】 (1)设{a n }的公差为d ,由已知条件,⎩⎪⎨⎪⎧a 1+d =1,a 1+4d =-5,解出a 1=3,d =-2.S n =na 1+n (n -1)2d =-n 2+4n =4-(n -2)2.所以n =2时,S n 取到最大值4.(2)建立平面直角坐标系,设向量OA →=(2,0),向量OB →=(1,3).设向量OC →=(2cos α,2sin α),0≤α≤π3.由OC →=mOA →+nOB →,得(2cos α,2sin α)=(2m +n ,3n ),即2cos α=2m +n,2sin α=3n ,解得m =cos α-13sin α,n =23sin α.故m +n =cos α+13sin α=233sin ⎝⎛⎭⎫α+π3≤233. 变式题若a >1,则双曲线x 2a 2-y 2(a +1)2=1的离心率e 的取值范围是( )A .(1,2)B .(2,5)C .[2,5]D .(3,5)B 【解析】 e 2=⎝⎛⎭⎫c a 2=a 2+(a +1)2a 2=1+⎝⎛⎭⎫1+1a 2,因为1a 是减函数,所以当a >1时,0<1a<1,所以2<e 2<5,即2<e < 5.► 探究点三 联用函数与方程的思想例3 已知函数f (x )=x (x -a )2,g (x )=-x 2+(a -1)x +a (其中a 为常数).(1)设a >0,问是否存在x 0∈⎝⎛⎭⎫-1,a3,使得f (x 0)>g (x 0)?若存在,请求出实数a 的取值范围,若不存在,请说明理由;(2)记函数H (x )=[f (x )-1]·[g (x )-1],若函数y =H (x )有5个不同的零点,求实数a 的取值范围.【解答】 (1)假设存在,即存在x 0∈⎝⎛⎭⎫-1,a3,使得, f (x 0)-g (x 0)=x 0(x 0-a )2-[-x 20+(a -1)x 0+a ]=x 0(x 0-a )2+(x 0-a )(x 0+1)=(x 0-a )[x 20+(1-a )x 0+1]>0,当x 0∈⎝⎛⎭⎫-1,a3时,又a >0,故x 0-a <0, 则存在x 0∈⎝⎛⎫-1,a 3,使得x 20+(1-a )x 0+1<0, ①当a -12>a 3即a >3时,⎝⎛⎭⎫a 32+(1-a )⎝⎛⎭⎫a 3+1<0得a >3或a <-32,∴a >3; ②当-1≤a -12≤a 3即0<a ≤3时,4-(a -1)24<0得a <-1或a >3,∴a 无解.综上:a >3.(2)据题意有f (x )-1=0有3个不同的实根,g (x )-1=0有2个不同的实根,且这5个实根两两不相等.(i)g (x )-1=0有2个不同的实根,只需满足g ⎝⎛⎭⎫a -12>1⇒a >1或a <-3; (ii)f (x )-1=0有3个不同的实根,①当a3>a 即a <0时,f (x )在x =a 处取得极大值,而f (a )=0,不符合题意,舍;②当a3=a 即a =0时,不符合题意,舍;③当a 3<a 即a >0时,f (x )在x =a3处取得极大值,f ⎝⎛⎭⎫a 3>1⇒a >3322;所以a >3322; 因为(i)(ii)要同时满足,故a >3322.(注:a >334也对)下证:这5个实根两两不相等,即证:不存在x 0使得f (x 0)-1=0和g (x 0)-1=0同时成立; 若存在x 0使得f (x 0)=g (x 0)=1, 由f (x 0)=g (x 0),即x 0(x 0-a )2=-x 20+(a -1)x 0+a ,得(x 0-a )(x 20-ax 0+x 0+1)=0,当x 0=a 时,f (x 0)=g (x 0)=0,不符合,舍去; 当x 0≠a 时,即有x 20-ax 0+x 0+1=0 ①;又由g (x 0)=1,即-x 20+(a -1)x 0+a =1 ②; 联立①②式,可得a =0;而当a =0时,H (x )=[f (x )-1]·[g (x )-1]=(x 3-1)(-x 2-x -1)=0没有5个不同的零点,故舍去,所以这5个实根两两不相等.综上,当a >3322时,函数y =H (x )有5个不同的零点.变式题函数f (x )=(2x -1)2,g (x )=ax 2(a >0),满足f (x )<g (x )的整数x 恰有4个,则实数a 的取值范围是________.⎝⎛⎦⎤4916,8125 【解析】 在同一坐标系内分别作出满足条件的函数f (x )=(2x -1)2,g (x )=ax 2的图象,则由两个函数的图象可知,y =f (x ),y =g (x )的图象在区间(0,1)内总有一个交点,令:h (x )=f (x )-g (x )=(4-a )x 2-4(2x -1)2<ax 2的解集中的整数解恰有4个,则需⎩⎪⎨⎪⎧ h (4)<0,h (5)≥0⇒⎩⎪⎨⎪⎧49-16a <0,81-25a ≥0⇒4916<a ≤8125.► 探究点四 以形助数探索解题思路例4 (1)不等式|x +3|-|x -1|≤a 2-3a 对任意实数x 恒成立,则实数a 的取值范围为( )A .(-∞,-1]∪[4,+∞)B .(-∞,-2]∪[5,+∞)C .[1,2]D .(-∞,1]∪[2,+∞)(2)已知点P 在抛物线y 2=4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( )A .⎝⎛⎭⎫14,-1B .⎝⎛⎭⎫14,1 C .(1,2) D .(1,-2) 【分析】 (1)把不等式的左端看作一个函数,问题等价于这个函数的最大值不大于不等式右端的代数式的值,通过画出函数图象找到这个函数的最大值即可;(2)画出抛物线,根据抛物线上的点到焦点的距离等于其到准线的距离,把问题归结为两点之间的距离.(1)A (2)A 【解析】 (1)f (x )=|x +3|-|x -1|=⎩⎪⎨⎪⎧-4(x <-3),2x +2(-3≤x <1),4(x >1).画出函数f (x )的图象,如图,可以看出函数f (x )的最大值为4,故只要a 2-3a ≥4即可,解得a ≤-1或a ≥4.正确选项为A.(2)点P 到抛物线焦点距离等于点P 到抛物线准线距离,如图,PF +PQ =PS +PQ ,故最小值在S ,P ,Q 三点共线时取得,此时P ,Q 的纵坐标都是-1,代入y 2=4x 得x =14,故点P 坐标为⎝⎛⎭⎫14,-1,正确选项为A.► 探究点五 数量分析解决图形问题(以数助形)例5 (1)下列四个函数图象,只有一个是符合y =|k 1x +b 1|+|k 2x +b 2|-|k 3x +b 3|(其中k 1,k 2,k 3为正实数,b 1,b 2,b 3为非零实数)的图象,则根据你所判断的图象,k 1,k 2,k 3之间一定成立的关系是( )图22-1A.k1+k2=k3B.k1=k2=k3 C.k1+k2>k3D.k1+k2<k3(2)“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到达终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点……,用S1,S2分别表示乌龟和兔子所行的路程,t为时间,则下图与故事情节相吻合的是()图22-2【分析】(1)含有绝对值问题的函数,常去绝对值,转化为分段函数来解决;(2)乌龟的速度是恒定的,表现在时间和路程的图象上是直线上升的,这个过程没有变化;兔子的速度也是恒定的,表现在时间与路程的图象上也是直线上升的,并且比乌龟的时间和路程的图象上升的要快,但中间一段时间内,函数图象是水平的.(1)A(2)B【解析】(1)当x足够小时,y=-(k1+k2-k3)x-(b1+b2-b3),当x足够大时,y=(k1+k2-k3)x+(b1+b2-b3),可见,折线的两端的斜率必定为相反数,此时只有③符合条件.此时k1+k2-k3=0.(2)根据时间和路程的关系以及乌龟首先达到目的地,故选B.规律技巧提炼1.在高中数学的各个部分,都有一些公式和定理,这些公式和定理本身就是一个方程,如等差数列的通项公式、余弦定理、解析几何的弦长公式等,当试题与这些问题有关时,就需要根据这些公式或者定理列方程或方程组求解需要的量.2.当问题中涉及一些变化的量时,就需要建立这些变化的量之间的关系,通过变量之间的关系探究问题的答案,这就需要使用函数思想.3.在数学中函数的图象、方程的曲线、不等式所表示的平面区域、向量的几何意义、复数的几何意义等都实现以形助数的途径,当试题中涉及这些问题的数量关系时,我们可以通过形分析这些数量关系,达到解题的目的.4.有些图形问题,单纯从图形上无法看出问题的结论,这就要对图形进行数量上的分析,通过数的帮助达到解题的目的.。
于过程中锤炼学生思维 于联系中传承数学思想——执教南通市高三数学观摩课《函数与方程》的实践与感悟

和 基础 训 练第 1题 ( 投影 ) :
0 解 得 。 , , , 一2 X 一3 显然 都 在 区间 [ 1 4 一 ,] 内 ; 于② , 对 由于 ( ) 1 =一 1 , 2 =5 <O f( ) > 0 根 据零 点存 在性 判定 定理 知 , z 一 。 X , () -
让学 生 先独 立 思 考 , 师 巡 视. 刻 后 , 教 片 通过 实物 投影 展示 生 4的解题 过程.
则 函 数 j=,( 在 区 间 , )
( ,) 有 零 点 . n6上
引导学 生挖 掘 :1 定 理要 点 : 连续 、 () ① 异
号 , 充分 条件 ;2 定 理作 用 : ② () 判断零 点 的存
第3 O卷 第 1 O期
21 0 1年 1 O月
3
函数 的零 点 与方 程根 的联 系 , 解 教材 ( 理 苏教
现: 从数 的角 度看 , 函数 =厂 z 的零 点对 应 ()
于方 程 厂 ) 0的 实 数 根 ; 形的 角 度 看 , ( 一 从
函数 一厂 ) ( 的零 点对 应 于函数 一厂 ) ( 图
一
1 区 间[ ,] 在 1 2 上存 在 零 点 ; 可 以采 用 与 ③ 师: 很好 !在解 决 问题 2的 过程 中 , 我们
② 同样 的方 法得 到. 发 现 : 函数 在 给 定 区 间上 是 否 存 在零 点 的 对 问题 , 我们 可 以通 过解 方 程 ( 如0 ) 利 用零 或 点存 在性 判定 定理 ( ②③ ) 如 来解 决.
片 刻后 , 学 生 回答. 生 共 同总 结 , 请 师 发
( 书) 板 函数 的零点 存在 性判 定方 :
数孥教擎
高中数学专题函数方程教案

高中数学专题函数方程教案
一、教学目标
1. 了解函数方程的定义和基本概念;
2. 掌握函数方程的解法和计算方法;
3. 提高学生对函数方程的理解和运用能力。
二、教学重点和难点
重点:函数方程的定义和基本概念;
难点:解决函数方程的方法及计算过程。
三、教学准备
1. 教材:高中数学教材;
2. 工具:黑板、彩色粉笔、教学PPT等。
四、教学过程
1. 引入:通过几个实际问题引导学生认识函数方程的概念,引出本节课的主题;
2. 学习:结合具体例题,介绍函数方程的定义和基本性质,讲解解决函数方程的常见方法;
3. 练习:组织学生进行练习,巩固所学知识,培养学生的解题能力;
4. 拓展:引导学生应用函数方程解决更复杂的问题;
5. 总结:对本节课的内容进行总结,强调重点和难点,梳理知识结构,加深学生印象。
五、课后作业
1. 完成课后习题,巩固所学知识;
2. 总结本节课的重点内容,准备下节课的学习。
六、教学反思
教师根据学生学习情况和反馈,及时调整教学方法和内容,确保教学效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一专题 函数与方程思想考情动态分析:本专题的内容主要是函数思想、方程思想及其应用.函数的思想方法是用联系变化的观点,将给定的数学问题转化为函数关系,通过研究函数的性质,得出所需的结论.高考中有关函数思想的试题主要涉及四个方面:(1)具体的原始意义上的函数问题;(2)方程、不等式与函数的综合问题;(3)数列这一特殊的函数;④利用辅助函数解题.方程的思想方法,就是设出未知数.根据题中各量间的关系,列出等式,沟通未知与已知的关系,从而使问题得以解决.高考中有关方程的试题单独命题较少,主要有以下几个方面:(1)方程、函数、不等式的综合题;(2)求曲线的方程;(3)数列中方程思想的应用.对函数与方程思想的考查,集中体现在应用题、探索性问题,主要考查学生的阅读能力、应用能力、理解能力、表达能力及信息加工处理能力,命题集中体现在在知识交汇点处命制综合性问题.第一课时 函数思想与方程思想一、考点核心整合函数思想就是要用运动变化的观点,分析和研究具体问题中的数量关系,通过函数的形式把这数量关系表示出来,并加以研究,从而使问题获得解决.函数思想的实质是剔除问题的非数学特征,用联系的观点提出数学抽象,抽象其数学特征,建立函数关系.方程的思想就是如果变量间的关系是通过解析式表示出来的,则可以把解析式看作一个方程,通过对方程的讨论使问题得到解决.函数思想、方程思想体现了一种解决数学问题的理念——建“模”意识.所谓“模”就是一个问题的载体,是联系已知、未知的桥梁,建“模”后的第二个步骤是解析“模”,从而真正将实际问题化为数学问题,数学因此也成为探索大自然奥秘的工具.二、典例精讲:例1 已知函数)(x f 的定义域为}3,2,1{=A ,值域为}2,1{--=B ,则这样的函数共有________个.例2 设平面内两向量与互相垂直,且1||,2||==,又k 与t 是两个不同时为0的实数.(Ⅰ)若t )3(2-+=与b t a k y +-=垂直,求k 关于t 的函数关系式)(t f k =; (Ⅱ)试确定)(t f k =的单调区间. 例3 已知函数)(log )1(log 11log )(222x p x x x x f -+-+-+=. (Ⅰ)求)(x f 的定义域; (Ⅱ)求)(x f 的值域.例4 二次函数r qx px x f ++=2)(中实数、r 、q p 满足012=++++mrm q m p ,其中0>m ,求证:(Ⅰ)0)1(<+m mpf ; (Ⅱ)方程0)(=x f 在)1,0(内恒有解.三、提高训练:(一)选择题:(4)(3)(2)(1)1-1O O1-1OO1.当2π<<x时,函数xxxxf2sinsin82cos1)(2++=的最小值为()A、2B、32C、4D、342.设0>b,二次函数122-++=abxaxy的图象为下列之一,则a的值为()3.设aaxxf213)(-+=在)1,1(-上存在x,使0)(=xf,则实数a的取值范围是()A、51<a B、51>a C、51>a或1-<a D、1-<a4.设),(yxP是椭圆4422=+yx上的一个动点,定点)0,1(M,则2||PM的最大值是()A、32B、1C、3D、95.设函数)(xf是定义在R上的以3为周期的奇函数,若132)2(,1)1(+-=>aaff,则()A、32<a B、32<a且1≠a C、32>a或1-<a D、321<<-a(二)填空题:6.函数kxf xx⋅++=421)(在]1,(-∞上的图象总在x轴上方,则实数k的取值范围是____________________.7.方程0sincos2=+-ax在)2,0(π上有解,那么实数a的取值范围是_____________. (三)解答题:8.已知函数⎩⎨⎧≤≤--+--≤=nxnnfnxnxxf1),1()]1([,0)(.(Ⅰ)求))((*∈Nnnf;(Ⅱ))0)((≥aaS表示由x轴、)(xfy=与ax=所围成的图形的面积,求))(1()(*∈--NnnSnS.9.对a的哪些值,函数xaxy++=1的值域包含]1,0[?10.设函数)(xf的定义域为D,若存在Dx∈,使得)(xxfy==,则称以),(yx为坐标的点为函数图象上的不动点.(Ⅰ)若函数bxaxxf++=3)(的图象上有两个关于原点对称的不动点,求、ba满足的条件;(Ⅱ)在(Ⅰ)的条件下,若8=a,记函数)(xf图象上的两个不动点分别为P、AA,/为函数)(xf的图象上的另一点,且其纵坐标3>py,求点P到直线/AA距离的最小值DCBA-1 O 1 OO1 O -1 及取得最小值时点P 的坐标;(Ⅲ)命题“若定义在R 上的奇函数)(x f 的图象上存在有限个不动点,则不动点有奇数个”是否正确?若正确,试给予证明,并举出一例;若不正确,试举一反例说明.第二课时 函数与方程的转化思想及应用一、考点核心整合函数式可以看作是方程,某些方程又可以看作是函数关系,在解决有关问题时,函数、方程、不等式常常相互转化.实际问题→数学问题→代数问题→方程问题,其中代数问题多是函数问题,哪里有公式,哪里就有方程,函数的研究离不开方程,不等式与方程也有着内在的联系,方程的研究以函数为基础.函数与方程思想的应用主要表现在应用题、探索题和信息题等方面.二、典例精讲:例1 已知函数x x x f sin )(=,若]2,2[21ππ-∈、xx ,且)()(21x f x f >,则下列结论中必成立的是( ) A 、21x x > B 、021>+x x C 、21x x <D 、||||21x x >例 2 已知二次函数c bx ax x f ++=2)(和一次函数bx x g -=)(,其中)(0,R 、c 、b a c b a c b a ∈=++>>.(Ⅰ)求证:两函数的图象交于不同两点、B A ; (Ⅱ)求线段AB 在x 轴上的射影11B A 的长的取值范围.例3 若抛物线12-+-=mx x y 和两端点为)0,3()3,0(、B A 的线段有两个不同的交点,求m 的取值范围.例4 已知方程02=++a ax x 在]1,0(上有解,求实数a 的取值范围.三、提高训练:(一)选择题: 1.函数)0(1≠-=x xxy 的反函数的图象大致是( )2.已知函数)12cos()12sin(ππ--=x x y ,则下列判断正确的是( )A 、此函数的最小正周期为π2,其图象的一个对称中心是)0,12(πB 、此函数的最小正周期为π,其图象的一个对称中心是)0,12(π C 、此函数的最小正周期为π2,其图象的一个对称中心是)0,6(πD 、此函数的最小正周期为π,其图象的一个对称中心是)0,6(π3.设、c 、b a 分别是方程x x x x x===+212log ,2log ,02的实数根,则( )A 、c b a >>B 、c a b >>C 、a c b >>D 、b a c >> 4.下列函数中既是奇函数,又在区间]1,1[-上单调递减的是( ) A 、x x f sin )(= B 、|1|)(+-=x x f C 、)(21)(x x a a x f -+=D 、x xx f +-=22ln)( 5.若0)1)(1(22=---+x y y x ,则y x A -=的最小值与最大值分别是( ) A 、2,1-B 、1,2-C 、2,1-D 、2,2-(二)填空题:6.方程0)3lg()3lg(2=---+-x m x x 在]3,0[上有唯一解,则m 的取值范围是___________________.7.关于函数),0(||1lg)(2R x x x x x f ∈≠+=,有以下命题:①函数)(x f y =的图象关于y 轴对称;②当0>x 时,)(x f 是增函数,当0<x 时,)(x f 是减函数;③函数)(x f 的最小值是2lg ;④当1>x 时,)(x f 没有反函数.其中正确的命题是________________.(注:把你认为正确命题的序号都填上) (三)解答题:8.已知]4,4[ππ-∈、y x ,R a ∈且⎩⎨⎧=++=-+0cos sin 402sin 33a y y y a x x ,求)2cos(y x +的值.9.甲、乙两物体分别从相距70m 的两处同时相向运动,甲第min 1走2m 以后每分钟比前min 1多走1m ,乙每分钟走5m .(Ⅰ)甲、乙开始运动后几分钟相遇?(Ⅱ)如果甲、乙到达对方起点后立即折返,甲继续每分钟比前min 1多走1m ,乙继续每分钟走5m ,那么开始运动几分钟后第二次相遇?10.设不等式)1(122->-x m x 对满足2||≤m 的一切实数m 的取值都成立,求x 的取值范围.。