532命题定理证明-吉林省油田第十二中学七年级数学下册教案

合集下载

人教版初中数学七年级下册5.3.2《命题、定理、证明(1)》教案

人教版初中数学七年级下册5.3.2《命题、定理、证明(1)》教案
(板书)课题
学生语句,获得感性认识.
从生活中常见的语句引入课题,唤起学生的学习兴趣及探索欲望.
二、自主探究 合作交流 建构新知
活动1:观察发现、认识命题
请同学读出下列语句:
(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行;
(2)两平行线被第三条直线所截,同旁内角互补;
(3)对顶角相等;
5.3.2命题、定理、证明
第一课时 教学设计
教学目标:
1、理解命题的概念及构成、会判断所给命题的真假;
2、会判断命题及其真假的判断,为今后的学习打好基础,发展应用意识。
教学重、难点
教学重点:命题的概念、区分命题的题设和结论;判断命题的真假。
教学难点:区分命题的题设和结论。
教学过程
教学内容与教师活动
学生活动
2、将下列命题改成“如果……,那么……”的形式.
(1)两条直线被第三条直线所截,同旁内角互补;
(2)等式两边都加同一个数,结果仍是等式;
(3)互为相反数的两个数相加得0;
(4)同旁内角互补;
(5)对顶角相等.
3、下列命题哪些是真命题,哪些是假命题?
(1)两条直线被第三条直线所截,同旁内角互补;
(2)等式两边都加同一个数,结果仍是等式;
线中的一条,那么也垂直于另一条;
(2)如果两个角互补,那么它们是邻补角;
(3)如果 ,那么a=b;
(4)过直线外一点有且只有一条直线与之平行;
(5)两点确定一条直线.
观察口答
观察猜想
归纳命题的概念.
独立思考
合作交流
归纳命题的结构
思考感悟
仔细判断
仔细判断,
认识定理
为学生提供参与数学活动的时间和空间,培养学生的观察归纳能力.

七年级下册5.3.2命题、定理、证明教案

七年级下册5.3.2命题、定理、证明教案

5.3.2 命题、定理、证明【学习目标】1.了解命题的概念,并能分清命题的组成部分.2.了解真命题、假命题的概念,并能判断真、假命题.3.掌握定理、证明的概念,并能对给出的命题进行想证明.【学习重点】判断真、假命题,,对给出的命题进行想证明.【学习难点】判断真、假命题,,对给出的命题进行想证明.【学习过程】1、复习旧知,引入新课:(1)平行线的判定方法?(2)平行线的性质?2、新授:前面,我们学过一些对某一件事情做出判断的语句,例如:(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(2)两条平行线被第三条直线所截,同旁内角互补;(3)对顶角相等;(4)等式两边都加同一个数,结果仍是等式.判断一件事情的语句,叫做命题.注意问题:(1)只要对一件事情作出了判断,不管正确与否,都是命题.(2)如果一个句子没有对某一件事情作出任何判断,那么它就不是命题.(3)命题是由题设(或条件)和结论两部分组成。

题设是已知事项,结论是由已知事项推出的事项.命题一般都写成“如果…,那么…”的形式.命题是由题设(或条件)和结论两部分组成.“如果”后接的部分是题设,“那么”后接的部分是结论.如:(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行;题设:两条直线都与第三条直线平行,结论:两条直线也互相平行.(2)如果两个角互补,那么它们是邻补角.题设:两个角互补,结论:它们是邻补角.可以把命题如何改写为“如果……,那么……”的形式.把下列命题改写成“如果……,那么……”的形式:(1)内错角相等,两直线平行.两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.(2)两直线平行,同旁内角互补.如果两条平行线被第三条直线所截,那么同旁内角互补.真命题:如果题设成立,那么结论一定成立,这样的命题叫做真命题.假命题:如果题设成立时,不能保证结论一定成立,这样的命题叫做假命题.正确的命题叫真命题,错误的命题叫假命题.在前面,我们学过的一些图形的性质,都是真命题.其中有些命题是基本事实,如“两点确定一条直线”“经过直线外一点有且只有一条直线与这条直线平行”等.还有一些命题,如“对顶角相等”“内错角相等,两直线平行”等,它们的正确性是经过推理证实的,这样得到的真命题叫做定理.定理也可以作为继续推理的依据.在很多情况下,一个命题的正确性需要经过推理,才能做出判断,这个推理的过程叫做证明.判断一个命题是假命题,只要举出一个例子(反例),它符合命题的题设,但不满足结论就可以了.例如,要判定命题“相等的角是对顶角”是假命题,可以举出如下反例:如图,OC是∠AOB的平分线,∠1=∠2,但它们不是对顶角.3、例题:例2、如图,已知:直线b∥c,a⊥b.求证:a⊥c.证明:∵a⊥b (已知),∴∠1=90°(垂直的定义).又b∥c (已知),∴∠1=∠2 (两直线平行,同位角相等).∴∠2=∠1=90°(等量代换).∴a⊥c (垂直的定义).4、练习:(1)下列句子哪些是命题?是命题的,指出是真命题还是假命题?①内错角相等;②画一条直线;③四边形是正方形;④你的作业做完了吗?⑤同位角相等,两直线平行;⑥对顶角相等.(2)已知:如图,∠1=∠C,∠2=∠B,求证:MN∥EF.证明:∵∠1=∠C (已知),∴MN∥BC (内错角相等,两直线平行).∵∠2=∠B (已知),∴EF∥BC (同位角相等,两直线平行).∴MN∥EF(平行于同一直线的连同直线平行).5、小结:通过本节课的学习,你有什么收获?。

人教版数学七年级下册《5-3-2命题、定理、证明 》教案

人教版数学七年级下册《5-3-2命题、定理、证明 》教案

人教版数学七年级下册《5-3-2命题、定理、证明》教案一. 教材分析《5-3-2命题、定理、证明》是人教版数学七年级下册的一章内容。

本章主要介绍命题、定理和证明的概念,要求学生理解命题的真假判断,了解定理的定义和证明过程,能够运用证明方法解决一些简单的数学问题。

二. 学情分析学生在学习本章内容前,已经掌握了整数、分数、代数等基础知识,具备一定的逻辑思维能力。

但部分学生对于抽象的概念理解起来可能存在一定的困难,需要通过具体的例题和实践活动来加深理解。

三. 教学目标1.了解命题、定理的概念,理解命题的真假判断,掌握定理的定义和证明过程。

2.培养学生运用证明方法解决数学问题的能力。

3.培养学生的逻辑思维能力和团队合作能力。

四. 教学重难点1.命题、定理的概念及命题的真假判断。

2.证明方法的应用。

五. 教学方法1.讲授法:讲解命题、定理的概念,演示证明过程。

2.案例分析法:分析具体例题,引导学生运用证明方法解决问题。

3.小组合作法:分组讨论,共同完成证明任务。

六. 教学准备1.教材、PPT课件。

2.相关例题和练习题。

3.教学工具:黑板、粉笔。

七. 教学过程1.导入(5分钟)利用PPT课件展示一些日常生活中的命题,如“明天会下雨”、“今天是星期天”等,引导学生思考这些命题的真假判断。

2.呈现(10分钟)讲解命题、定理的概念,解释命题的真假判断,通过PPT课件展示定理的定义和证明过程。

3.操练(10分钟)给出几个简单的例题,让学生尝试运用证明方法解决问题。

引导学生思考证明过程中的关键步骤,培养学生的逻辑思维能力。

4.巩固(10分钟)学生分组讨论,共同完成一个证明任务。

教师巡回指导,解答学生疑问。

5.拓展(10分钟)给出一个较复杂的证明题目,让学生独立完成。

鼓励学生运用所学知识,解决问题。

6.小结(5分钟)教师总结本节课的主要内容,强调命题、定理和证明的概念,以及证明方法的应用。

7.家庭作业(5分钟)布置一些有关命题、定理和证明的练习题,要求学生回家后独立完成。

人教初中数学七下《5.3.2 命题、定理、证明》教案

人教初中数学七下《5.3.2 命题、定理、证明》教案

《命题、定理、证明》教学目标1.经历观察、操作、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力.2.理解两条平行线的距离的含义,了解命题的含义,会区分命题的题设和结论.3.能够综合运用平行线性质和判定解题. 重点、难点重点:平行线性质和判定综合应用,两条平行的距离,命题等概念. 难点:平行线性质和判定灵活运用. 教学过程 一、复习引入1.平行线的判定方法有哪些?(注意:平行线的判定方法三种,另外还有平行公理的推论)2.平行线的性质有哪些.3.完成下面填空.已知:如图,BE 是AB 的延长线,AD ∥BC ,AB ∥CD ,若∠D =100°,则∠C =_____, ∠A =______,∠CBE =________.4.a ⊥b ,c ⊥b ,那么a 与c 的位置关系如何?为什么?cb二、进行新课1.例1已知:如上图,a ∥c ,a ⊥b ,直线b 与c 垂直吗?为什么?学生容易判断出直线b 与c 垂直.鉴于这一点,教师应引导学生思考:(1)要说明b ⊥c ,根据两条直线互相垂直的意义, 需要从它们所成的角中说明某个角EDCB A是90°,是哪一个角?通过什么途径得来?(2)已知a ⊥b ,这个“形”通过哪个“数”来说理,即哪个角是90°.(3)上述两角应该有某种直接关系,如同位角关系、内错角关系、同旁内角关系,你能确定它们吗?让学生写出说理过程,师生共同评价三种不同的说理.2.实践与探究(1)下列各图中,已知AB ∥EF ,点C 任意选取(在AB 、EF 之间,又在BF 的左侧).请测量各图中∠B 、∠C 、∠F 的度数并填入表格..FECBAFECBA(1) (2) 教师投影题目:学生依据题意,画出类似图(1)、图(2)的图形,测量并填表,并猜想:∠B +∠F =∠C . 在进行说理前,教师让学生思考:平行线的性质对解题有什么帮助?教师视学生情况进一步引导:①虽然AB ∥EF ,但是∠B 与∠F 不是同位角,也不是内错角或同旁内角.不能确定它们之间关系.②∠B 与∠C 是直线AB 、CF 被直线BC 所截而成的内错角,但是AB 与CF 不平行.能不能创造条件,应用平行线性质,学生自然想到过点C 作CD ∥AB ,这样就能用上平行线的性质,得到∠B =∠BCD .③如果要说明∠F =∠FCD ,只要说明CD 与EF 平行,你能做到这一点吗?以上分析后,学生先推理说明, 师生交流,教师给出说理过程.FEDCB A作CD ∥AB ,因为AB ∥EF ,CD ∥AB ,所以CD ∥EF (两条直线都与第三条直线平行, 这两条直线也互相平行).所以∠F =∠FCD (两直线平行,内错角相等). 因为CD ∥AB .所以∠B =∠BCD (两直线平行,内错角相等).所以∠B +∠F =∠BCF . (2)教师投影课本P23探究的图(图5.3-4)及文字.①学生读题思考:线段B 1C 1,B 2C 2……B 5C 5都与两条平行线的横线A 1B 5和A 2C 5垂直吗? 它们的长度相等吗?②学生实践操作,得出结论:线段B 1C 1,B 2C 2……,B 5C 5同时垂直于两条平行直线A 1B 5和A 2C 5,并且它们的长度相等.③师生给两条平行线的距离下定义.学生分清线段B 1C 1的特征:第一点线段B 1C 1两端点分别在两条平行线上,即它是夹在这两条平行线间的线段,第二点线段B 1C 1同时垂直这两条平行线. 教师板书定义:(像线段B 1C 1)同时垂直于两条平行线, 并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.④利用点到直线的距离来定义两条平行线的距离.F EDCBA教师画AB ∥CD ,在CD 上任取一点E ,作EF ⊥AB ,垂足为F .学生思考:EF 是否垂直直线CD ?垂线段EF 的长度d 是平行线AB 、CD 的距离吗? 这两个问题学生不难回答,教师归纳:两条平行线间的距离可以理解为:两条平行线中,一条直线上任意一点到另一条直线的距离.教师强调:两条平行线的距离处处相等,而不随垂线段的位置改变而改变.。

人教版初中数学七年级下册5.3.2《命题、定理、证明》教案

人教版初中数学七年级下册5.3.2《命题、定理、证明》教案
五、教学反思
今天在教授《命题、定理、证明》这一章节时,我发现学生们对命题的概念接受得比较快,但是在理解定理和证明方法上遇到了一些困难。这让我意识到,虽然定理和证明在数学中非常重要,但它们的概念对学生来说可能比较抽象,需要更多的实际例证和练习来加深理解。
在讲解定理时,我尝试通过具体的例子来展示定理的形成和应用,但感觉效果并不如预期。我意识到,可能需要更多的生活实例或者图形辅助,让学生能够直观地感受到定理在解决问题时的作用。接下来,我会在准备教案时加入更多直观的教学素材,比如动画或者实物模型,以提高学生的兴趣和参与度。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解命题的基本概念。命题是可以判断真假的陈述句,它是数学逻辑推理的基础。定理则是经过严格证明的真命题,它在数学体系中扮演着重要的角色。
2.案例分析:接下来,我们来看一个具体的案例。这个案例将展示如何通过已知的定理来证明一个新的命题,以及这个过程如何帮助我们解决实际问题。
3.重点难点解析:在讲授过程中,我会特别强调命题的结构和定理的应用这两个重点。对于难点部分,如证明方法的选择和使用,我会通过具体的例题和逐步解析来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与命题、定理相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的证明练习。这个练习将演示如何运用所学的证明方法来证实一个命题的正确性。
人教版初中数学七年级下册5.3.2《命题、定理、证明》教案
一、教学内容
人教版初中数学七年级下册5.3.2《命题、定理、证明》教案:
1.理解命题的概念,能识别简单命题的结构。
2.学习定理的定义,了解定理在数学证明中的作用。

人教版数学七年级下册教学设计5.3.2《 命题、定理、证明》

人教版数学七年级下册教学设计5.3.2《 命题、定理、证明》

人教版数学七年级下册教学设计5.3.2《命题、定理、证明》一. 教材分析本节课的主题是“命题、定理、证明”,这是人教版数学七年级下册的教学内容。

教材通过引入日常生活中的实例,引导学生理解命题、定理和证明的概念,让学生掌握判断一个命题是否为定理的方法。

教材内容丰富,结构清晰,逻辑性强,有利于学生培养数学思维和解决问题的能力。

二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和数学基础,他们对数学概念和公式的学习已经有一定的认识。

但学生在学习过程中,可能对抽象的数学概念和定理的证明过程感到难以理解,需要教师通过具体的生活实例和丰富的教学手段,帮助学生理解和掌握。

三. 教学目标1.让学生了解命题、定理和证明的概念,理解定理的判断方法。

2.培养学生运用数学知识解决实际问题的能力。

3.培养学生逻辑思维和数学表达能力。

四. 教学重难点1.重点:理解命题、定理和证明的概念,掌握判断一个命题是否为定理的方法。

2.难点:对抽象的数学概念和定理的证明过程的理解。

五. 教学方法1.采用问题驱动法,引导学生主动探究和理解命题、定理和证明的概念。

2.使用生活中的实例,帮助学生理解和掌握抽象的数学概念。

3.运用小组合作学习,培养学生团队合作和数学表达能力。

4.通过练习和反馈,巩固学生所学知识。

六. 教学准备1.准备相关的生活实例和数学问题,用于引导学生理解和掌握概念。

2.准备PPT,展示教材内容和实例。

3.准备练习题,用于巩固学生所学知识。

七. 教学过程1.导入(5分钟)通过一个生活中的实例,引导学生思考和讨论,引出命题、定理和证明的概念。

例如,讲解“勾股定理”的发现过程,让学生了解定理的定义和证明方法。

2.呈现(10分钟)使用PPT展示教材中的相关内容,让学生对命题、定理和证明有一个清晰的认识。

同时,通过讲解和示范,让学生理解定理的判断方法。

3.操练(10分钟)让学生分组讨论,每组选取一个命题,判断它是定理还是假命题,并说明理由。

数学七年级下册《命题、定理、证明》教案

数学七年级下册《命题、定理、证明》教案
1蓝蓝的天空白云飘;②这不是坑人吗?③画AB∥CD。
不是命题。因为它们只是对某件事情进行了陈述,表达了疑问,并没有作出判断。
二、命题的构成
命题由题设和结论两部分组成。题设是已知事项,结论是由已知事项推出的事项。
命题常可以写成“如果……那么……”的形式,这时“如果”后面的部分是题设,“那么”后面的部分是结论。例如,上面命题①中,“两条直线都与第三条直线平行”是已知事项,是题设,“这两条直线也互相平行”是由已知事项推出的事项,是结论。
重点
难点
重点:命题及组成;
难点:区分命题的题设和结论。


教学过程及板书设计
旁批
一、情景导入
我们平常说的话细究起来是有区别的,例如,“你吃饭了吗?”与“今天天气不好”就有区别,前一句表示疑问,没有作出判断,后一句作出了判断。数学中象这类对某件事情作出判断的语句还很多,值得我们研究。
二、命题
再来看几个句子:[投影1]
1、命题及构成;
2、公理、定理、证明的概念.
作业:课本P24 12题及练习册
板书设计
§5.3.2命题、定理、证明
一、基础知识点二、例题三、课堂练习四、课后作业
反思
有些命题的题设和结论不明显,怎样才能找出题设和结论呢?我们可以将它们改写成“如果……那么……”的形式。例如,上面命题⑤可改写成:如果两个角是同位角,那么这两个角相等。
请你把上面的命题②、③改写成“如果……那么……”的形式,并指出它的题设和结论。
三、命题的真假
上面的命题中有正确的,也有错误的,正确的命题叫做真命题,错误的命题叫做假命题,如果是真命题,题设成立,那么结论一定成立,如果是假命题,题设成立,不一定能保证结论成立。
①如果两条直线都与第三条直线平行,那么这两条直线也互相平行;

人教版数学七年级下册5.3.2命题、定理、证明优秀教学案例

人教版数学七年级下册5.3.2命题、定理、证明优秀教学案例
2. 引入定理的概念,通过讲解定理的定义和定理的证明过程,使学生理解定理的意义。
3. 详细讲解证明的方法和步骤,包括直接证明、反证法和归纳法等,让学生掌握证明的基本方法。
4. 通过示例题目,演示如何运用命题、定理和证明的知识解决问题,让学生理解学习的实际意义。
(三)学生小组讨论
1. 将学生分成小组,每组选择一个定理进行证明,并用自己的语言解释证明的每一步。
这些亮点体现了本节课在教学设计、教学方法和教学评价等方面的优秀之处,有助于提高学生的学习兴趣、培养学生的思维能力和团队合作能力,促进学生的全面发展。同时,这些亮点也是我作为特级教师在教学实践中不断探索和尝试的结果,希望能够为其他教师提供一定的借鉴和参考。
4. 总结归纳环节:在课程结束时,引导学生回顾和总结所学内容,帮助学生巩固知识,提高学生的记忆和理解能力。总结归纳环节能够使学生对学习内容有一个清晰的认识,增强学生对知识的系统性和整体性的理解。
5. 作业小结环节:布置与课程内容相关的作业,要求学生运用所学知识解决问题,培养学生的应用能力和实践能力。作业小结环节能够及时巩固所学知识,帮助学生检验自己的学习效果,同时也为教师提供了了解学生学习情况的机会,为下一步的教学提供参考。
3. 设计一些评估题目,检验学生对命题、定理和证明的掌握程度,及时发现和纠正学生的错误。
4. 注重对学生的形成性评价,关注学生的进步和努力,激发学生的学习动力和自信心。
四、教学内容与过程
(一)导入新课
1. 利用生活实例引入命题的概念,例如:“如果今天是星期五,那么学校放假。”引导学生理解命题由题设和结论两部分组成。
2. 强调定理证明的重要性,以及定理证明在数学中的应用,使学生认识到学习定理证明的意义。
3. 总结学生在小组讨论中的表现,对学生的学习成果进行肯定和鼓励,激发学生的学习动力。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.3.2命题、定理、证明教学设计
一、教学目标
1、理解命题的概念及构成;会判断所给命题的真假;初步感知什么是证明.
2、通过对命题及其真假的判断,提高学生的理性判断能力;通过对证明的学习,培养学生严谨的数学思维.
3、初步体会命题在数学中的应用、用证明论证自己的判断;为今后的学习打好基础,发展应用意识.
二、教学重、难点
教学重点:命题的概念、区分命题的题设和结论;判断命题的真假;理解证明过程要步步有据.
教学难点:区分命题的题设和结论、理解证明过程.
三、教学准备
多媒体课件、预习单、三角板
四、教学过程
1.创设情景引入课题
请同学们朗读电子屏幕语句:
⑴我是油田十二中的学生。

⑵油田十二中学是松原市的一流学校。

⑶赵兰勋校长是吉林省人大代表。

⑷我在十二中学习,感到无比骄傲和自豪!
这些语句看似与数学没有关联,实际上与我们今天学习的内容息息相关。

本节课我们一起来学习……
2.组内合作,检验预习情况
⑴给同学5分钟的时间,组内互相检查预习单的学习情况,有问题及时解决,不能解决的稍后统一解决。

⑵选取一名小组代表到讲台前,针对本节主要知识点进行讲述。

之后老师进行补充和强调。

⑶对预习单存在的问题进行讲解。

3.当堂检验
①下列语句中是命题的是()
(1)所有的直角都相等。

(2)在同一平面内,两条直线的位置关系有两种:相交和平行。

(3)画两条互相垂直的直线。

(4)经过直线外一点,有且只有一条直线与这条直线平行。

(5)你完成作业了吗?
②指出下列各命题的题设和结论,并改写成“如果……那么……”的形式。

⑴对顶角相等;
⑵内错角相等;
⑶等边三角形的三条边都相等。

⑷平行于一直线的两直线平行。

③判断下列命题是真命题还是假命题。

(1)直角都相等。

(2)同位角相等。

(3)平行于同一条直线的两条直线互相平行。

(4)等角的补角相等。

(5)两边分别平行的两个角相等或互补。

4.小结
学生总结,之后老师利用思维导图的形式展示帮助学生形成思维框架,对知识点进行巩固。

5.作业布置课后延伸
如图,若∠1=∠2,则AB∥CD,这个命题是真命题吗?若不是,请你添加一个条件,
使它成为真命题,并说明理由.。

相关文档
最新文档