矩阵与线性代数方程组共26页

合集下载

线性代数课件PPT

线性代数课件PPT
线性代数课件
目录 CONTENT
• 线性代数简介 • 线性方程组 • 向量与矩阵 • 特征值与特征向量 • 行列式与矩阵的逆 • 线性变换与空间几何
01
线性代数简介
线性代数的定义和重要性
1
线性代数是数学的一个重要分支,主要研究线性 方程组、向量空间、矩阵等对象和性质。
2
线性代数在科学、工程、技术等领域有着广泛的 应用,如物理、计算机科学、经济学等。
逆矩阵来求解特征多项式和特征向量等。
06
线性变换与空间几何
线性变换的定义和性质
线性变换的定义
线性变换是向量空间中的一种变换, 它将向量空间中的每一个向量映射到 另一个向量空间中,保持向量的加法 和标量乘法的性质。
线性变换的性质
线性变换具有一些重要的性质,如线 性变换是连续的、可逆的、有逆变换 等。这些性质在解决实际问题中具有 广泛的应用。
特征值与特征向量的应用
总结词
特征值和特征向量的应用非常广泛,包括物理、工程、经济等领域。
详细描述
在物理领域,特征值和特征向量可以描述振动、波动等现象,如振动模态分析、波动分析等。在工程 领域,特征值和特征向量可以用于结构分析、控制系统设计等。在经济领域,特征值和特征向量可以 用于主成分分析、风险评估等。此外,在机器学习、图像处理等领域也有广泛的应用。
经济应用
线性方程组可用于解决经济问题,如投入产出分析、 经济预测等。
03
向量与矩阵
向量的基本概念
向量的模
表示向量的长度或大小,记作|向量|。
ቤተ መጻሕፍቲ ባይዱ
向量的方向
由起点指向终点的方向,可以通过箭头表示。
向量的分量
表示向量在各个坐标轴上的投影,记作x、y、 z等。

数值分析用矩阵分解法解线性代数方程组PPT课件

数值分析用矩阵分解法解线性代数方程组PPT课件
1
其 中A Rnn非 奇 异,U、V Rn ,且1 V T A1U 0,
A UV T非 奇 异, V T A1U。
选 择 向 量U、V使 原 方 程 组Ax d化 为 ( A UVT )x d
其 中A为 三 对 角 矩 阵,利 用 谢 尔 曼 莫 里 森 公 式 , 此方程组的解为
第10页/共31页
function x=lupqdsv(A,b) n=length(b); [LU,p,q]=lupqd(A); y(1)=b(p(1)); for i=2:n
y(i)=b(p(i))-LU(i,1:i-1)*y(1:i-1)'; end z(n)=y(n)/LU(n,n);x(q(n))=z(n); for i=(n-1):-1:1
例:
a11
a1q
a22
a
p1
0
an,n p1
1
1
l
p1
0
ln,n p1
0
an
q1,n
ann
0 u11
u1q
u22
1 0
第18页/共n
当A为三对角阵,且 b1 c1 , bi ci ai ,(i 1, 2,
bn cn 时,A有LU分解展开式
b1 c1 a2 b2 c2
(k n 1, n 2,,1)
u11 u12 u1n x1 y1
u22
u2n
x2
y2
unn
xn
y
n
第2页/共31页
二、用列主元的三角分解PA LU求解Ax b
LY Pb
Ax
b
PAx
Pb
LUx
Pb
Ux
Y
例:用列主元三角分解求解Ax=b

《线性代数》第1章线性方程组与矩阵

《线性代数》第1章线性方程组与矩阵
当 a1 a2 L an 1 时,这个数量矩阵就称为 n 阶单位矩阵,简称为单位阵,
记为 En 或 E即,
1 0 L 0
E
0
1L
0
.
L L O M
0
0L
1
定义2 两个矩阵的行数相等、列数也相等,则称这两个矩阵为同型矩阵.
如果两个同型矩阵
A (aij )mn 和 B (bij )mn 中所有对应位置的元素都相等, 即 aij bij ,其中
该线性方程组由常数 aij i 1,2,L ,m ; j 1,2,L ,n 和 bi i 1, 2,L , m完全确定, 可以用一个 mn 1 个数排成的 m 行 n 1列的数表
a11 a12 L
°A
a21
a22
L
M M
am1
am2
L
a1n b1
a2n
b2
M M
amn bm
一、矩阵的定义
得到的 n m 矩阵称为矩阵 A 的转置矩阵,记为 AT ,即
a11 a21 L
AT
a12
L
a22 L LL
a1n
a2n L
am1
am 2
.
L
anm
矩阵的转置满足下面的运算规律(这里 k 为常数, A 与 B 为同型矩阵):
数 aij 位于矩阵aij 的第 i 行第 j 列,称为矩阵的i, j 元素, 其中 i 称为元素 aij 的行标, j 称为元素 aij 的列标.
一般地,常用英文大写字母 A, B,L 或字母, , ,L 表示矩阵.
一、矩阵的定义
第1章 线性方程组与矩阵 6
元素是实数的矩阵称为实矩阵, 元素是复数的矩阵 称为复矩阵. 本书除特别指明外,都是指实矩阵.

同济大学线性代数课件__第三章 矩阵的初等变换与线性方程组

同济大学线性代数课件__第三章 矩阵的初等变换与线性方程组

0 0 0
1 0 0
1 0 0
1 2 0
0 6 0
B4
2020/12/12
12
1
rrr123rr1223
0 0 0
0 1 0 0
1 1
0 0
0 0 1 0
4
3 3 0
B5
行最简形
x1 x2
x3 x3
4 3
x4 3
令 x3 c
x1 c 4
x2 x3
c c
3
x4 3
3x2 3x3 4x4 3, ④
2020/12/12
(B1 )
(B2 )
3
② 1
x1
③52②
④3②
x2 2x3 x2 x3
x4 x4 2 x4
4, ① 0, ② 6, ③
x4 3.④
x1 x2 2x3 x4 4, ①
④ 12③
x2 x3 x4 0, ② 2x4 6, ③
2
用消元法
x1 x2 2x3 x4 4, ①
(1)
①③ 12② 22xx11
x2 3x2
x3 x4 2, ② x3 x4 2, ③
3x1 6x2 9x3 7 x4 9, ④
x1 x2 2x3 x4 4, ①
②③
③2①
④3①
2x2 2x3 2x4 0, ② 5x2 5x3 3x4 6, ③
1
1
01
第i行
1
E(i, j)
1 10

j

1
1
2020/12/12
17
1
1
E(i(k))
k
第i 行
1

线性代数矩阵及其运算 ppt课件

线性代数矩阵及其运算  ppt课件


1 2 2 .5 8 3 1 3 0 .5 89

1 2 4 .5 9 3 6 3 .5
83

22
三、 矩阵的乘法
定义1.5 (P5)
设矩阵A=(aij)ml的列数与矩阵B=(bij)ln的行数相等, 则由元素
C

2
8

4

求AB、BA和BC
解 AB 816 1362
BA


0 0
0 0

BC


0 0
0 0

AB≠BA , BA=BC
(1) AB与BA都有意义,且同型,但AB与BA不相等 (2) 两个非零矩阵相乘可能是零矩阵 (3) BA=BC,但A≠C,可见,矩阵乘法不满足消去率
那么就称矩阵A与矩阵B相等,记作A=B
16
判断下列各组矩阵是否相等
(1)


8
(3)2
5 2 0
s9in61
2 2 2.5 0.5


9 0 8
(2)
0 0
0 0
0 0
00
0 0
1 0 0
(3)

0
0
1 0
0 1

(1 )
am1x1am2x 2 amn xn bm
m个方程 ,
n个未知数
a11 a12

a
21
a 22

a m 1 a m 2
a1n
a2n


a m n
a11 a12

a21
a22

线性代数第2章矩阵PPT课件

线性代数第2章矩阵PPT课件
线性代数第2章矩阵ppt 课件
目录 CONTENT
• 矩阵的定义与性质 • 矩阵的逆与行列式 • 矩阵的秩与线性方程组 • 矩阵的特征值与特征向量 • 矩阵的对角化与相似变换
01
矩阵的定义与性质
矩阵的基本概念
矩阵是一个由数字组 成的矩形阵列,行数 和列数可以不同。
矩阵的维度是指行数 和列数的数量。
矩阵的元素通常用方 括号括起来,并用逗 号分隔。
矩阵的运算规则
01
02
03
加法
两个矩阵的加法是将对应 位置的元素相加。
数乘
一个数乘以一个矩阵是将 该数乘以矩阵的每个元素。
乘法
两个矩阵的乘法只有在第 一个矩阵的列数等于第二 个矩阵的行数时才能进行。
特殊类型的矩阵
对角矩阵
对角线上的元素非零,其他元素为零的矩阵。
行列式的递推公式法
递推公式法是一种常用的计算行列式 的方法,它通过递推关系式将n阶行 列式转化为低阶行列式进行计算。这 种方法在计算较大行列式时非常有效。
03
矩阵的秩与线性方程组
矩阵的秩
矩阵的秩定义
矩阵的秩是其行向量组或列向量 组的一个极大线性无关组中向量 的个数。
矩阵的秩的性质
矩阵的秩是唯一的,且满足行秩 等于列秩。矩阵的秩等于其任何 子矩阵的秩。
02
特征值和特征向量与矩阵的乘法 运算有关,即如果Ax=λx,那么 (kA)x=(kλ)x,其中k是任意常数。
03
特征值和特征向量与矩阵的转置 运算有关,即如果Ax=λx,那么 A^Tx=(λ^T)x。
特征值与特征向量的计算方法
定义法
根据特征值和特征向量的定义, 通过解方程组Ax=λx来计算特
征值和特征向量。

线性方程组与矩阵的表示与运算

线性方程组与矩阵的表示与运算

线性方程组与矩阵的表示与运算一、线性方程组1.概念:线性方程组是由多个线性方程构成的组合,通常表示为:a1x + b1y + c1 = 0a2x + b2y + c2 = 0amx + bmy + cm = 0其中,ai, bi, ci (i = 1, 2, …, m) 是常数,x, y 是未知数。

2.线性方程组的解:线性方程组的解是指能够满足所有方程的未知数的值。

线性方程组可能有唯一解、无解或有无限多解。

3.高斯消元法:高斯消元法是一种求解线性方程组的算法,通过初等行变换将线性方程组化为阶梯形或行最简形矩阵,从而求出解。

4.克莱姆法则:克莱姆法则是一种根据线性方程组的系数矩阵的行列式求解线性方程组的方法。

二、矩阵的表示与运算1.概念:矩阵是一个由数列组成的数列,通常表示为:A = [a_{ij}]其中,a_{ij} 是矩阵A的第i行第j列的元素,矩阵A有m行n列,称为m×n 矩阵。

2.矩阵的元素:矩阵的元素可以是实数、复数、向量等。

3.矩阵的运算:(1)矩阵加法:两个矩阵相加,对应元素相加。

(2)矩阵乘法:两个矩阵相乘,第一个矩阵的列数必须等于第二个矩阵的行数。

(3)矩阵的标量乘法:矩阵与标量相乘,矩阵的每个元素都乘以标量。

(4)矩阵的转置:矩阵的转置是将矩阵的行变为列,列变为行。

(5)矩阵的逆:矩阵的逆是指满足AA^(-1) = A^(-1)A = I的矩阵A^(-1),其中I是单位矩阵。

4.特殊矩阵:(1)单位矩阵:单位矩阵是一个方阵,其对角线上的元素都是1,其余元素都是0。

(2)零矩阵:零矩阵是一个所有元素都是0的矩阵。

(3)对角矩阵:对角矩阵是一个只有对角线上有非零元素的矩阵。

(4)正交矩阵:正交矩阵是一个满足AA^(-1) = A^(-1)A = I的方阵。

三、线性方程组与矩阵的关系1.线性方程组的矩阵表示:线性方程组可以表示为一个系数矩阵A和增广矩阵(A|b),其中A是系数矩阵,b是常数矩阵。

免费第3章课件 线性代数 矩阵的初等变换与线性方程组

免费第3章课件 线性代数 矩阵的初等变换与线性方程组
矩阵初等变换前后两个矩阵之间的关系是
什么?
A B , 如何把它们用等号联系起来?
-17-
T 回顾 ei A ? Ae j ?
a11 a12 A a 21 a 22 a 31 a 32
a13 r1 r3 a 23 a 33
a 31 a 32 a 21 a 22 a11 a12
( 2) kci ( k 0) ( 3) ci kc j
以上六种变换统称为矩阵的初等变换
-6-
初等变换的逆变换仍为初等变换, 且变换类型相同.
ri rj 逆变换 ri rj ; 1 kri ri 逆变换 k ri krj 逆变换 ri kr j
初等列变换也有类似的结果
-7-
B [ Ae1 , Ae2 , A( ke3 )] A[e1 , e2 , ke3 ]
a11 a12 a 21 a 22 a 31 a 32
a13 1 0 0 a 23 0 1 0 a 33 0 0 k
把单位矩阵作同样变换得 到的矩阵放在A的右边!
方程组与增广矩阵是一一对应关系, 我们用增广 矩阵来写求解过程
2 1 2 4 ~ A 1 1 2 1 4 1 4 2
-2-
首先搞清一个概念:什么是同解方程组?同解方程
组也称等价方程组.(注:等价与同解有点小区别,这里
就不区分了)
2 1 2 4 ~ r1 r2 A 1 1 2 1 4 1 4 2
1 0 0 0
0 2 0 1 1 0 0 0 1 0 0 0
0 0 0 0
1 2 0 1 0 0 1 2 0 0 0 0 0 0 0 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档