第6章 求解线性代数方程组和计算矩阵特征值的迭代法
高斯—塞德尔迭代法

上式至少有一个不等号严格成立。
*定义 每行每列只有一个元素是1,其余 元素是零的方阵称为置换阵(或排列阵).
定理8(对角占优定理)若矩阵A按行(或列)严格对角占优 或按行(或列)弱对角占优且不可约;则矩阵A非奇异。
定理9 若矩阵A按行(或列)严格对角占优,或按行(或列) 对角占优不可约;则Jacobi迭代、Gauss-Seidel迭代都 收敛。
高斯—塞德尔迭代法又等价于:对k=0,1,…,
三、逐次超松驰(SOR)迭代法
SOR迭代法的计算公式:对k=0,1,…,
说明:1)ω=1,GS; 2)ω>1超松驰,ω<1低松驰;
3)控制迭代终止的条件: 例3 用上述迭代法解线性代数方程组
初值x(0)=0,写出计算格式。
四、三种迭代法的收敛性
定理7 对线性方程组Ax=b,A,D非奇异,则 Jacobi迭代法收敛的充要条件是 GS迭代法收敛的充要条件是 SOR迭代法收敛的充要条件是 定义6 (1)按行严格对角占优:
证明 若矩阵A按行严格对角占优,或按行(或列)弱对角占优不可
则GS迭代收敛。假若不然,ρ(BG)≥1,即迭代矩阵BG的某一特征 值λ使得|λ|≥1,并且
类似地,若矩阵A按行严格对角占优,或按行(或列)弱对角占优不
可约,则Jacobi迭代收敛。假若不然,ρ(BJ)≥1,即迭代矩阵BJ 的某一特征值λ使得|λ|≥1,并且
定理10 对线性方程组Ax=b,若A为对称正定矩阵,则 1)GS迭代法收敛. 2)若2D-A也是对称正定矩阵,则Jacobi迭代法收敛。
例8 见书上
定理12 对于线性方程组Ax=b,若A为对称正定矩阵,则
当0<ω<2时,SOR迭代收敛. 证明 只需证明λ<1(其中λ为Lω的任一特征值) .
第6章求解线性代数方程组与计算矩阵特征值的迭代法

数值计算与MATLAB1《数值计算与MATLAB 》第6章求解线性代数方程组和计算矩阵特征值的迭代法§1 求解线性代数方程组的迭代法§2 方阵特征值和特征向量的计算§3 矩阵一些特征参数的MATLAB计算《数值计算与MATLAB 》6.1 求解线性代数方程组的迭代法1、迭代法的基本原理如果线性方程组Ax=b 的系数矩阵A 非奇异,则方程组有唯一解。
把这种方程中的方阵A 分解成两个矩阵之差:A=C-D若方阵C 是非奇异的,把A 它代入方程Ax=b 中,得出(C-D)x=b ,两边左乘C -1,并令M=C -1D ,g= C -1b ,移项可将方程Ax=b 变换成:x=Mx+g据此便可构造出迭代公式:xk+1=Mx k +g ,M=C -1D 称为迭代矩阵。
《数值计算与MATLAB 》2. 雅可比(Jacobi )迭代法如果方程组Ax=b 的系数矩阵A非奇异,aii≠0,若可以把A 分解成:A=D-L-U=D+(-L)+(-U),D=diag(a11,a22,…,a nn);-L是严格下三角阵;-U是严格上三角矩阵;x= D-1((L+U)x +b)=D-1(L+U)x+ D-1bx k+1=D-1((L+U)x k+b)= D-1(L+U)x k+ D-1bMM=D-1(L+U)称为雅可比迭代矩阵《数值计算与MATLAB 》⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=67-4121-26-3-115-12A⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=61-3-2D⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=74-1-2-1-L⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=2-61-51-UM=D-1(L+U)=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡7/62/3-1/6-222-1/31/2-5/21/2-《数值计算与MATLAB 》雅可比迭代公式的向量形式x k =[( x k ) 1,( x k ) 2, …,(x k ) n ]T , k=0,1,2,……,D-1=diag( , ,… ,),11a122a1nna1))((1)(11∑≠=++-=nijjijijiiikbxaaxk《数值计算与MATLAB》3. 赛德尔(Seidel)迭代法))((1)(11∑≠=++-=nijjijijiiikbxaaxkM= (D-L)-1U称为赛德尔迭代矩阵4. 迭代法的敛散性方阵的谱半径《数值计算与MATLAB》《数值计算与MATLAB 》向量范数非负性:||x||≥0齐次性:||ax||=|a|||x||;三角不等式:||x||+||y||≥||x+y||。
数值分析--第6章 解线性方程组的迭代法

数值分析--第6章解线性方程组的迭代法第6章 解线性方程组的迭代法直接方法比较适用于中小型方程组。
对高阶方程组,即使系数矩阵是稀疏的,但在运算中很难保持稀疏性,因而有存储量大,程序复杂等不足。
迭代法则能保持矩阵的稀疏性,具有计算简单,编制程序容易的优点,并在许多情况下收敛较快。
故能有效地解一些高阶方程组。
1 迭代法概述迭代法的基本思想是构造一串收敛到解的序列,即建立一种从已有近似解计算新的近似解的规则。
由不同的计算规则得到不同的迭代法。
迭代法的一般格式(1)()(1)()(,,,),0,1,k k k k m kF k +--==x x x x式中(1)k +x 与()(1)(),,,k k k m --x x x 有关,称为多步迭代法。
若(1)k +x 只与()k x 有关,即(1)()(),0,1,k k kF k +==x x称为单步迭代法。
再设kF 是线性的,即(1)(),0,1,k kk kk +=+=x B x f式中n nk ⨯∈B R ,称为单步线性迭代法。
kB 称为迭代矩阵。
若k B 和kf 与k 无关,即(1)(),0,1,k k k +=+=x Bx f称为单步定常线性迭代法。
本章主要讨论具有这种形式的各种迭代方法。
1.1 向量序列和矩阵序列的极限由于nR 中的向量可与nR 的点建立——对应关系,由点列的收敛概念及向量范数的等价性,可得到向量序列的收敛概念。
定义6.1 设(){}k x 为n R 中的向量序列,nx R ∈,如果()lim 0k k x x →∞-=其中为向量范数,则称序列(){}k x 收敛于x ,记为()lim k k x x →∞=。
定理6.1 nR 中的向量序列(){}k x 收敛于nR 中的向量x 当且仅当()lim (1,2,,)k i i k x x i n →∞==其中()()()()1212(,,,),(,,,)k k k k T Tnnx x x x x x x x ==。
第六章 回归问题——线性方程组求解的迭代法

第六章回归问题——线性方程组求解的迭代法6.1 回归问题6.1.1 问题的引入在数理统计中,把研究对象的全体称为总体,而把组成总体的每个单元称为个体,要了解总体的规律性,必须对其中的个体进行统计观测。
但若对全部个体进行观测,这样能对总体有充分的了解,但实际上行不通,而且也不经济。
所以对整体进行随机抽样观测,再根据抽样观察的结果来推断总体的性质成为一种重要的方法。
许多数理统计建模的实际问题中,一个随机变量与另一个随机变量的关系不是线性关系,而是曲线关系,那么如何确定回归方程呢?下表给出了某种产品每件平均单价y(元)与批量x(件)之间的关系的一组数据,试确定y与x的函数关系。
表6.1.1 已知数据6.1.2 模型的分析先将表6.1.1中的数据进行曲线拟合,然后根据经过拟合的曲线形状确定回归方程的次数。
用MATLAB做出拟合图如下,由下图知,可建立二次回归多项式模型。
图6.1.1 散点图6.1.3 模型的假设假设上表给出的数据是真实的,且以上数据是随机抽取的可以较准确地推断单位与批量的关系,假设单价与批量的函数关系是一个多项式函数,可用多项回归来建立模型。
6.1.4 模型的建立根据模型的分析,可以建立多项式模型22012,(0,)y x x N βββεεδ=+++ ,令212,x x x x ==,则回归方程可写成2201121,(0,)y x x N βββεεδ=+++ ,这是一个二元线性回归模型。
且()T T X X X Y β=,其中:120400 1.18125625 1.70130900 1.651351225 1.551401600 1.481502500 1.40 1603600 1.301654225 1.261704900 1.241755625 1.211806400 1.201908100 1.18X Y ⎡⎤⎡⎢⎥⎢⎢⎥⎢⎢⎥⎢⎢⎥⎢⎢⎥⎢⎢⎥⎢⎢⎥⎢⎢⎥⎢==⎢⎥⎢⎢⎥⎢⎢⎥⎢⎢⎥⎢⎢⎥⎢⎢⎥⎢⎢⎥⎢⎢⎥⎢⎥⎣⎦⎣012 =ββββ⎤⎥⎥⎥⎥⎥⎥⎥⎡⎤⎥⎢⎥⎥⎢⎥⎥⎢⎥⎣⎦⎥⎥⎥⎥⎥⎢⎥⎢⎥⎦ 6.2 线性方程组迭代法概述迭代法:即用某种极限过程逐步逼近线性方程组精确解的方法。
数值分析第六章线性方程组迭代解法

1)
b2 a21x1(k) a23x3(k)
xn( k
1)
bn an1x1(k) an2 x2(k)
a1n
x(k) n
a11
a2n xn(k) a22
an,n1
x(k) n1
ann
x(k1) D1(L U ) x(k) D1b
D1(D A) x(k) D1b
(I D1A) x(k) D1b x(k) D1(b Ax(k) )
x(7) = ( 2.0000, 3.0000, -1.0000 )T 如何确定 SOR 迭代中的最优松弛因子是一件很困难的事
26
收敛性
收敛性定理 Jacobi 迭代收敛的充要条件 (J)<1 G-S 迭代收敛的充要条件 (G)<1 SOR 迭代收敛的充要条件 (L)<1
Jacobi 迭代收敛的充分条件 ||J|| <1 G-S 迭代收敛的充分条件 ||G|| < 1 SOR 迭代收敛的充分条件 ||L|| < 1
x1( k x2( k
1) 1)
1
x(k) 2
2
8
x ( k 1) 1
x(k) 3
3
x3(k1)
5
x ( k 1) 2
2
迭代可得: x(1) = ( 0.5000, 2.8333, -1.0833 )T
x(9) = ( 2.0000, 3.0000, -1.0000 )T
25
举例
SOR 迭代:
x(k1) i
bi
i 1
a x(k1) ij j
n
aij
x(jk
)
aii
j 1
j i 1
第6章 解线性代数方程组的迭代法 数值分析 第五版 教学课件

收l敛 iε ( m k ) 0 : liB m k 0 .
k
k
要研 B 满 究 足什B 么 k 0条 k( 件 ) . 下
2020/10/29
2020/10/29
取初x 始 (0), 向量 x(k1)B(kx )f,k0,1, ,
(2.3)
其B 中 M 1NM 1(M A )IM 1A ,fM 1b.
2020/10/29
2020/10/29
一般地 A xb , 变由 形得x 到 B等 xf.价的
设x * 有 则 , 解
Hale Waihona Puke x * B * x f(1
又设任x(0 取 ),则初 可值 构造迭代序
x(k1)B(k x)f
(1.
定1(义 1 对 ) 于x方 B 程 xf, 组 用 (1.6)公 逐式 步
0
1 1
4
(ai ,bi , ci都不为零 ),
1 0 2 1 2 3
1 2 3
C 2 1 2 0 1 2,D 3 2 1.
1 0 3 0 1 3
0 1 2
2020/10/29
2020/10/29
2020/10/29
证明 若矩阵A按行严格对角占优,或按行(或列)弱对角占优不可约,
则GS迭代收敛。假若不然,ρ(BG)≥1,即迭代矩阵BG的某一特征
2020/10/29
2020/10/29
2020/10/29
2020/10/29
an1 an2 an,n1 ann
i 1 n i 1 n
|2020/|10/2|9a i|i ( )| | j 1 |a i|j j i 1 |a i| j j 1 |a i|j j i 1 |a i|.j
_第六章_线性方程组的数值解法迭代法

b 1
a 11
b2
f
a 22 bn
a nn
x(k1) B0x(k)f
--------(5)
第四节 解线性方程组的迭代法
令:
0 0 0
L
a 21
0
0 A的下三角部分矩阵
a n1 a n 2 0
0
U
0
a12 0
a1n a2n
A的上三角部分矩阵
第三节 向量范数和矩阵范数
(2)范数的另一个简单例子是二维欧氏空间的长度
0M x2 y2
欧氏范数也满足三个条件:
(勾股定理)
设x = (x1, x2) ① x 0 x >0 ② ax = a x a为常数 ③ x+ y ≤ x + y 前两个条件显然,第三个条件在几何上解释为三角形一边的长度不大于其它 两边长度之和。因此,称之三角不等式。
满足:
① A0,且A0,当且A 仅 0当
,若 A
正定
② A A,为任意实数
奇次
③ ABAB,A和 B为任意 n阶两 方个 三阵 角不等
则称 A 为矩阵A的范数。
第三节 向量范数和矩阵范数
2、矩阵范数与向量范数的相容性 对于任意的n维向量x,都有:
Ax A x
这一性质称为矩阵范数与向量范数的相容性。
n
A
max
1in
j1
aij
A的每行绝对值之和的最大值, 又称A的行范数
第三节 向量范数和矩阵范数
(3)矩阵的2范数
2范数 ||A|2 | : (AT A )
(AAT) ?
矩阵的谱半径:
矩阵B的诸特征值为: i(i1,2, ,n)
12 第六章解线性代数方程组的迭代方法

13
( k 1)
r 设有简单迭代法X
( k 1)
r BX
(k )
r g,现 将 迭 代
矩 阵 B ( b ij ) n n 分 解 为 B L U , 其 中 b1 n 0 0 b1 2 L b21 0 0 L b2 n ,U L M M O O M 0 0 bn1 bn 2 L r r r r ( k 1) (k ) (k ) 则X LX UX g ( k 0,1, 2, L ) 现将其修改为 : r r r ( k 1) ( k 1) X LX UX r g
15 代 的 分 量 形 式 : xi
( k 1)
b
j 1
i 1
ij
xj
( k 1)
j i 1
n
b ij x j
(k)
gi
( i 1, 2, L , n ; k 0,1, 2, L )
S ei d el 迭 代 的 矩 阵 形 式 : r r ( k 1) 1 (k ) 1 r X (I L) UX (I L) g
20
松驰法的分量形式为 : xi
( k 1)
(1 ) x i
(k )
i 1 ( k 1) b ij x j j 1
j i 1
n
b ij x j
(k)
gi
( i 1, 2, L , n ; k 0,1, 2, L )
5 0.9890 2.0114
6 1.0032 1.9922
7 0.9981 2.0023
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数值计算与MATLAB
1
《数值计算与MATLAB 》
第6章求解线性代数方程组和计算矩阵特征值的迭代法§1 求解线性代数方程组的迭代法
§2 方阵特征值和特征向量的计算
§3 矩阵一些特征参数的MATLAB计算
《数值计算与MATLAB 》
6.1 求解线性代数方程组的迭代法
1、迭代法的基本原理
如果线性方程组Ax=b的系数矩阵A非奇异,则方程组有唯一解。
把这种方程中的方阵A分解成两个矩阵之差:A=C-D
若方阵C是非奇异的,把A它代入方程Ax=b中,得出 (C-D)x=b,两边左乘C-1,并令 M=C-1D,g= C-1b,移项可将方程Ax=b变换成:
x=Mx+g
据此便可构造出迭代公式: x
k+1
=Mx k+g,
M=C-1D称为迭代矩阵。
《数值计算与MATLAB 》2. 雅可比(Jacobi)迭代法
如果方程组Ax=b的系数矩阵A非奇异,a
ii
≠0,若可以把A 分解成: A=D-L-U=D+(-L)+(-U),
D=diag(a11,a22,…,a nn);
-L是严格下三角阵;
-U是严格上三角矩阵;
x= D-1((L+U)x +b)=D-1(L+U)x+ D-1b
x k+1=D-1((L+U)x k+b)= D-1(L+U)x k + D-1b
M
M=D-1(L+U)称为雅可比迭代矩阵
《数值计算与MATLAB 》
⎥
⎥
⎥
⎥
⎦
⎤
⎢
⎢
⎢
⎢
⎣
⎡
=
6
7-
4
1
2
1-
2
6-
3-
1
1
5-
1
2
A
⎥
⎥
⎥
⎥
⎦
⎤
⎢
⎢
⎢
⎢
⎣
⎡
=
6
1-
3-
2
D
⎥
⎥
⎥
⎥
⎦
⎤
⎢
⎢
⎢
⎢
⎣
⎡
=
7
4-
1-
2-
1-
L
⎥
⎥
⎥
⎥
⎦
⎤
⎢
⎢
⎢
⎢
⎣
⎡
=
2-
6
1-
5
1-
U
M=D-1(L+U)=
⎥
⎥
⎥
⎥
⎦
⎤
⎢
⎢
⎢
⎢
⎣
⎡
7/6
2/3
-
1/6
-
2
2
2-
1/3
1/2
-
5/2
1/2
-
《数值计算与MATLAB 》雅可比迭代公式的向量形式
x k=[( x k) 1,( x k) 2, …,(x k) n]T, k=0,1,2,……,
D-1=diag( , ,… ,),
11
a
1
22
a
1
nn
a
1
)
)
(
(
1
)
(
1
1∑
≠
=
+
+
-
=
n
i
j
j
i
j
ij
ii
i
k
b
x
a
a
x
k
《数
值
计
算
与
MATLAB
》
3. 赛德尔(Seidel)迭代法
)
)
(
(
1
)
(
1
1∑
≠
=
+
+
-
=
n
i
j
j
i
j
ij
ii
i
k
b
x
a
a
x
k
M= (D-L)-1U称为赛德尔迭代矩阵
《数值计算与MATLAB 》4. 迭代法的敛散性方阵的谱半径
《数值计算与MATLAB 》向量范数
非负性:||x||≥0
齐次性:||ax||=|a|||x||;
三角不等式:||x||+||y||≥||x+y||。
《数值计算与MATLAB 》矩阵范数
如果满足范数三条件,同时满足矩阵乘法相容性(次乘性):||A||·||B||≥||A·B||
《数
值
计
算
与
MATLAB
》
迭代公式收敛性的判断和误差估计:
1)方阵谱半径和范数间的关系:
λx=Mx
ρ(M)≤||M|| 2)迭代公式的误差估计:
《数值计算与MATLAB 》
6.2 方阵特征值和特征向量的计算
解多项式方程法迭代法
1. 方阵特征方程的求解:
如果n阶方阵A、n维向量x和数λ满足关系:Ax=λx,就把数λ叫做方阵A的特征值,非零向量x是与λ对应的方阵A的特征向量。
)
det(=
-E
Aλ
)
(=
-x
E
Aλ
《数值计算与MATLAB 》2.计算特征值和特征向量的迭代法:
雅可比法:
对于n阶实对称方阵A,必然存在正交阵P,使得
P-1AP=P T AP=Λ
Λ是对角阵。
雅可比法原理:用矩阵的正交相似变换,将实对称矩阵化为对角阵,因为它相当于坐标的旋转变换,所以也叫旋转法。
《数值计算与MATLAB 》QR算法:
由施密特(Schmidt)正交化方法可以推得,任意n 阶方阵A总可以分解成一个正交矩阵Q(Q T Q=E)和一个上三角阵R的乘积:
A=QR
这种把矩阵分解成正交阵与上三角阵之积的过程,叫正交三角分解或QR分解。
如果A是非奇异方阵,则这种分解是唯一的。
《数值计算与MATLAB 》
6.3 矩阵一些特征参数的MATLAB求算
求方阵行列式的指令det:det (A)
求方阵特征多项式的指令poly:P=poly (A) roots(P)
poly2str(P,’y’)
求方阵特征值和特征向量指令eig:[x r]=eig (A);eig (A)
[x r]=eig (A, “nobalance”)
矩阵的正交三角分解指令qr:[q r]=qr(a); [q r p]=qr(a)
计算范数指令norm:norm(A, ex)
矩阵谱半径的计算:max(abs(eig(M)))。