(完整版)数学模型-第03章(第五版)
数学模型(第五版)

2018年高等教育出版社出版的图书
01 成书过程
03 教材特色 05 作者简介
目录
02 内容简介 04 教学资源
《数学模型(第五版)》是由姜启源、谢金星、叶俊编写,高等教育出版社出版的 “十二五”普通高等教育 本科国家级规划教材,适合作为高等学校各专业学生学习数学建模课程的教材和参加数学建模竞赛的辅导材第五版)习题参考解答》是为配合《数学模型(第五版)》而编写的学习指导书,书号为9787-04--4,2018年5月23日由高等教育出版社出版,170千字、128页。
《数学模型(第五版)》开通有数字课程、MOOC课程的资源。
作者简介
《数学模型(第五版)》是由姜启源、谢金星、叶俊编写。 姜启源:同济大学应用数学系教授。 谢金星:清华大学数学科学系教授。 叶俊:清华大学数学科学系教授。
内容简介
《数学模型(第五版)》共11章,包括建立数学模型、初等模型、简单的优化模型、微分方程模型、微分方 程模型、差分方程与代数方程模型、离散模型、概率模型、统计模型、博弈模型。
教材特色
教材参考中国国内外数学建模教材和教学单元,第五版在保持前四版基本结构和风格的基础上,进行补充与 修订:增加了一些实用性较强、生活气息浓烈、数学推导简化的案例,改写、合并、调整了若干案例和章节,删 除了个别案例,并对习题作了相应的修订。
全书共11章,包括建立数学模型、初等模型、简单的优化模型、微分方程模型、微分方程模型、差分方程与 代数方程模型、离散模型、概率模型、统计模型、博弈模型。
成书过程
第五版在保持前四版基本结构和风格的基础上,进行增删与修订,新增和改编的案例接近案例总数的一半, 新版本于2018年5月由高等教育出版社出版(《即数学模型(第五版)》)。
感谢观看
数学模型第五版

数学建模的能力
想象力
洞察力
判断力
比较广博的数学知识
深入实际调查研究的决心和能力
创新意识
• 如何学习数学建模
学别人的模型学习 分析、改进、推广
做自己的模型实际题目;参加竞赛
学别人的模型
对于案例——椅子能在不平的地面上放稳吗; 在学懂的基础上可以作哪些研究
1 模型假设中哪些条件是本质的, 哪些是非本质的 地面高度连续 是 椅子至少三只脚着地 是
用 x 表示船速;y 表示水速,列出方程:
(x y)30750
x=20
(x y)50750 求解 y =5
答:船速为20km/h
航行问题建立数学模型的基本步骤
• 作出简化假设船速 水速为常数 • 用符号表示有关量x, y分别表示船速和水速 • 用物理定律匀速运动的距离等于速度乘以
时间列出数学式子(二元一次方程) • 求解得到数学解答x=20, y=5
章 13 建模示例之一 包饺子中的数学
14 建模示例之二 路障间距的设计
建
立 数 学
模
15 建模示例之三 椅子能在不平的 地面上放稳吗
16 数学建模的基本方法和步骤 17 数学模型的特点和分类
型 18 怎样学习数学建模——学习课程
和参加竞赛
1 1 从现实对象到数学模型
我们常见的模型
玩具 照片、飞机、火箭模型… ~ 实物模型
结论:在模型假设条件下;将椅子绕中心旋转, 一定能找到四只脚着地的稳定点
1 6 数学建模的基本方法和步骤
数学建模的基本方法
对客观事物特性的认识
机理分析
内部机理的数量规律
白箱
测试分析
对量测数据的统计分析 与数据拟合最好的模型
数学模型第五版课程设计

数学模型第五版课程设计一、前言数学模型课程是数学学科体系中的一门应用性课程,主要涉及数学知识在现实生活中的应用,帮助学生了解数学如何应用于实际问题中,提高学生的数学建模能力。
本次课程设计旨在通过实例,详细介绍数学模型的建立过程,并帮助学生熟悉数学模型的应用。
二、课程内容1. 前期准备在开始课程设计前,需要学生具备大学线性代数和微积分等基础数学知识,并具有一定的编程能力。
2. 数学模型的定义和建立过程2.1 数学模型的定义数学模型是指利用数学方法对实际问题进行抽象化和形式化处理,以得到问题的数学表示式和解法的方法。
2.2 数学模型的建立过程•确定问题:首先要确定需要解决的实际问题。
•收集数据:通过实验或调查等方式收集与问题相关的数据。
•建立方程或模型:根据数据和问题的特征,建立数学模型或方程。
•解决问题:利用已经建立的数学模型或方程,解决实际问题。
3. 数学模型在实际问题中的应用3.1 核电站事故模拟分析假设某核电站有2个反应堆,采用钴60俘获模型,模拟事故情况下反应堆的输出功率,进而分析事故对反应堆的影响。
假设第一个反应堆关闭,第二个反应堆失去控制,建立以下方程:$$\\frac{dP}{dt}=k_1(P_0-P)-k_2(cN_2-P)$$其中,P表示反应堆的输出功率,P0表示反应堆的初始功率,c表示钴60的俘获截面积,k1和k2代表两个反应的系数,N2代表第二个反应堆的中子数。
通过求解上述方程,可以得到反应堆的输出功率随时间变化的情况。
3.2 股票价格预测根据股票的历史价格数据,建立股票价格变化的数学模型,预测未来的股票价格走势。
假设已知若干个时刻的股票价格,建立以下方程:$$y_t = \\beta_0+\\beta_1x_1+\\beta_2x_2+…+\\beta_nx_n+e_t$$其中,y t表示第t个时刻的股票价格,x1、x2、…x n为若干个自变量(如前几个时刻的股票价格),$\\beta_i$为关于自变量的系数,e t为误差项。
数学模型第五版教学大纲

数学模型第五版教学大纲
一、课程简介
本课程是数学专业和相关专业的必修课程之一,旨在帮助学生掌握数学模型的基本概念、建模过程和解题方法,培养学生的创新思维和实际问题解决能力。
二、教学目标
1.理解数学模型的基本概念和建模的思路;
2.掌握常用的数学模型和求解方法;
3.能够独立分析和解决实际问题;
4.培养学生的科学思维、创新精神和团队合作精神。
三、教学内容
第一章数学模型的概念和基本要素
1.数学模型的概念和基本要素;
2.数学模型的分类和应用;
3.数学建模的基本流程和方法。
第二章常用数学模型
1.线性规划模型;
2.非线性规划模型;
3.最优化模型;
4.动态规划模型;。
第03章线性离散系统的数学模型

➢ 通解是齐次方程的解,为零输入解,代表系统在无外力 作用下的自由运动,反映了离散系统自身的特性。
➢ 特解是由非零输入产生的解,对应于非齐次方程的特解, 反映了系统在外作用下的强迫运动。
差分方程求解有两种方法:解析法与递推法。
解法一:递推法——从初始值递推求解
相似变换 初值定理 终值定理 实卷积定理 复卷积定理
L[ x(at )] 1 X ( s )
aa
lim x (t ) lim sX ( s )
t0
s
lim x (t ) lim sX ( s )
t
s0
L[ x1 (t ) x 2 (t )] X 1 ( s ) X 2 ( s )
L[ x1 (t ) x 2 (t )]
例 y(k2)2y(k1)5y(k)0,求通解。 解:特征方r程 2 2r50, 有一对共轭 1复 j2根 5ejarc2t, g 则通解为y(k)c1(1j2)k c2(1j2)k。
例y(k2)4y(k1)4y(k)0,求通解。 解:特征方 r2程 4r40,有二重 2,根 则通解为 y(k)c1(2)k c2k(2)k。
它的y ( 齐 k n ) a 1 次 y ( k n 1 方 ) a n 程 y ( k ) 0 为 它 的 特 rn a 1 征 rn 1 a 方 2 rn 2 程 a n 为 0 有n个特征根: (1)若解为 n个单根 r1 , r2 ,, rn ,则方程通解为:
y(k) c1r1k c2r2k cnrnk; (2)若解有m重根,则m重根的解的形式为
1 2
X1(s) X 2(s)
3.4.4 Z反变换
1、 长 除 法
(完整版)数学模型姜启源-第三章(第五版)

平均每天费用950元 • 50天生产一次,每次5000件, 贮存费4900+4800+…+100 =122500元,准备费5000元,总计127500元.
平均每天费用2550元
c2 t1x x
c3 x
其中 c1,c2,c3, t1, ,为已知参数
模型求解 求 x使 C(x)最小
dC 0 dx
x
c t 2 2c t
11
21
2c 2
3
结果解释 x c1t12 2c2t1
2c32
dB
dt
/ 是火势不继续蔓延的最少队员数
x
x 0.45
0.4 0.35
0.3 0.25
0.2 0.15
0.1 0.05
0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 a
a
1
空杯质量w2取决于材料 (纸杯、塑料杯、玻璃杯).
设w2=150g 半升啤酒杯w1=500g a=0.3 x=0.3245
一杯啤酒约剩1/3时重心最低,最不容易倾倒!
问题分析与模型假设 x
w1 ~ 啤酒 (满杯) 质量
1
w2 ~空杯侧壁质量, w3 ~空杯底面质量
啤酒杯重心s(x)由啤酒重心和空杯 重心合成.
• s2=1/2 •xs(x) 液面 • s1=x/2 0
液面高度x时啤酒质量w1x, 啤酒重心位置 s1=x/2
忽略空杯底面质量w3 空杯重心位置 s2=1/2
数学模型第五版教学设计

数学模型第五版教学设计一、引言随着信息时代的到来,人们的思维方式也发生了改变。
人们面对的问题越来越复杂,过去简单的解决方法已经无法满足实际需要。
因此,数学模型的构建与求解成为了解决实际问题的一种重要方式。
数学模型是把实际问题抽象化、描述化、符号化、数学化以及综合化的过程,可以将人们遇到的实际问题转化为数学问题,进而得到数学解,并为实际问题提供更有效、更经济、更合理的解决方案。
《数学模型》是我国高校数学专业的一门重要的基础课程,它教授的是建立和分析实际问题的数学模型的方法和技术。
本教学设计参照《数学模型》第五版,从教学目标、教学内容、教学方法、教学评价、教学资源等方面探讨如何有效开展数学模型的教学。
二、教学目标本课程旨在培养学生掌握建立数学模型的方法、技巧和分析实际问题的能力,使学生能够1.掌握建立数学模型的基本方法和技巧;2.熟练掌握数学模型求解的基本方法和技巧;3.能够分析和评价数学模型的适用性和可靠性;4.能够应用所学知识发现和解决现实中的问题;5.培养学生的数学建模思维和创新意识。
三、教学内容1.数学模型的基本概念和基本方法。
2.常用数学模型的建立与求解。
3.数学模型的适用性和可靠性分析。
4.数学模型在实际中的应用。
四、教学方法1.讲授法:教师对理论知识进行讲解。
2.研究法:学生通过阅读教材和相关专业书籍,自主研究所学内容。
3.课堂案例分析:教师选取实际问题,引导学生进行建模思考和分析。
4.讨论法:教师通过提供案例,引导学生探讨数学模型的适用性和可靠性。
5.项目式教学:学生通过小组合作完成数学模型相关课程设计、研究报告等项目任务。
五、教学评价1.课堂表现:学生出勤情况、发言表现、思考和解答问题能力等。
2.作业评估:布置适当数量和难度的作业,考察学生对知识的理解和应用能力。
3.个人报告:要求每个学生或小组对所学内容进行归纳和整理,并展示给全班同学。
4.项目评估:对学生完成的项目进行评估,考察学生对数学模型的建立和分析能力。
数学模型-第03章(第五版)

存在恰当的x,使f1(x), f2(x)之和最小.
分析
• 关键是对B(t)作出合理的简化假设.
失火时刻t=0, 开始救火时刻t1, 灭火时刻t2, 画出时刻t森林烧毁面积B(t)的大致图形.
B
分析B(t)比较困难, 转而讨论单位时间 烧毁面积 dB/dt (森林烧毁的速度).
第三章
材料强度最大
简单优化模型
利润最高 风险最小
优化——工程技术、经济管理、科学研究中的常见问题. 运输费用最低
用数学建模方法解决优化问题的过程 优化目标与决策 模型假设与建立 数学求解与分析
简单优化模型归结为函数极值问题,用微分法求解. 属于数学规划的优化模型在第四章讨论.
第 三 章 简 单 优 化 模 型
3.2 森林救火
问题
森林失火后,要确定派出消防队员的数量. 队员多,森林损失小,救援费用大; 队员少,森林损失大,救援费用小. 综合考虑损失费和救援费,确定队员数量.
分析
记队员人数x, 失火时刻t=0, 开始救火时刻t1, 灭火时刻t2, 时刻t森林烧毁面积B(t).
• 损失费f1(x)是x的减函数, 由烧毁面积B(t2)决定.
啤酒杯重心s(x)只与质量比a有关 对于每个a, s(x) 有一最小点. a=0.3, x=0.35左右 s最小, 即重心最低.
0.5
s
0.45 a=1 0.4 a=0.5 0.35 a=0.3 0.3
0.25 a=0.1 0.2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
建立啤酒杯重心模型一
啤酒杯重心模型一
x
s=s(x) ~ 液面高度x的啤酒杯重心