第2章 空间力系的简化与物体的受力分析
合集下载
力系的简化

力系向一点简化后的主矢和主矩在坐标轴上的投影
n
n
n
FR ( Fix )i ( Fiy ) j ( Fiz )k
i 1
i 1
i 1
Fx i Fy j Fz k
Z
MO Fz
FR
Mz
Fx M x O
Fy
My
MO Mxi M y j Mzk
Y
X
空间力系向一点简化的意义
1、 FR 0; M O 0
力系平衡
平衡条件对O 点成立,则对任意点成立。
首先,力系第一不变量,FR 0 对任意点成立;其次,主矢对任意两定点 之矩的关系
MO M A OA FR
于是
MA 0
其中 FR 0; M O 0
2、 FR 0; M O 0 力系简化为一个合力偶,力偶矩为Mo 可以证明上述结果与简化中心无关
O
Fi
ri r2
ri
r2 r1
r1
C
rC FR
F2 F1
证明:如图,依条件有
FR Fi 0 MC ri Fi 0
ri rC ri
力系对O点之矩
Fi
ri r2
ri
r2
r1
r1
C
O
rC
FR
MO ri Fi (ri rC ) Fi
边长为d的正方形作用五个力,方向如图 已知 S1 S2 S3 S , S4 S5 2S 求:力系的最简形式
z
S4
S1
O
d
x
S5
S3
y
S2
解:将各力向坐标轴上分解,有
第二章 结构计算简图物体受力分析1

支座约束,B端为可动铰支座约束。试画出梁的受力图。
FC
A
B D
α
Fx
FC
A Fy
B
Fy
FAA
α
β
FC
B
FB
α
• 例2 起吊架由杆件AB和CD组成,起吊重物的重量为Q。不
计杆件自重,作杆件AB的受力图。
B XA A
B
A
D
D
YA
ND
T
C
T’
Q
Q
例3 如图三角铰刚架及 y
受力情况如图所示,
试分别画出构件AC、
习题2-1a、b,2-3a、b,2-5,2-11
精品课件!
2020/3/4
44
精品课件!
2020/3/4
45
示意图
计算简图
• (4)铰支座 • (b)固定铰支座约束:固定铰支座是将杆件用铰链约
束与地面相连接。
示意图
计算简图
固定铰支座约束
• (5)链杆约束:链杆是两端用光滑铰链与其它物体连接,不计
自重且中间不受力作用的杆件。物体在竖直方向受到约束,约束 力可向上,可向下。
• 链杆:两端用光滑铰链与其它构件连接且不考虑自重的刚杆。 • 特点:是二力杆,提供双面约束。 • 反力方向:沿杆方向,通常假定受拉。 • 同一点处的两根不平行链杆等同于一固定铰支座。 • 活动铰支座可用与支撑面垂直的一根链杆来代替。
§2-2
一、结构计算简图
结构计算简图
• 计算简图是实际结构的简化模型。 • 选用原则是:要能反映实际结构的主要受力特性;同时
又要便于分析和计算。
• 合理的计算简图的建立需要具备较深厚的力学知识和清
晰的概念,并能与工程实践相结合,最后还能经受实践 的检验。
FC
A
B D
α
Fx
FC
A Fy
B
Fy
FAA
α
β
FC
B
FB
α
• 例2 起吊架由杆件AB和CD组成,起吊重物的重量为Q。不
计杆件自重,作杆件AB的受力图。
B XA A
B
A
D
D
YA
ND
T
C
T’
Q
Q
例3 如图三角铰刚架及 y
受力情况如图所示,
试分别画出构件AC、
习题2-1a、b,2-3a、b,2-5,2-11
精品课件!
2020/3/4
44
精品课件!
2020/3/4
45
示意图
计算简图
• (4)铰支座 • (b)固定铰支座约束:固定铰支座是将杆件用铰链约
束与地面相连接。
示意图
计算简图
固定铰支座约束
• (5)链杆约束:链杆是两端用光滑铰链与其它物体连接,不计
自重且中间不受力作用的杆件。物体在竖直方向受到约束,约束 力可向上,可向下。
• 链杆:两端用光滑铰链与其它构件连接且不考虑自重的刚杆。 • 特点:是二力杆,提供双面约束。 • 反力方向:沿杆方向,通常假定受拉。 • 同一点处的两根不平行链杆等同于一固定铰支座。 • 活动铰支座可用与支撑面垂直的一根链杆来代替。
§2-2
一、结构计算简图
结构计算简图
• 计算简图是实际结构的简化模型。 • 选用原则是:要能反映实际结构的主要受力特性;同时
又要便于分析和计算。
• 合理的计算简图的建立需要具备较深厚的力学知识和清
晰的概念,并能与工程实践相结合,最后还能经受实践 的检验。
空间力系的简化

z
z 主矢,主矩
z
F1 M2
y x
F1
F2
M1
附加力偶 F'
R
A2
F2
0 An
M0 0 y
A1
0
y
Mn
Fn
x
x
Fn
O:简化中心
Fi 主矢: FR 主矩: M M M ( F ) 0 i 0 i
主矢是力系的第一不变量。
二、力系进一步简化的各种可能结果 1、 F 0 平衡力系,以后讨论 M 0 O R 与简化中心无关 合力偶 2、 FR 0 MO 0 合力 3 FR 0 MO 0 、 4 FR 0 MO 0 、 (1) F 合力 MO R FR FR
(MO rOA FR ) FR MO FR M A FR
主矢与主矩的点积也与简化中心的选择无关,称之为力 系的第二不变量 由主矢与主矩的点积是否为零,就可判定出简化的最终 是合力还是力螺旋。
特例:平面任意力系的简化
F1 A1 A2
FR
FR
o
MO
o
FR
d
o’
o
d
o’
MO 平移距离: d FR
平移方向: FR M O 的方向
(2)
FR
MO
M0
力螺旋
FR
FR 与 M O FR 与 M O
方向一致 右手力螺旋 方向相反
左手力螺旋
(3) FR 0, MO 0, FR MO
MO1
Fj 合力大小和方向: FR FR
1.133F a / F 1.133a 合力作用点D至A点距离:d M A / FR
z 主矢,主矩
z
F1 M2
y x
F1
F2
M1
附加力偶 F'
R
A2
F2
0 An
M0 0 y
A1
0
y
Mn
Fn
x
x
Fn
O:简化中心
Fi 主矢: FR 主矩: M M M ( F ) 0 i 0 i
主矢是力系的第一不变量。
二、力系进一步简化的各种可能结果 1、 F 0 平衡力系,以后讨论 M 0 O R 与简化中心无关 合力偶 2、 FR 0 MO 0 合力 3 FR 0 MO 0 、 4 FR 0 MO 0 、 (1) F 合力 MO R FR FR
(MO rOA FR ) FR MO FR M A FR
主矢与主矩的点积也与简化中心的选择无关,称之为力 系的第二不变量 由主矢与主矩的点积是否为零,就可判定出简化的最终 是合力还是力螺旋。
特例:平面任意力系的简化
F1 A1 A2
FR
FR
o
MO
o
FR
d
o’
o
d
o’
MO 平移距离: d FR
平移方向: FR M O 的方向
(2)
FR
MO
M0
力螺旋
FR
FR 与 M O FR 与 M O
方向一致 右手力螺旋 方向相反
左手力螺旋
(3) FR 0, MO 0, FR MO
MO1
Fj 合力大小和方向: FR FR
1.133F a / F 1.133a 合力作用点D至A点距离:d M A / FR
工程力学:第2章 力系的简化

F1sin45 F2sin45 0 FAsin30 F1cos45 cos30 F2 cos45 cos30 0 FAcos30 F1cos45 sin30 F2cos45 sin30 P 0
B FB1
相同的均质杆围成正方形,求绳EF的拉力。
要求:
用最少的方 程求出绳EF受 的力
FAy
FAx
A
E
P
FDy
FDx
D
G
P
B
F
P
C
FDy FDx
D
G
P
FDy FDx
D
FCy FCx
C
FBx FT
G
P
FBy
B
F
P
C
例3-3
q
FAx A
M B
2a
P
FAy
4a
FB
ll
30
F
M
3l P
q
例3-4
F
体等效于只有一个力偶的作用,因为力偶可以在刚体平
面内任意移动,故这时,主矩与简化中心O无关。
③ FR≠0,MO =0,即简化为一个作用于简化中心的合力。这时,
简化结果就是合力(这个力系的合力), FR FR 。(此时
与简化中心有关,换个简化中心,主矩不为零)
④ FR 0, MO 0 ,为最一般的情况。此种情况还可以继续 简化为一个合力 FR 。
FAy
B FB1x
C
M
B
D
Cr
•
E
A
300 F E
FA
FT
C
F A1
FA
求:销钉A所受的力
M
B D
FD D C
第二章力系的简化

A
x
i j k
y
F
MA r F l 2l 0 对点A的力矩: F sin 0 F cos 2Fl cosi Fl cosj 2Fl sin k
15
三.力偶 1.力偶定义 两个等值、反向、不共线的平行力。记为 ( F , F ) 力偶不能合成为一个力,故也不能与 一个力平衡,因此力和力偶都是基本力学 F 量。 F M 静止时力偶 M 与F 平衡吗? 力偶只能使物体转动,用力偶矩衡量
22
2.主矢与主矩——原力系的特征量 1)定义
' 主矢:(各力的矢量和)FR Fi Fi' ,与简化中心无关
主矩: (各力对O点取矩的矢量和)
MO MO (Fi ) ,与简化中心有关
2)简化结果 一般力系向某一点简化,可以得到一个力和一 个力偶,该力作用在简化中心,其大小,方向与原 力系主矢相同;该力偶矩等于原力系对简化中心的 主矩。
F
三要素:
大小、力偶作用面方位、转向.
16
F
2.力偶矩矢
A
rB A
F
F
B
h
rA
M
M
rB
O
定 义: 而
MO F ,F rA F rB F
F ' F
rA rB rB A
M0 F , F (rA rB ) F rBA F rAB F M
5
力矩的解析表达式:
由于F Fx i Fy j Fz k
M O (F ) r F x Fx i
r xi y j zk
材料力学 第2章 力系简化

而合力的作用点即平行力系的中心:
n
xC
lim
n
Fi xi
i 1 n
l
q( x) xdx
0 l
lim
n
i 1
Fi
0 q(x)dx
分布力对点A之矩
分布力包围的面积
结论:分布力的合力的大小等于分布力载荷图的面积,合
力的作用线通过载荷图的形心。
2.2 物体的重心、质心和形心
例2-5 如图所示,已知q、l, 求分布力对A点之矩。
2.2 物体的重心、质心和形心
xC
ΣFi xi ΣFi
,yC
ΣFi yi ΣFi
,zC
ΣFi zi ΣFi
3、平行力系中心的性质
平行力系的中心位置只与各平行力的大小和作用点的 位置有关,与平行力的方向无关。
2.2 物体的重心、质心和形心
二、物体的重心、质心和形心
1、重心
n个小体积ΔVi
坐标xi、yi、zi
(2)实验测定方法 悬挂法
称重法
l
A
C
B
xC G
FNB
二力平衡 两次悬挂
2.2 物体的重心、质心和形心
三、分布力
工程上存在大量分布力的情况,通常需要确定这些分布力
的合力的大小及其合力作用线的位置。对于图示的线分布力,
可以视为由无穷个集中力所构成的平行力系,
其合力的大小:FR
l
q ( x)dx
0
FP1 450kN,FP2 200kN
F1 300kN ,F2 70kN
求:
(1)力系向点 O 简化的结果;
(2)力系简化的最终结果。
2.1 力系简化
解:(1)确定简化中心为O点
理论力学第二章(力系的等效与简化)

z
x c
F
b
o
o x
a
M y ( F ) M o ( F ) Fc
F
M z ( F ) M o ( F ) Fa
15
2019年4月16日星期二
《理论力学》
3、力对点之矩与力对通过 该点的轴之矩的关系 (转动效果的度量)
z
Fz F
y
x A
o
y
力对点之矩矢:
M o (F ) r F
Fx Fxy cos Fx F sin cos
Fy
F
O Fx x
Fy Fxy sin
y F y F sin sin
Fxy
2019年4月16日星期二
Fz F cos
6
力的分解:
F Fx Fy Fz
力F在直角坐标系中的
Fz z
F
O x
Fy
解析式
Fx
2019年4月16日星期二
力矩的符号
M O F
2019年4月16日星期二
力偶矩的符号
M
27
《理论力学》
力偶系和力偶系的合成
MR =M1+M2+…+Mn
M
力偶系
2019年4月16日星期二 28
《理论力学》
§2-3 力系等效定理
1.力系的主矢和主矩 Fn 。 设刚体上作用一平面任意力系F 1 、F 2 · · · · · ·
的夹角可为任意值。 的夹角为90o。
36
在平面任意力系, M与 R
2019年4月16日星期二
思考: 主矢,主矩与简化中心的位置有无关系?
主矢:作用在简化中心,大小和方向却与中心的位 置无关; 主矩:作用在该刚体上,大小和方向一般与中心的 位置有关。
静力学(第二章)

A FC
C
B
W
①选研究对象; ②去约束,取分离体;③画上主动力;④画出约束反力。
例3 图示结构中各杆重力均不计,所有接触处均为光滑 接触。试画出:构件AO、AB和CD的受力图。
①选研究对象; ②去约束,取分离体;③画上主动力;④画出约束反力。
例4 画出下列各构件的受力图
说明:三力平衡必汇交 当三力平行时,在无限 远处汇交,它是一种特 殊情况。
改变原力系对刚体的作用。
只适于刚体!
静力学基本公理
推理1
力的可传性
作用在刚体上某点的力,可沿其作用线移动, 而不改变它对刚体的作用。
力对刚体的作用决定于:力的大小、方向和作用线。 力是有固定作用线的滑动矢量。
静力学基本公理
根据力的可传性,作D 的受力图, 此受力图是否正确?
分析整个系统平衡时,作用力 是否可沿其作用线移动?
刚体静力学模型
1.3 接触和连接方式的抽象和理想化
自由体:
-约束
其运动没有受到其它物体预加 的直接制约的物体
刚体静力学模型
约束:对非自由体运动起制约作用的周围物体 约束反力:约束作用于被约束物体的力
非自由体:
其运动受到其它物体预加的直接制约的物体
刚体静力学模型 约束反力的特点:
大小:常常是未知的 作用点:接触点 方向:总是与约束所能阻止的物体运动方向相反 F G
工程常见约束与约束反力
2.1 柔性约束
柔性约束只能承受拉力 约束反力: 沿柔索而背离被约束物体,作 用于连接点。
工程常见约束与约束反力
2.1 柔性约束
柔性约束只能承受拉力
约束反力: 沿柔索而背离被约束物体,作用于连接点。
链条约束与约束力
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当形成平面柱铰中 的一个带圆孔部件与基 础或静止的结构物固连, 就成为铰链支座 铰链支座,也称 铰链支座 固定铰支座
A A
受力特征不变
未知量: 未知量:2 个
FAx
FAy
(3)径向轴承
z
A
x
y
A
FAz
FAx
约束特征与平面柱铰相同,即约束力应在与轴线(轴y) 垂直的平面内,通过圆轴中心。 r r 同样可以用 FAx , FAz 两个分量来表示 未知量: 未知量:2 个
方向: 方向:沿着柔索的中心线且背离被约束物体 作用点: 作用点:接触点 未知量: 未知量:1个
二、光滑面约束
(1)光滑接触点约束 (1)光滑接触点约束
r P
r FN
r P
r F1
r F2
r F3
物体之间的接触缩小为一 点接触。此时的约束力是一 集中力,这力的作用线必定 通过接触点,且同时通过两 个曲面对应接触点的曲率中 心,也就是力的作用线为接 触点的公法线方向。 方向: 方向:接触面的公法线并指向被约束物体 作用点: 作用点:接触点 未知量: 未知量:1个
( )
r r r ′ 合力大小和方向: FR = FR = Fj
′ 合力作用点D至A点距离:d = M A / FR = 1.133F ⋅ a / F = 1.133a
y
3m
例3 重力坝受力情况如图所示。设 重力坝受力情况如图所示。
C
G1=450kN , G2=200kN , F1=300 kN , 450kN kN, 200kN kN, kN, F2=70 kN 。 试求力系的合力 FR 的大 kN。
(3) F R ≠ 0 , M O ≠ 0 , F R ⊥ M O
MO1
力螺旋
MO1
MO
′ ϕ FR
o
r r r MO2 ( M O • FR ) FR
′ ϕ FR
o
MO1
FR
ϕ
′ FR
o
d
o’
2 FR r r r F ×M OO′ = d = R 2 O FR M O sin ϕ
r M O1 =
′ FRx
o
A
70.84
M O = M O (FR ) = xFRy − yFRx = x ∑ Fx − y ∑ Fy
代入主矢和主矩的值可得合力作用线方程: 代入主矢和主矩的值可得合力作用线方程:
′ FRy
′ FR
− 2 355 kN ⋅ m = (− 670 . 1 kN ) × x − (232 . 9 kN ) × y
FR MO1
o
d
FR o’
FR
o d o’
d=
FR
力螺旋中力的作用线被称为力系的中心轴。显然, 力螺旋中力的作用线被称为力系的中心轴。显然,力系向 中心轴上任一点简化,所得到的力螺旋都是相等的。 中心轴上任一点简化,所得到的力螺旋都是相等的。
当主矢与主矩都不等于零的情况下,其最终简化结果, 当主矢与主矩都不等于零的情况下,其最终简化结果, 为合力或力螺旋两种可能。 为合力或力螺旋两种可能。 若取任意点A为新的简化中心 r 主矢: FR (不变量)不变 ′ 新的主矩: r r r r ′ M A = M O′ + rO′A × FR
′ FRy = ∑ Fy = −G1 − G2 − F2 sin θ = −670 .1 kN
MO
O
主矩: 主矩: M O =
∑M ( )
O
r F
′ FRx
′ FR
A
= − F1 × 3 m − G1 × 1.5 m − G 2 × 3.9 m = − 2 355 kN ⋅ m
′ FRy
′ FR = FR = ( Σ Fx ) 2 + ( Σ Fy ) 2 = 709 .4 kN 合力F 的大小: 合力FR的大小:
特例: 特例:平面任意力系的简化
F1 A1 A2 An
主矢: 主矢: 主矢, 主矢,主矩
F2 Fn
F1 M1
=
简化中心
M2 F2 Mn O
Fn
=
附加力偶
FR MO
r r F R = Σ Fi
FRx = ∑ Fix FRy = ∑ Fiy
FRy FRx cos α = , sin α = FR FR
= F1 cos 60° + F2 sin 30° − F4 = 0 ′ FRy = ∑ Fy
= F1 sin 60° − F2 cos 30° + F3 = F
FR
FR
r r r ′ ′ FR = FRy j = Fj
MA
r 主矩: 主矩: M A = ∑ M A F = F3 a + M − F2 h = 1.133Fa
(2) 光滑接触线约束
x
FN
当两柱体相接触时,约束力沿直线平行分布。
r 其合力 FN法线方向。
未知量: 个 未知量:2个
(3) 光滑接触面约束
x y
FN
约束对被约束物体的约束力就分布在整个接触面上,其 每一个分布力都与接触面垂直,且指向被约束物体,形成一 个空间平行力系。 合成的结果必定是一个合力,这个合力指向被约束物 r 体,是一个压力 FN
′ FR y = F4 − F3 = 0
′ FR z = F1 = 50 N
大小: ′ 大小: FR = FR 2 + FR 2y + FR 2 = 50 2 N ′x ′ ′z 方向: 方向: cos α = 2 ,
2 cos β = 0, 2 cos γ = 2
r r r ′ FR = 50(i + k ) N
670.1 x + 232.9 y − 2 355 = 0
第二节 约束与约束力
自由体与非自由体
自由体 非自由体 P
约束: 约束:阻碍物体运动的限制物体,是通过力来实现 的 约束力:约束施加于被约束物体的力。 约束力:约束施加于被约束物体的力。 约束力是被动力 约束力是被动力 确定约束力指向的原则: 确定约束力指向的原则: 约束力的方向总是与约束所能阻止物体的运动或 运动趋势方向相反。 运动趋势方向相反。
主矩: 主矩:MO=∑Mi= ∑MO(F i) ∑
与简化中心O无关 无关, 与简化中心O有关 1、FR与简化中心 无关,MO与简化中心 有关 2、合力=主矢+主矩 合力=主矢+ 简化结果讨论: 简化结果讨论: 1、FR=0,MO≠0,一个力偶 、 , , 2、FR ≠0,MO=0;一个力 、 , 一个力 3、 FR ≠0,MO≠0 、 进一步简化为作用于另一点的一个力 平面力偶系。与简化中心无关 平面力偶系。
( M B ) ⊥ = M B cos 45° = 1.76 N ⋅ m
( M B ) ∏ = M B sin 45° = 1.76 N ⋅ m
r M B∏ r r r r r r r r r r ( M B • FR ) FR [2.5i ⋅ 50(i + k )]50(i + k ) = = = 1.25(i + k ) r r r r 2 FR 50(i + k ) ⋅ 50(i + k )
第二章 空间力系的简化 物体的受力分析
第一节 空间力系的简化
一、等效力系的主矢与主矩
z z z 主矢,主矩
F1 M2
A1
F1
F2
M1
附加力偶 F'
R
A2
F2
0 An
M0 0
0 y x
y
Mn
Fn
x
y
x
Fn
O:简化中心
r r ′ FR = ΣFi 主矢: 主矢: r r r r 主矩: 主矩: M 0 = ΣM i = ΣM 0 ( Fi )
基本力系的简化结果: 基本力系的简化结果:
{
汇交力系—过汇交点的合力 汇交力系 过汇交点的合力
力偶系—合力偶 力偶系 合力偶
根据力的空间位置: 根据力的空间位置:
空间力系、 空间力系、平面力系
平面力系是空间力系的特殊情况
空间任意力系:力系中各力的作用线既不交于一点,又不相 空间任意力系:力系中各力的作用线既不交于一点, 互平行,也不处于同一平面内,而呈空间任意分布。 互平行,也不处于同一平面内,而呈空间任意分布。
r 以 FR 点积上式 ′
r F
R′
r ′ MO
r MA
r F
R′
r rAO′
O′
A
r r r r r r r r ′ ′ ′ M A ⋅ FR = ( M O′ + rO′A × FR′ ) ⋅ FR = M O′ ⋅ FR
主矢与主矩的点积也与简化中心的选择无关,称之为力 力 主矢与主矩的点积 系的第二不变量 由主矢与主矩的点积是否为零, 由主矢与主矩的点积是否为零,就可判定出简化的最终 是合力还是力螺旋。 是合力还是力螺旋。
平面任意力系不存在力螺旋
例1:曲杆OABCD的OB段与y轴重合,BC段与x轴平行,已知: : F1=F2=50 N,F3=100 N,F4=100 N,L1=100 mm,L2=75 mm。试求 力系简化的最终结果,并确定其位置。 解: 简化中心: 简化中心:B点
主矢: 主矢: F ′ = F = 50 N Rx 2
r r r r r r FR × M B 50(i + k ) × 2.5i r d= = = 0.025 j 2 FR 5000
中心轴位置:
r r 最后结果: 最后结果 FR 与 M B ∏ 组成的力螺旋。
例2:图示平面力系,已知:F1=F2=F3=F4=F,M=Fa,a为三 图示平面力系,已知: , , 为三 角形边长, 为简化中心,试求简化的最后结果, 角形边长,若以A为简化中心,试求简化的最后结果,并在图 中画出。 中画出。 解: 力系向A点简化 主矢: 主矢: FR′x = ∑ Fx