空间任意力系的简化结果分析

合集下载

理论力学L4-4 空间力系简化

理论力学L4-4 空间力系简化

c ) 一般主矢和主矩矢既不平行也不垂直 由共点矢量知,它们在同一平面内, 假设两矢量正向夹角为α。 ' FR 1) 将 M O分解为垂直于 ' ' ' 的 及平行于 F M R MO MO O " 的 MO , ' ' O M O 的大小: " FR ' MO M O M O sin
' b) 若主矢平行于主矩:FR // M o
O
MO
' 由一个力和一个力偶(且力 FR 垂直于力偶作用面)组成的
力系,称为力螺旋。 力和力偶都是基本力学量, 力螺旋不能再简化。
力偶矩矢与力矢同方向的称为右螺旋(力偶的转 向与力的方向符合右手关系);反之称左螺旋。 但一般主矢和主矩矢既不平行也不垂直。
§4-4 空间任意力系向一点简化
一、空间任意力系向一点简化 与平面任意力系向一点简化相似,空间任意力 系也是利用力的平移定理将各力平移到简化中 心 O 处,并附加矢量表示的空间力偶,则原力 系与空间汇交力系+空间力偶系等效。
MO m m1 n
F2 F’2
F’R
O
F’n
Fn
F’1 m2
F 又由于力偶矩矢是自由矢量,再将平行于 的 R '' 力偶矩矢 M o 平行移动与FR 重合,成为力螺旋。 一般情况下,空间力系简化结果是一个力螺旋。
约束类型
约束反力
数量
空 间 约 束 类 型 和 约 束 反 力
3
4
5 6
MO
F’R
对于空间汇交力系的合 ' 力FR :
O
' FR 等于该力系各力的矢量和, 称其为该力系的主矢; 对于空间力偶系的合力偶,其力偶矩矢 M O等于 各附加力偶矩的矢量和,也是力系中各力对点O 力矩矢的矢量和: MO mi mO ( Fi ) 称为该力系对简化中心O点的主矩。

理论力学(大学)课件8.1 空间任意力系向一点的简化及结果分析

理论力学(大学)课件8.1 空间任意力系向一点的简化及结果分析

空间任意力系及重心的计算
c. 简化为合力偶
⑤ FR′= 0, MO≠0
一个合力偶 与简化中心无关。 d. 平衡
⑥ FR′= 0, MO= 0
平衡
平面任意力系简化的最后结果
只能是合力、合力偶、平衡三种情况,不可能出现力螺旋。
1、空间任意力系向一点的简化 及结果分析
空间任意力系及重心的计算
中心轴过简化中心的力螺旋
力螺旋 由一个力和一个力偶组成的力系, 并且力垂直于力 偶的作用面。
MO O F'R
F'R O
右螺旋
F'R O
F'R O
MO
左螺旋
1、空间任意力系向一点的简化 及结果分析
空间任意力系及重心的计算
钻头钻孔时施加的力螺旋
1、空间任意力系向一点的简化 及结果分析
空间任意力系及重心的计算
å å å 方向 cos(FR¢ , i) =
Fix FR¢
cos(FR¢ , j) =
Fix FR¢
cos(FR¢ , k) =
Fiz FR¢
作用点: 一般令其作用于简化中心上
空间任意力系及重心的计算
空间力偶系的合力偶矩
å å MO = Mi = MO (Fi )
主矩
由力对点的矩与力对轴的矩的关系,有
1、空间任意力系向一点的简化 及结果分析
空间汇交力系与空间力偶系等效代替一空间任意力系.
空间任意力系及重心的计算
汇交力系的合力
FR¢ = å Fi = å Fxi + å Fy j + å Fzk
主矢
F1¢
M2
M1
FR¢ F2¢
Fn¢ M n

材料力学 第2章 力系简化

材料力学 第2章 力系简化

而合力的作用点即平行力系的中心:
n
xC
lim
n
Fi xi
i 1 n
l
q( x) xdx
0 l
lim
n
i 1
Fi
0 q(x)dx
分布力对点A之矩
分布力包围的面积
结论:分布力的合力的大小等于分布力载荷图的面积,合
力的作用线通过载荷图的形心。
2.2 物体的重心、质心和形心
例2-5 如图所示,已知q、l, 求分布力对A点之矩。
2.2 物体的重心、质心和形心
xC
ΣFi xi ΣFi
,yC
ΣFi yi ΣFi
,zC
ΣFi zi ΣFi
3、平行力系中心的性质
平行力系的中心位置只与各平行力的大小和作用点的 位置有关,与平行力的方向无关。
2.2 物体的重心、质心和形心
二、物体的重心、质心和形心
1、重心
n个小体积ΔVi
坐标xi、yi、zi
(2)实验测定方法 悬挂法
称重法
l
A
C
B
xC G
FNB
二力平衡 两次悬挂
2.2 物体的重心、质心和形心
三、分布力
工程上存在大量分布力的情况,通常需要确定这些分布力
的合力的大小及其合力作用线的位置。对于图示的线分布力,
可以视为由无穷个集中力所构成的平行力系,
其合力的大小:FR
l
q ( x)dx
0
FP1 450kN,FP2 200kN
F1 300kN ,F2 70kN
求:
(1)力系向点 O 简化的结果;
(2)力系简化的最终结果。
2.1 力系简化
解:(1)确定简化中心为O点

空间任意力系

空间任意力系

FC
最大载重Pmax是多少。
Q FB
P
D
解: 取起重机为研究对象
A
B,C
My(F)0, FAaco3s0Qa3co3s0Pclos0
MC'x(F)0,
a FA2
FBaQa2P(a2lsin)0
y C
x’
Fz 0, FAFBFCPQ0
A
ED
x

解得: FA=19.3kN, FB=57.3kN, FC=43.4kN
d O1
O
MO MO cos MO MO sin
d MO MO sin
FR
FR
一般情形下空间任意力系可合成为力螺旋
(4) 空间任意力系平衡的情形
● F′R=0,MO=0
2019/11/15
原力系平衡
内容回顾
空间力系的简化与合成
主矢
主矩
最后结果


FR′ = 0
MO = 0 MO≠0
§5-5 空间任意力系的平衡条件及其应用
1、平衡条件及平衡方程:
平衡条件:
由平衡力系定理可知,空间一般力系平衡的充要条件:力 系的主矢和对任一点的主矩都等于零,即:
平衡方程:
FR Fi 0
M O M O i 0
由主矢与主矩的计算式,有
F R (F x F x i )0 2 i, (F F yy ) i2 i0 ,(F F zz i )i2 0
② 空间任意力系的平衡条件及其应用;
2019/11/15
§5-4 空间任意力系的简化
1. 空间力线平移定理
作用于刚体的力 F 可等效地平移到刚体上的任一点O, 但须附加一力偶,此附加力偶矩 矢M 等于原力对平移点O 的力矩矢MO(F)。

空间任意力系的简化结果分析

空间任意力系的简化结果分析

FT
6 P 100 6
6N (拉力)
Mil1 0
FAx 4 FT1
4 20 20
FAx
30பைடு நூலகம்6

FT

2 100N 20
Mil2 0
FAx 4 FAy 2 0
FAy 2FAx 200 N
z

E FAz
2m
FAx
A

0时,空间力系为平衡力系

7
§3–2 空间力系的平衡
平衡力系所要满足的条件称为力系的平衡条件。
1.空间力系的平衡条件

任意空间力系平衡的充要条件是:力系的主矢 定点O的主矩 M O 全为零。
FR
和对任一确

n
FR Fi 0
i 1
n
(7.1)
M O M O (Fi ) 0
sin BC
42 32
0.8944
AB
42 32 2.52
cos 0.4472
sin CD
4
0.8
BC
42 32
cos BD
3
0.6
BC
42 32
z 4m
600
F2
F1
F3
x
Fx F sin cos 1500 0.8944 0.6 805N

3
主矢和主矩的计算
主矢—通过投影法
先计算得到主矢在 各轴上的投影
根据它们,可得到 主矢的大小和方向
n
FRx
Fxi
i 1
n
FRy

第二章力系的简化

第二章力系的简化

一、力的平移定理
M= MB(FA)=FA·a
FA
A B
FA
A
FB
a
B
FB´
M
A
FB
B
作用在刚体上的力,可以等效平移到刚体上任一指 定点,但必须在该力和指定点所确定的平面内附加一 力偶,附加力偶的力偶矩等于原力对指定点的矩。
注意:只有在研究力的运动效应时,力才能平行移动。
研究变形效应时一般是不能移动的。
FR MO O
FR FR
d
O
A
FR
d
O
A
主矢与主矩垂直,FR
FR M
可简化为一个合力
HOHAI UNIVERSITY ENGINEERING MECHANICS
(a) FR ⊥MO
表明FR与MO在同一平面,即共面
共面的力与力偶合成一个力。 FR
合力为F‘R,等于原力的合力FR
O
MO
作用线过新的简化中心
练习1:确定图示力系的合力大小及作用线位置。
z
4kN
6kN
2m
12kN 3m
y
Ox
x y FR Fy 0
Miy 0
Mix 0
解:
该力系为空间平行力 系,各力指向一致,可知 该力系简化为一个铅垂向 下的力。
FR 22kN
x 12 3 1.636m 22
y 6 2 0.545m 22
空间汇交力系
平面汇交力系
二、力偶系
平面力系
空间力系
HOHAI UNIVERSITY ENGINEERING MECHANICS
HOHAI UNIVERSITY ENGINEERING MECHANICS

静力学各知识点归纳

静力学各知识点归纳

力的作用点。

(在力的作用下,任意两静力学各知识点总结1. 静力学是研究物体在力系作用下的平衡规律的科学。

2. 力的三要素:(1)力的大小;(2)力的方向;(3)3. 力的效应:(1)外效应——改变物体运动状态的效应4.刚体:在外界任何作用下形状和大小都始终保持不变的物体。

点间的距离保持不变的物体)5.一个物体能否视为刚体,不仅取决于变形的大小,而且和问题本身的要求有关。

6.力:物体间相互的机械作用,这种作用使物体的机械运动状态发生变化。

7.力系:作用在物体上的一群力。

(同一物体)8.如果一个力系作用于物体的效果与另一个力系作用于该物体的效果相同,这两个力系 互为等效力系。

9.不受外力作用的物体可称其为受零力系作用。

一个力系如果与零力系作用等效,则该力系称为平衡力系。

10. 力应以矢量表示。

用 F 表示力矢量,用 F 表示力的大小。

在国际单位制中,力的单位是N 或Kn 。

(2)内效应一一引起物体形变的效应第一章•静力学公理F R = F I +F 2公理1:力的平行四边形法则作用在物体上同一点的两个力,可以合成为一个合力。

合力的作用点也在该点,合力的大小和方向,由这两个力为边构成的平行四边形的对角线确定。

公理2 :二力平衡条件作用在刚体上的两个力,使刚体保持平衡的必要和充分条件是:这两个力的大小相 等,方向相反,且作用在同一直线上。

公理3 :加减平衡力系原则在已知力系上加上或减去任意的平衡力系,与原力系对刚体的作用等效。

推理1 :作用于刚体上某点的力,可以沿着它的作用线移到刚体内任意一点,并不改变该推理2 :三力平衡汇交定理作用于刚体上三个相互平衡的力,若其中两个力的作用线汇交于一点,则此三力必在同一平面内,且第三个力的作用线通过汇交点。

4.线,5. 柔索类约束:绳索对物体的约束力,作用在接触点, ,沿着同一直线,公理4 :作用力与反作用力总是同时存在,两力的大小相等、方向相反、分别作用在两个相互作用的物体上。

4任意力系的简化

4任意力系的简化
这个力偶是力系的主矩,等于各力对该点之矩的矢量和。 主矢的大小、方向与简化中心无关。 主矩的大小、方向与简化中心有关。
Theoretical Mechanics
返回首页
任意力系的简化
3 力系的简化结果分析
1.力系简化为合力偶M
F'R = 0,MO≠0 力偶矩M = MO = ∑MO(Fi) 其大小、方向与简化中心无关
由此可知:对于沿直线分布的垂直分布载荷来说,其合力
的大小等于分布载荷图形的面积,合力作用线则通过该图形的
形心。
Theoretical Mechanics
返回首页
平行力系与重心
1 平行力系的简化 ·平行力系的中 心
例 :求图示分布载荷的合力及对A点之矩。
解:将分布载荷图形分成两个三 角形,每个三角形载荷合力大小 分别为 1 1
2 力系向一点简化· 主矢和主矩

n

n
MO


称为该力系的主矢 MO称为该力系对简化中心O的主矩。
FR
Theoretical Mechanics
返回首页
任意力系的简化
2 力系向一点简化· 主矢和主矩


任意力系向一点简化的结果为作用于该点的一个力和一
个力偶。这个力是力系的主矢,等于力系中各力的矢量和,
任意力系的简化
1 力的平移定理
力的平移定理
FR FR FR
FR
M
, FR ) (FR )O ( FR
Theoretical Mechanics
FR
+ M
返回首页
任意力系的简化
结 论
力的平移定理:作用于刚体上的力F ,可以平移 至同一刚体的任一点O ,但必须增加一个附加力偶, 附加力偶的力偶矩等于原力F对于平移点O之矩,即
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间任意力系的简化是力学分析中的重要环节,其结果直接影响对物体受力状态的理解。简化过程主要是将每个力ቤተ መጻሕፍቲ ባይዱ简化中心平移,得到一个主矢和一个主矩。主矢是各力矢量和,与简化中心位置无关,可通过投影法计算其在各轴上的投影,进而确定大小和方向。主矩则是各力对简化中心的力矩矢量和,与简化中心位置密切相关。根据主矢和主矩的不同情况,空间任意力系的简化结果可分为四种形式:合力、合力偶、力螺旋和平衡力系。当主矢不为零且主矩为零时,结果为合力,作用点过简化中心;当主矢为零且主矩不为零时,结果为合力偶;当主矢和主矩均不为零且平行时,形成力螺旋;而当主矢和主矩均为零时,力系达到平衡状态。平衡力系满足的条件是力系的主矢和对任一确定点的主矩全为零,这提供了判断空间力系是否平衡的依据。
相关文档
最新文档