七年级上册三视图与展开练习
广东省数学七年级上学期期末复习专题11 图形的三视图

广东省数学七年级上学期期末复习专题11 图形的三视图姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)如图是某几何体的三视图及相关数据,则该几何体的侧面积是()A . abπB .C . acπD .2. (2分)一个立体图形的三视图如图所示,根据图中数据求得这个立体图形的的表面积为()A . 2πB . 6πC . 7πD . 8π3. (2分)如图,是某几何体的三视图及相关数据,则判断正确的是()A . a>cB . b>cC . 4a2+b2=c2D . a2+b2=c24. (2分)(2017·红桥模拟) 如图是由一些完全相同的小正方体搭成的几何体的主视图和左视图,组成这个几何体的小正方体的个数最少是()A . 5个B . 6个C . 7个D . 8个5. (2分)(2017·历下模拟) 某几何体的主视图、左视图和俯视图分别如图所示,则该几何体的体积为()A . 3πB . 2πC . πD . 126. (2分) (2018七上·宿州期末) 用4个棱长为1的正方体搭成一个几何模型,其从正面、左面看到的图形如图所示,则该几何体从上面看到的图形不可能为()A .B .C .D .7. (2分)(2020·龙海模拟) 一个几何体的三视图如图所示,则这个几何体是()A .B .C .D .8. (2分)如图所示,该几何体的主视图是()A .B .C .D .9. (2分) (2018七上·宁城期末) 下列四个几何体中,从上面看得到的平面图形是四边形的是()A .B .C .D .10. (2分) (2018九上·合浦期末) 某几何体的三视图如图,则该几何体是()A . 圆柱B . 圆锥C . 球D . 长方体二、填空题 (共8题;共8分)11. (1分) (2017九上·鸡西期末) 由一些完全相同的小正方体组成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数可能是________.12. (1分)由一些大小相同的小正方体搭成的几何体的主视图和俯视图,如图所示,则搭成该几何体的小正方体最多是________个.13. (1分) (2021七上·溧水期末) 一个几何体的三个视图如图所示,这个几何体是________.14. (1分)(2019·福州模拟) 若某几何体从某个方向观察得到的视图是正方形,则这个几何体可以是________.15. (1分)(2016·江西模拟) 如图是某几何体的三视图,根据图中数据,求得该几何体的体积为________.16. (1分)如图是由几块相同的小正方体搭成的立体图形的三视图,则这个立体图形中小正方体共有________ 块.17. (1分)(2021·临清模拟) 如图是一个几何体的三视图,根据图中所示数据计算这个几何体的表面积是________.18. (1分) (2020七上·肃州期末) 几个相同的正方体叠合在一起,该组合体的主视图和俯视图如右图所示,那么组合体中正方体的个数至多有________个.三、解答题 (共8题;共69分)19. (5分)已知一个几何体的三视图和有关的尺寸如图所示,请写出该几何体的名称,并根据图中所给的数据求出它的表面积和体积.20. (5分)如图1是一种包装盒的表面展开图,将它围起来可得到一个几何体的模型.(1)请说出这个几何体模型的最确切的名称是?(2)如图2是根据 a,h的取值画出的几何体的主视图和俯视图(图中的粗实线表示的正方形(中间一条虚线)和粗实线表示的三角形),请在网格中画出该几何体的左视图.(3)在(2)的条件下,已知h=20cm,求该几何体的表面积.21. (5分)如图所示的是某个几何体的三视图.(1)说出这个立体图形的名称;(2)根据图中的有关数据,求这个几何体的表面积.22. (5分)如图是一个几何体的三视图:(1)请写出这个几何体的名称.(2)求这个几何体的侧面积.23. (15分)几何体的三视图相互关联.已知直三棱柱的三视图如图,在△PMN中,∠MPN=90°,PN=4,sin∠PMN=.(1)求BC及FG的长;(2)若主视图与左视图两矩形相似,求AB的长;(3)在(2)的情况下,求直三棱柱的表面积.24. (15分) (2018七上·碑林月考) 如图是一个正方体盒子的展开图,若展开图折成正方体后相对面上的两个数互为相反数.(1)分别求出x、y、z的值,(2)求的倒数,25. (10分) (2020九上·路南期末) 如图,是由两个长方体组合而成的一个立体图形的主视图和左视图,根据图中所标尺寸(单位: mm).(1)直接写出上下两个长方休的长、宽、商分别是多少:(2)求这个立体图形的体积.26. (9分) (2019七上·枣庄期中) 如图,这是某个几何体从三个不同方向所看到的图形.(1)说出这个立体图形的名称;(2)根据图中的有关数据,求这个几何体的侧面积.参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共8题;共8分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:三、解答题 (共8题;共69分)答案:19-1、考点:解析:答案:20-1、考点:解析:答案:21-1、考点:解析:答案:22-1、考点:解析:答案:23-1、答案:23-2、答案:23-3、考点:解析:答案:24-1、答案:24-2、考点:解析:答案:25-1、答案:25-2、考点:解析:答案:26-1、答案:26-2、考点:解析:。
苏科版七年级上册数学《图形展开、折叠与三视图》专题练习(含)

初中数学试卷金戈铁骑整理制作《图形睁开、折叠与三视图》专题练习(时间: 90 分钟满分:100分)一、选择题(每题 3 分,共 30 分)1.将一个正方体沿某些棱睁开后,可以获得的平面图形是()2.如图,从一个斜插吸管的盒装饮料的正面看到的图形是()3.图中几何体的主视图是()4.以下图是某一几何体的三视图,则这个几何体是()A .长方体B.圆锥C.圆柱 D .三棱柱5.一个正方体的每个面都有一个汉字,其平面睁开图以下图,那么在该正方体中和“毒”字相对的字是()A .卫B.防C.讲D.生6.在五棱柱、圆柱、圆锥和正方体这四个几何体中,侧面睁开图是长方形的有() A.1个B.2个C.3个D.4个7.以下图是一个物体的俯视图,它所对应的物体是()8.以下图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该位置上小立方块的个数,则这个几何体的左视图为()9.一个圆柱形钢块,从正中间挖去了一个长方体孔,其俯视图以下图,则此圆柱钢块的左视图是()10.以下图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是()A .5B. 6C. 7D. 8二、填空题(每题 3 分,共 24 分)11.桌面上放着一个三棱锥和一个圆柱(以下图),在下列图中填上它的视图的名称.12.一个几何体的三视图是两个相同大小的长方形和一个直径等于长方形一边长的圆,这个几何体是 _______.13.当下边这个图形被折起来构成一个正方体时,数字_______会在与数字 2 所在的平面相对的平面上.14.如图是一个由六个小正方体组合而成的几何体,每个小正方体的六个面上都分别写着- 1, 2, 3,- 4, 5,- 6 六个数字,那么图中全部看不见的面上的数字和是_______.15.在一个库房里堆放有若干个相同的正方体货箱,库房管理员画出的这堆货箱的主视图和左视图都如图,则这堆货箱至多有_______.16.以下图是由四个相同小立方块构成的立体图形的主视图和左视图,那么原立体图形可能是 ______.(把下列图中正确的立体图形的序号都填在横线上)17.以下图是一个正方体的睁开图,假如正方体相对的面上标明的值相等,那么x=_______ , y= _______.18.以下图是由一些大小相同的小正方体构成的几何体的主视图和俯视图,则构成这个几何体的小正方体最多块数是_______.三、解答题(共46 分)19.( 6 分)两个物体叠成以下图的几何体,请画出它的三视图.20.(6 分)如图是一个立体图形的三视图,请写出这个立体图形的名称,并计算这个立体图形的体积.(结果保存π)21.( 7 分)请你依据下列图中的三视图,想象物体的形状,画出这个物体的立体图,并数一数有多少个小立方块.22.( 7 分)如图,在正方体能看到的面上写上数1、 2、3,而在两种睁开的图中也已分别写上了两个和一个指定的数.请你在睁开图的其余各面上写上适合的数,使得相对的面上两数之和等于 7.23.( 10 分)以下图是一个食品包装盒的侧面睁开图.(1)请写出这个包装盒的多面体的名称;(2)请依据图中所标的尺寸,计算这个多面体的侧面积.24.( 10 分) (1)一个透明的玻璃正方体内镶嵌了一条铁丝(如图①所示的粗线),请指出右侧的两个图分别是从正方体的哪个方向看到的视图;(2)如图②,粗线表示嵌在玻璃正方体内的铁丝,请画出该正方体的主视图、左视图和俯视图.参照答案一、 1.C 二、 11.左2. A 俯3.B 4. A 主 12.圆柱 5. B13. 56.C7. A14.- 13 8.A15. 109.C 10.B16.①②④17. 4618. 11三、 19.该几何体的三视图以下:20.该立体图形为圆柱.体积为 250 21. 9 或 10. 22.如图:23. (1) 这个多面体是六棱柱. (2)这个多面体的侧面由 6 个长为 a ,宽为 b 的长方形构成,所以它的侧面积为6ab. 24.(1) 分别是从上边和正面看到的视图.(2)三视图以下:。
新人教版七年级几何图形初步练习专题(一)---三视图、展开图专题

三视图、展开图专题【题型一】从不同方向看几何体1、如图所示的立体图形从上面看到的图形是( )2、从左面看图中四个几何体,得到的图形是四边形的几何体共有( ) A. 1个 B. 2个 C. 3个 D. 4个3、从不同方向看一只茶壶,如图,下列选项中从上往下看的效果图是( )。
4、从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是( )。
A. 圆柱B. 三棱锥C. 球D. 圆锥5、由四个相同的小正方体搭建了一个积木,它的左视图和主视图均如图所示,则这堆积木不可能是( )6、由7个大小相同的正方体搭成的几何体如图所示,则关于它的视图说法正确的是( )A . 从正面看面积最大B . 从左面看面积最大C . 从上面看面积最大D . 三个视图的面积一样大AB CD从左面看 从上面看从正面看ABC D7、5个棱长为1的正方体组成图所示的几何体.(1)该几何体的体积是 (立方单位),表面积是 (平方单位). (2)画出从正面看和从左面看到的平面图形.8、如图,这个图形从正面看是__________,从左面看是__________,从上面看是__________.【题型二】正方体的展开与折叠1、如图是一个长方体包装盒,则它的平面展开图是( )A .B .C .D .2、下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方形包装盒的是( )A .B .C .D .3、把如图中的三棱柱展开,所得到的展开图是( )A .B .C .D .4、下列四个图形中,是三棱柱的平面展开图的是( )A .B .C .D .5、小明为了鼓励芦山地震灾区的学生早日走出阴影,好好学习,制作了一个正方体礼盒(如1 2 3x y图).礼盒每个面上各有一个字,连起来组成“芦山学子加油”,其中“芦”的对面是“学”,“加”的对面是“油”,则它的平面展开图可能是( ).A. B. C. D6、一个正方体的平面展开图如图所示,将它折成正方体后,与汉字“岳”相对的面上的汉字是( ) A .建 B .设C .和D .谐7、如图是一个正方体展开图,把展开图折叠成正方体后,“你”字一面相对面上的字是( )A .我B .中C .国D .梦月8、一个正方体礼品盒,其对面图案都相同,那么这个正方体的平面展开图可能是( )9、下面四个图形中,经过折叠能围成如图所示的几何图形的是【 】10、若要使图中平面展开图按折叠成正方体后,相对面上两个数之和为6,x=_ ___, y=______.A。
北师大版七年级上册数学各章节知识点总结及经典练习题.

北师大版七年级上册数学各章节知识点总结第一章丰富的图形世界1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
2、点、线、面、体(1几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2点动成线,线动成面,面动成体。
3、生活中的立体图形圆柱柱生活中的立体图形球棱柱:三棱柱、四棱柱(长方体、正方体、五棱柱、……(按名称分锥圆锥棱锥4、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共(n+2个面;3n条棱,n条侧棱;2n个顶点。
5、正方体的平面展开图:11种6、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。
7、三视图物体的三视图指主视图、俯视图、左视图。
主视图:从正面看到的图,叫做主视图。
左视图:从左面看到的图,叫做左视图。
俯视图:从上面看到的图,叫做俯视图。
8、多边形:由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形,叫做多边形。
从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个n边形分割成(n-2个三角形。
弧:圆上A、B两点之间的部分叫做弧。
扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。
练习1.如图,是一个几何体的主视图、左视图和俯视图,则这个几何体是(2.下列各个平面图形中,属于圆锥的表面展开图的是((A(B(C(D3.如图是由一些相同的小正方体构成的立体图形的三种视图:构成这个立体图形的小正方体的个数是(.A.5B. 6C.7D.84.下面每个图形都是由6个全等的正方形组成的,其中是正方体的展开图的是(A BCD5.某同学的茶杯是圆柱形,如图是茶杯的立体图,左边下方有一只蚂蚁,从A 处爬行到对面的中点B 处,如果蚂蚁爬行路线最短,请画出这条最短路线图.解:如图,将圆柱的侧面展开成一个长方形,如图示,则A 、B 分别位于如图所示的位置,连接AB ,即是这条最短路线图.B BA A问题:某正方体盒子,如图左边下方A 处有一只蚂蚁,从A 处爬行到侧棱GF 上的中点M 点处,如果蚂蚁爬行路线最短,请画出这条最短路线图.(6分第二章有理数及其运算1、有理数的分类正有理数有理数零有限小数和无限循环小数负有理数或整数有理数分数2、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可。
七年级数学上册知识点汇总(含答案)

七年级数学上册知识点汇总只有非常努力,才能看起来毫不费力,相信自己,一定行!一、丰富的图形世界1.三视图:⭐⭐(重点)①常见图形的三视图(圆柱、圆锥等);②画三视图③通过三视图求表面积或体积2.展开图⭐⭐(重点)①正方体常规展开图(11种);②圆锥、圆柱、三棱柱等常见图形展开图;③正方体找对面题型;3.通过三视图求正方体个数问题.【经典例题】1.如图,左面的平面图形绕轴旋转一周,可以得到的立体图形是()A.B.C.D.选:C.2.如图所示正方体的展开图的是()A.B.C.D.选:A.3.把图1所示的正方体的展开图围成正方体(文字露在外面),再将这个正方体按照图2,依次翻滚到第1格,第2格,第3格,第4格,此时正方体朝上一面的文字为()A.富B.强C.文D.民选:A.4.用一个平面去截一个几何体,如果截面的形状是圆,则来的几何体可能是()A.正方体B.三棱柱C.四棱锥D.球选:D.5.下面四个几何体中,从左面看到的图形是四边形的几何体共有几个?()A.1个B.2个C.3个D.4个选:B.6.有若干个完全相同的小正方体堆成一个如图所示几何体,若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加小正方体的个数为()A.2 B.3 C.4 D.5选:C.7.如图是一个几何体从三个方向看所得到的形状图.(1)写出这个几何体的名称;(2)画出它的一种表面展开图;(3)若从正面看的高为3cm,从上面看三角形的边长都为2cm,求这个几何体的侧面积.【解答】解:(1)几何体的名称是正三棱柱;(2)表面展开图为:(3)3×6=18cm2,∴这个几何体的侧面积为18cm2二、 有理数(期中考试重点章节⭐⭐⭐)1. 概念① 有理数分类:整数和分数 ② “四非”:非负整数:正整数+0; 非负数:正数+0 非正整数:负整数+0; 非正数:负数+02. 相反数:a+b=0;a 的相反数为-a3. ⭐⭐⭐(重点)数轴:原点、正方向和单位长度的直线; 作用:比较大小,右边的数>左边的数数轴上两点之间的距离:①大-小;②|a-b|(不知道a 、b 大小)数轴上中点公式:a+b 2;4. 倒数:ab=1;倒数等于它本身的数:±1;绝对值等于它本身的数:正数+0;相反数等于它本身的数:0.5. ⭐⭐⭐(重点) 绝对值① |a |: 数a 对应的点到原点的距离;|a −b |:数a 所对的点到数b 的点的距离;② ,00,0,0a a a a a a >⎧⎪==⎨⎪-<⎩;|正数+0|=本身,|负数+0|=相反数③ 性质:非负性:0+0模型 6. 科学计数法:a ×10n ;(1≤|a |<10)7. 去括号:减变加不变,即()a b b a --=-;()a b a b -+=--8. ①常规计算:先乘方;再乘除;后加减;有括号先算括号里面的.(符号要细心,计算是王道!) ②有理数巧算:裂项相消法(必考)、错位相减法(易错);倒序相加法(等差数列求和) 9. 应用题:行程问题;股票问题;水位问题等;(括号里面的“+”、“-”所代表的意义很重要) 10. 动点问题:化动为静(思维很重要,注意分步得分)【数轴基本性质(唯一性和右边大于左边)】例1. 若数a ,b ,c 在数轴上的对应点如图所示,则下列各式正确的有( )①a +b >0; ②b ﹣c <0; ③>0; ④abc >0. A .1个 B .2个 C .3个 D .4个答案:A【中点公式(折叠、对称)】中点公式:2a b例2. 根据给出的数轴及已知条件,解答下面的问题:(1)已知点A ,B ,C 表示的数分别为1,﹣,﹣3观察数轴,与点A 的距离为3的点表示的数是 ,B ,C 两点之间的距离为 ;(2)若将数轴折叠,使得A 点与C 点重合,则与B 点重合的点表示的数是 ;若此数轴上M ,N 两点之间的距离为2015(M 在N 的左侧),且当A 点与C 点重合时,M 点与N 点也恰好重合,则M ,N 两点表示的数分别是:M ,N ;(3)若数轴上P ,Q 两点间的距离为m (P 在Q 左侧),表示数n 的点到P ,Q 两点的距离相等,则将数轴折叠,使得P 点与Q 点重合时,P ,Q 两点表示的数分别为:P ,Q (用含m ,n 的式子表示这两个数)【解答】解:(1)点A 的距离为3的点表示的数是1+3=4或1﹣3=﹣2; B ,C 两点之间的距离为﹣﹣(﹣3)=;(2)B 点重合的点表示的数是:﹣1+[﹣1﹣(﹣)]=; M =﹣1﹣=﹣1008.5,n =﹣1+=1006.5;(3)P =n ﹣,Q =n +.故答案为:4或﹣2,;,﹣1008.5,1006.5;n ﹣,n +.【非负数和为零(0+0模型)】例3.若|a ﹣3|与|b +4|互为相反数,则a ﹣b = ;若|a +1|+(b ﹣2)2=0,则(a +b )2015+a 2016= .答案为:7;2.【直接给定范围的绝对值化简】例4. 若a <0,b >0,化简|a |+|3b |﹣|a ﹣2b |得( )A .bB .5b ﹣2aC .﹣5bD .2a +b【解答】解:∵a <0,b >0, ∴a ﹣2b <0, ∴|a |+|3b |﹣|a ﹣2b | =﹣a +3b +a ﹣2b=b.故选:A.【与数轴相结合的绝对值化简】步骤:(1)判断>0,<0;(2)取绝对值符号:正数的绝对值是它本身;负数的绝对值是它的相反数;例5.有理数a、b、c在数轴上的位置如图.(1)判断正负,用“<”或“>”填空:c﹣b0 a﹣b0 a+c0 (2)化简:|c﹣b|+|a﹣b|﹣|a+c|【解答】解:由数轴知:a<0,b>0,c>0且a<b<c、|a|<|c|,(1)c﹣b>0;a﹣b<0;a+c>0;(2)原式=c﹣b﹣(a﹣b)﹣(a+c)=c﹣b﹣a+b﹣a﹣c=﹣2a.【绝对值与自身商为±1的分类讨论问题】例6.直接写出答案若a>0,则=;若a<0,则=;思考:①若a、b为有理数,且ab≠0,则=;②若a、b、c为有理数,abc<0,则=;【解答】解:∵a>0,∴==1;∵a<0,∴==﹣1.①若a、b为有理数,且ab≠0,当a,b是一正一负时,则=0;当a,b是两正时,则=2;当a,b是两负时,则=﹣2;②若a 、b 、c 为有理数,abc <0, 当a ,b ,c 中有一个负数时,=1; 当a ,b ,c 中有三个负数时,=﹣3.【最值问题(零点分段法和几何法)】1.a 表示数轴上数a 对应的点与原点的距离;2.a b -表示数轴上数a 、数b 所对应的的两点之间的距离;3.a b +(即()a b --)表示数轴上数a 、数-b 所对应的的两点之间的距离.例7.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是 ;表示﹣3和2两点之间的距离是 ;一般地,数轴上表示数m 和数n 的两点之间的距离等于|m ﹣n |.如果表示数a 和﹣1的两点之间的距离是3,那么a = .(2)若数轴上表示数a 的点位于﹣4与2之间,则|a +4|+|a ﹣2|的值为 ;(3)利用数轴找出所有符合条件的整数点x ,使得|x +2|+|x ﹣5|=7,这些点表示的数的和是 .(4)当a = 时,|a +3|+|a ﹣1|+|a ﹣4|的值最小,最小值是 .【解答】解:(1)|1﹣4|=3, |﹣3﹣2|=5, |a ﹣(﹣1)|=3,所以,a +1=3或a +1=﹣3, 解得a =﹣4或a =2;(2)∵表示数a 的点位于﹣4与2之间, ∴a +4>0,a ﹣2<0,∴|a +4|+|a ﹣2|=(a +4)+[﹣(a ﹣2)]=a +4﹣a +2=6;(3)使得|x +2|+|x ﹣5|=7的整数点有﹣2,﹣1,0,1,2,3,4,5, ﹣2﹣1+0+1+2+3+4+5=12. 故这些点表示的数的和是12;(4)a=1有最小值,最小值=|1+3|+|1﹣1|+|1﹣4|=4+0+3=7.故答案为:3,5,﹣4或2;6;12;1;7.【有理数巧算——倒序相加、裂项相消】例8.已知a,b是有理数,且(a﹣1)2+|b﹣2|=0,求:+++……+的值.【解答】解:∵(a﹣1)2+|b﹣2|=0,∴a=1,b=2,∴+++……+=+++……+=1﹣+﹣+﹣+……+﹣=1﹣=.例2.请你观察:=﹣,=﹣;=﹣;…+=﹣+﹣=1﹣=;++=﹣+﹣+﹣=1﹣=;…以上方法称为“裂项相消求和法”请类比完成:(1)+++=;(2)++++…+=.(3)计算:++++的值.【分析】(1)将已知等式相加后两两相消可得;(2)根据=﹣裂项相消可得;(3)根据=﹣裂项相消可得.【解答】解:(1)原式=﹣+﹣+﹣+﹣=1﹣=(2)原式=﹣+﹣+﹣+﹣+…+﹣=1﹣=,(3)原式=(1﹣)+(﹣)+(﹣)+(﹣)+(﹣)=(1﹣+﹣+﹣+﹣+﹣)=×(1﹣)=×=.【有理数的应用】例9. 我市股民老王第一周买进某公司股票1000股,每股27元,下表为第二周内每日该股的涨跌情况(星期六、日股市休市)(正号表示股票价格比前一天上涨,符号表示股票价格比前一天下跌,单位:元)星期一二三四五每股涨跌+4+4.5﹣1﹣2.5﹣6(1)星期三收盘时,每股是多少元?(2)本周每每股最高价多少元?最低价是多少元?(3)已知老王买进购票时付了1‰的手续费,卖出时还需付总金额1‰的手续费和1‰的交易税,如果老王在星期五收盘前将全部购票卖出,他的收益情况如何?(注:1‰=)【解答】解:(1)星期三收盘时,每股是34.5元;(2)本周内最高价是35.5元,最低价是26元;(3)在星期五按收盘价将全部股票卖出,他的收益为:1000×26﹣1000×26×(1‰+1‰)﹣1000×27﹣1000×27×1‰=26000﹣52﹣27000﹣27=﹣1079(元).例10. 足球训练中,为了训练球员快速抢断转身,教练设计了折返跑训练.教练在东西方向的足球场上画了一条直线插上不同的折返旗帜,如果约定向西为正,向东为负,练习一组的行驶记录如下(单位:米):+40,﹣30,+50,﹣25,+25,﹣30,+15,﹣28,+16,﹣18.(1)球员最后到达的地方在出发点的哪个方向?距出发点多远?(2)球员训练过程中,最远处离出发点多远?(3)球员在一组练习过程中,跑了多少米?【解答】解:(1)(+40)+(﹣30)+(+50)+(﹣25)+(+25)+(﹣30)+(+15)+(﹣28)+(+16)+(﹣18)=+15(米);答:球员最后到达的地方在出发点的正西方向,距出发点15m;(2)第一段,40m,第二段,40﹣30=10m,第三段,10+50=60m,第四段,60﹣25=35m,第五段,35+25=60m,第六段,60﹣30=30m,第七段,30+15=45m,第八段,45﹣28=17m,第九段,17+16=33m,第十段,33﹣18=15m,∴在最远处离出发点60m;(3)∵|+40|+|﹣30|+|+50|+|﹣25|+|+25|+|﹣30|+|+15|+|﹣28|+|+16|+|﹣18|=277(米),答:球员在一组练习过程中,跑了277米.例11. 某食品厂从生产的袋装食品中抽出样品10袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:与标准质量的差值(单位:g)﹣5﹣20136袋数1袋2袋3袋2袋1袋1袋(1)这批样品的平均质量比标准质量多还是少?多或少几克?(2)若每袋标准质量为20克,则这10袋食品的总质量是多少?【解答】解:(1)由表格可得,(﹣5)×1+(﹣2)×2+0×3+1×2+3×1+6×1=2(克),即这批样品的平均质量比标准质量多,多2克;(2)10×20+2=20+2=202(克),即若每袋标准质量为20克,则这10袋食品的总质量是202克.【动点问题】例12.已知a是最大的负整数,b是﹣5的相反数,c=﹣|﹣2|,且a、b、c分别是点A、B、C在数轴上对应的数.(1)求a、b、c的值,并在数轴上标出点A、B、C.(2)若动点P从点A出发沿数轴正方向运动,动点Q同时从点B出发也沿数轴正方向运动,点P的速度是每秒3个单位长度,点Q的速度是每秒1个单位长度,求运动几秒后,点P可以追上点Q?(3)在数轴上找一点M,使点M到A、B、C三点的距离之和等于12,请求出所有点M 对应的数.【解答】解:(1)a是最大的负整数,即a=﹣1;b是﹣5的相反数,即b=5,c=﹣|﹣2|=﹣2,所以点A、B、C在数轴上位置如图所示:(2)设运动t秒后,点P可以追上点Q,则点P表示数﹣1+3t,点Q表示5+t,依题意得:﹣1+3t=5+t,解得:t=3.答:运动3秒后,点P可以追上点Q;(3)存在点M,使M到A、B、C三点的距离之和等于12,当M在C点左侧,则M对应的数是:﹣3;当M在AB之间,则M对应的数是4.故使点M到A、B、C三点的距离之和等于12,点M对应的数是﹣3或4.例13. 已知a是最大的负整数,b是多项式2m2n﹣m3n2﹣m﹣2的次数,c是单项式﹣2xy2的系数,且a、b、c分别是点A、B、C在数轴上对应的数.(1)求a、b、c的值,并在数轴上标出点A、B、C.(2)若动点P、Q同时从A、B出发沿数轴负方向运动,点P的速度是每秒个单位长度,点Q的速度是每秒2个单位长度,求运动几秒后,点Q可以追上点P?(3)在数轴上找一点M,使点M到A、B、C三点的距离之和等于10,请直接写出所有点M对应的数.(不必说明理由).【解答】解:(1)∵a是最大的负整数,∴a=﹣1,∵b是多项式2m2n﹣m3n2﹣m﹣2的次数,∴b=3+2=5,∵c是单项式﹣2xy2的系数,∴c=﹣2,如图所示:评分细则:描对一个点或两个点均不给分.(2)∵动点P、Q同时从A、B出发沿数轴负方向运动,点P的速度是每秒个单位长度,点Q的速度是每秒2个单位长度,∴AB=6,两点速度差为:2﹣,∴=4,答:运动4秒后,点Q可以追上点P.(3)存在点M,使P到A、B、C的距离和等于10,当M在AB之间,则M对应的数是2,当M在C点左侧,则M对应的数是:(只写对一个给1分).三、整式1.代数式的书写2.列代数式3.整式:单项式+多项式(次数、系数、项要非常清晰; )4.同类项(要求:①相同字母,②相同字母指数相同)合并同类项;5.①常规代数式化简求值(注意格式)②整体法代数式求值(必考⭐⭐⭐)③赋值法(特殊值±1,0)6.不含某项、与x无关等题型;①合并同类项;②系数和为0;7.找规律及新定义运算考点一:代数式的书写1. 下列代数式书写正确的是()A.a48B.x÷y C.a(x+y)D.112abc选:C.考点二:列代数式2.若x 表示一个两位数,y 也表示一个两位数,小明想用x 、y 来组成一个四位数,且把x 放在y 的右边,你认为下列表达式中正确的是( )A .100y +xB .100x +yC .x +yD .yx选:A .考点三:整式概念3. 在代数式a π、3xy 、b a 、−xy 3、−14中,整式的个数是( ) A .3B .4C .5D .6 【解答】解:a π、3xy 、−xy 3、−14是整式,选:B . 考点四:单项式(系数,指数,次数)4. 下列说法正确的是( )A .10不是单项式B .−abc 2的系数是﹣1 C .xy 2的系数是0,次数是﹣2 D .−23x 2y 的系数是−23,次数是3【解答】解:A .10是单项式,此选项错误;B .−abc 2的系数是−12,此选项错误;C .xy 2的系数是1,次数是3,此选项错误;D .−23x 2y 的系数是−23,次数是3,此选项正确;故选:D .5. 若关于x ,y 的单项式﹣x m y n﹣1与mx 2y 3的和仍是单项式,则m ﹣2n 的值为( ) A .0 B .﹣2 C .﹣4D .﹣6 【解答】解:由题意可知:﹣x m y n﹣1与mx 2y 3是同类项,∴m =2,n ﹣1=3,∴m =2,n =4,∴m ﹣2n =2﹣8=﹣6,故选:D . 考点五:多项式(看“+,-”,几次几项式,零次项)6. 多项式15x 2y |m|−(m +1)y +17是关于x ,y 的三次二项式,则m 的值是 ﹣1 . 【解答】解:∵多项式15x 2y |m|−(m +1)y +17是关于x ,y 的三次二项式,∴|m |+2=3,m +1=0,解得:m =﹣1.故答案为:﹣1.7. 已知关于x ,y 的多项式x 4+(m +2)x n y ﹣xy 2+3,其中n 为正整数.当m ,n 为 n =4,m ≠﹣2 时,它是五次四项式.【解答】解:∵多项式x 4+(m +2)x n y ﹣xy 2+3是五次四项式,∴n +1=5,m +2≠0,解得,n =4,m ≠﹣2,故答案为:n =4,m ≠﹣2.8. 要使关于x ,y 的多项式my 3+3nx 2y +2y 3﹣x 2y +y 不含三次项,求2m +3n 的值.【解答】解:∵多项式my 3+3nx 2y +2y 3﹣x 2y +y =(m +2)y 3+(3n ﹣1)x 2y +y 不含三次项,∴m +2=0,3n ﹣1=0,∴m =﹣2,n =13,∴2m +3n =2×(﹣2)+3×13=−3. 考点六:同类项(要求:①相同字母,②相同字母指数相同,合并同类项)9. 若a m +4b 与23a 2m+2b n+3是同类项,那么m +n = . 答案是:0.10.若25x 5m +2n +2y 3与−34x 6y 3m﹣2n ﹣1的差是一个单项式,则m = .答案为:1.11.去括号,并合并同类项:(1)(3a +1.5b )﹣(7a ﹣2b )(2)(8xy ﹣x 2+y 2)﹣4(x 2﹣y 2+2xy ﹣3)【解答】解:(1)(3a +1.5b )﹣(7a ﹣2b )=3a +1.5b ﹣7a +2b =﹣4a +3.5b ;(2)(8xy ﹣x 2+y 2)﹣4(x 2﹣y 2+2xy ﹣3)=8xy ﹣x 2+y 2﹣4x 2+4y 2﹣8xy +12=﹣5x 2+5y 2+12;考点七:整式加减类型一、整式加减的基础应用12.两个多项式A 和B ,A =▄▄▄,B =x 2+4x +4.A ﹣B =3x 2﹣4x ﹣20.其中A 被墨水污染了.(1)求多项式A ;(2)x 取其中适合的一个数:2,﹣2,0,求B A 的值. 【解答】解:(1)∵B =x 2+4x +4.A ﹣B =3x 2﹣4x ﹣20,∴A =x 2+4x +4+3x 2﹣4x ﹣20=4x 2﹣16;(2)当x =0时,B A =4−16=−14. 13.李老师让同学们计算“当a =﹣2018,b =2019时,代数式3a 2+(ab ﹣a 2)﹣2(a 2+12ab ﹣1)的值小滨错把“a =﹣2018,b =2019”抄成了“a =2018,b =﹣2019”,但他最终的计算结果并没错误,请问是什么原因呢?【解答】解:原式=3a 2+ab ﹣a 2﹣2a 2﹣ab +2=2,结果与a 与b 的值无关,故小滨错把“a =﹣2018,b =2019”抄成了“a =2018,b =﹣2019”,但他最终的计算结果并没错误.类型二、几何问题14. 如图,一个大正方形的两个角被两个大小相同的小正方形覆盖,用图中所给的a ,b 来表示未被覆盖的阴影部分面积与空白部分面积的差为( )A .4ab ﹣3b 2B .2a 2﹣b 2C .3a 2﹣2abD .4ab ﹣a 2﹣b 2【解答】解:设小正方形的边长为x ,a +x =b +2x ,解得,x =a ﹣b ,未被覆盖的阴影部分面积与空白部分面积的差为:[(a +x )2﹣2x 2]﹣2x 2=a 2+2ax +x 2﹣2x 2﹣2x 2=a 2+2ax ﹣3x 2=a 2+2a (a ﹣b )﹣3(a ﹣b )2=a 2+2a 2﹣2ab ﹣3a 2+6ab ﹣3b 2=4ab ﹣3b 2,故选:A .15. 完全相同的4个小矩形如图所示放置,形成了一个长、宽分别为m 、n 的大长方形,则图中阴影部分的周长是( )A .4mB .4nC .2m +nD .m +2n 【解答】解:设小矩形的长为a ,宽为b ,可得a +2b =m ,可得左边阴影部分的长为2b ,宽为n ﹣a ,右边阴影部分的长为m ﹣2b ,宽为n ﹣2b ,图中阴影部分的周长为2(2b +n ﹣a )+2(m ﹣2b +n ﹣2b )=4b +2n ﹣2a +2m +2n ﹣8b=2m +4n ﹣2a ﹣4b=2m +4n ﹣2(a +2b )=2m +4n ﹣2m=4n ,故选:B .16.方方和圆圆的房间窗帘的装饰物如图所示,它们分别由两个四分之一圆和四个半圆组成(半径都分别相同),它们的窗户能射进阳光的面积分别是多少(窗框面积不计)谁的窗户射进阳光的面积大?【解答】解:第一个窗户射进的阳光的面积为ab −12×π(b 2)2=ab −πb 28 第二个窗户射进的阳光的面积为ab ﹣2×π(b 8)2=ab −πb 232 ∵πb 28>πb 232∴第一个窗户射进的阳光的面积<第二个窗户射进的阳光的面积.类型三、花费与方案问题17.某超市在春节期间对顾客实行优惠,规定如下:一次性购物优惠办法 少于200元不予优惠 低于500元但不低于200元九折优惠 500元或超过500元 其中500元部分给予九折优惠,超过500元部分给予八折优惠(1)王老师一次性购物600元,他实际付款 530 元.(2)若顾客在该超市一次性购物x 元,当x 小于500元但不小于200时,他实际付款 0.9x 元,当x 大于或等于500元时,他实际付款 (0.8x +50) 元.(用含x 的代数式表示).(3)如果王老师两次购物货款合计820元,第一次购物的货款为a 元(200<a <300),用含a 的代数式表示:两次购物王老师实际付款多少元?【解答】解:(1)500×0.9+(600﹣500)×0.8=530;(2)0.9x;500×0.9+(x﹣500)×0.8=0.8x+50;(3)0.9a+0.8(820﹣a﹣500)+450=0.1a+706.18.小明去文具用品商店给同学买某品牌水性笔,已知甲、乙两商店都有该品牌的水性笔且标价都是1.50元/支,但甲、乙两商店的优惠条件却不同.甲商店:若购买不超过10支,则按标价付款;若一次购10支以上,则超过10支的部分按标价的60%付款.乙商店:按标价的80%付款.在水性笔的质量等因素相同的条件下.(1)设小明要购买的该品牌笔数是x(x>10)支,请用含x的式子分别表示在甲、乙两个商店购买该品牌笔买水性笔的费用.(2)若小明要购买该品牌笔30支,你认为在甲、乙两商店中,到哪个商店购买比较省钱?说明理由.【解答】解:(1)在甲商店需要:10×1.5+0.6×1.5×(x﹣10)=0.9x+6(元),在乙商店需要:1.5×0.8×x=1.2x(元),(2)当x=30时,0.9x+6=33,1.2x=36,因为33<36,所以小明要买30支笔应到甲商店买比较省钱.考点八:代数式化简求值(先化简后求值,整体部分可约分,注意分母不为0)19.化简求值3(a2﹣ab+2b2)﹣2(2a2﹣ab+b2),其中a=12,b=﹣1.【解答】解:原式=3a2﹣3ab+6b2﹣4a2+2ab﹣2b2=﹣a2﹣ab+4b2,当a=12,b=﹣1时,原式=−14+12+4=414.考点九:整体法求值(整体换元,整体思想)例题:已知代数式m2+m+1=0,那么代数式2018-2m2-2m的值是()A.2016B.-2016C.2020D.-2020【解答】解:∵m2+m+1=0,∴m2+m=-1.∴-2m2-2m=2.∴原式=2108+2=2020.故选:C.考点十:规律探索(找不变,看变化,找到自然数变化)20.定义程序例题1:如图,是一个运算程序的示意图,若开始输入x的值为81,则第2019次输出的结果为()A.27B.9C.3D.1选:C.21:对正有理数a,b,定义运算*如下:a*b=aba+b,则3*(-4)=______答案为:12.四、线段与角1.线段的定义及性质④线段、直线、射线的特征:险段、射线可以看成直线的一部分。
最新部编版人教初中数学七年级上册《第4章:截面与三视图 热点专题高分特训及答案》精品优秀测试题

前言:该热点专题高分特训由多位一线国家特级教师针对当前最新的热点、考点、重点、难点、知识点,精心编辑而成。
以高质量的热点专题高分特训助力考生查漏补缺,在原有基础上更进一步。
(最新精品热点专题高分特训)学生做题前请先回答以下问题问题1:举出一个几何体,使得从正面、左面、上面看到的这个几何体的形状都一样,你能举出几种?问题2:观察一个几何体的形状通常从三个方向看,从正面看(主视图),从左面看(左视图),从上面看(俯视图),从正面看可以看到几何体的________和________;从左面看可以看到几何体的________和________;从上面看可以看到几何体的________和________.问题3:在利用三视图确定小木块个数时,数字一般标在________图上.截面与三视图(人教版)一、单选题(共16道,每道6分)1.用一个平面去截五棱柱,则截面不可能是( )A.三角形B.四边形C.五边形D.圆答案:D解题思路:五棱柱的面均为平面,面面相交得直线,而不可能成为曲线,圆是由曲线构成的,所以五棱柱的截面不可能是圆.故选D.试题难度:三颗星知识点:几何体的截面2.用一个平面去截如图所示的圆锥,得到的图形不可能是( )A. B.C. D.答案:C解题思路:如果用平面去截圆锥,平面过圆锥顶点时得到的截面图形是一个等腰三角形;如果不过顶点,且平面与底面平行,那么得到的截面就是一个圆;如果不与底面平行且与底面相交,得到就是选项A中的图形;不可能是C中的直角三角形.故选C.试题难度:三颗星知识点:几何体的截面3.用一个平面去截下面的几何体,所得截面是三角形,则这个几何体不可能为( )。
北师大版七年级上册数学期中常考题《三视图》专项复习

北师大版七年级上册数学期中常考题《三视图》专项复习一、选择题(共7小题)1.(2020秋•沈北新区期中)如图,是由4个大小相同的正方体组合的几何体,则从正面看到的图形是()A.B.C.D.2.(2020•雁塔区校级模拟)如图所示几何体的主视图是()A.B.C.D.3.(2020•宝安区三模)如图是一根空心方管,它的俯视图是()A.B.C.D.4.五个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C.D.5.下列四个几何体中,从正面看到的图形与从左面的图形相同的几何体有()A.1个B.2个C.3个D.4个6.如图是一个空心圆柱体,它的左视图是()A.B.C.D.7.如图是由八个小正方形搭成的几何体的俯视图,小正方形中的数字表示该位置上的小正方体的个数,则这个几何体的左视图是()A.B.C.D.二、填空题(共3小题)8.如图是由几个相同的小正方形搭成的几何体,搭成这个几何体需要个小正方体,在保持主视图和左视图不变的情况下,最多可以拿掉个小正方体.9.如图,从一个棱长为4cm的正方体的一个顶点挖去一个棱长为1cm的正方体后,从任何角度所能看到的所有面的面积为.10.三棱柱的三视图如图所示,已知△EFG中,EF=8cm,EG=12cm,∠EFG=45°.则AB的长为cm.三、解答题(共9小题)11.已知如图为一几何体的三视图:主视图和左视图都是长方形,俯视图是等边三角形(1)写出这个几何体的名称;(2)若主视图的高为10cm,俯视图中三角形的边长为4cm,求这个几何体的侧面积.12.(2020秋•会宁县期中)如图,是一个小正方体所搭几何体从上面看得到的平面图形,正方形中的数字表示在该位置小正方体的个数,请你画出它从正面和从左面看得到的平面图形.13.某几何体从三个方向看到的图形分别如图:(1)该几何体是(2)求该几何体的体积?(结果保留π)14.根据如图所给出的几何体从三个方向看得到的形状图,试确定几何体中小正方体的数目的范围.15.(2017秋•郓城县期末)如图是一个密封纸盒的三视图,请你根据图中数据计算这个密封纸盒的表面积(结果保留根号)16.一个几何体是由若干个棱长为3cm的小正方体搭成的,从正面、左面、上面看到的几何体的形状图如图所示:(1)在“从上面看”的图中标出各个位置上小正方体的个数;(2)求该几何体的体积.17.如图是由8个相同的小立方体组成的几何体,请在下列方框内画出它的三视图.18.(1)如图①是一个组合几何体,右边是它的两种视图,在右边横线上填写出两种视图名称;(2)根据两种视图中尺寸(单位:cm),计算这个组合几何体的表面积.(π取3.14)19.由几个相同的边长为1的小立方块搭成的几何体的俯视图如下图,格中的数字表示该位置的小立方块的个数.(1)请在下面方格纸中分别画出这个向何体的主视图和左视图.(2)根据三视图;这个组合几何体的表面积为个平方单位.(包括底面积)(3)若上述小立方块搭成的几何体的俯视图不变,各位置的小立方块个数可以改变(总数目不变),则搭成这样的组合几何体中的表面积最大是为个平方单位.(包括底面积)参考答案一、选择题(共7小题)1.(2020秋•沈北新区期中)如图,是由4个大小相同的正方体组合的几何体,则从正面看到的图形是()A.B.C.D.【考点】简单组合体的三视图.【专题】投影与视图;空间观念.【答案】C【分析】找到从正面看所得到的图形即可,所有的看到的棱都应表现在主视图中.【解答】解:从正面看,第一层有3个正方形,第二层左侧有1个正方形.故选:C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.2.(2020•雁塔区校级模拟)如图所示几何体的主视图是()A.B.C.D.【考点】简单组合体的三视图.【专题】几何图形.【答案】B【分析】从正面看几何体,确定出主视图即可.【解答】解:几何体的主视图为.故选:B.【点评】此题考查了简单组合体的三视图,主视图即为从正面看几何体得到的视图.3.(2020•宝安区三模)如图是一根空心方管,它的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【专题】几何图形.【答案】B【分析】俯视图是从物体的上面看,所得到的图形;注意看到的用实线表示,看不到的用虚线表示.【解答】解:如图所示:俯视图应该是.故选:B.【点评】本题考查了作图﹣三视图,注意看到的用实线表示,看不到的用虚线表示.画物体的三视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等4.五个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C.D.【考点】简单组合体的三视图.【专题】投影与视图.【答案】A【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层是两个小正方形,第二层左边是一个小正方形,故选:A.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.5.下列四个几何体中,从正面看到的图形与从左面的图形相同的几何体有()A.1个B.2个C.3个D.4个【考点】简单几何体的三视图.【答案】D【分析】主视图、左视图是分别从物体正面、左面看所得到的图形.根据主视图与左视图相同,可得答案.【解答】解:①正方体的主视图与左视图都是边长相等的正方形,符合题意;②圆柱的主视图与左视图都是长方形,且长与宽分别相等,符合题意;③圆锥的主视图与左视图都是等腰三角形,且腰与底边分别相等,符合题意;④球的主视图与左视图都是半径相等的圆,符合题意;故选:D.【点评】本题考查了简单几何体的三视图,锻炼了学生的空间想象力和抽象思维能力.6.如图是一个空心圆柱体,它的左视图是()A.B.C.D.【考点】简单几何体的三视图.【答案】B【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看是三个矩形,中间矩形的左右两边是虚线,故选:B.【点评】本题考查了简单几何体的三视图,从左边看得到的图形是左视图.7.如图是由八个小正方形搭成的几何体的俯视图,小正方形中的数字表示该位置上的小正方体的个数,则这个几何体的左视图是()A.B.C.D.【考点】简单组合体的三视图;由三视图判断几何体.【答案】D【分析】俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得左视图有2列,从左到右分别是3,2个正方形.【解答】解:由俯视图中的数字可得:左视图有2列,从左到右分别是3,2个正方形.故选:D.【点评】本题考查了学生的思考能力和对几何体三种视图的空间想象能力.二、填空题(共3小题)8.如图是由几个相同的小正方形搭成的几何体,搭成这个几何体需要10个小正方体,在保持主视图和左视图不变的情况下,最多可以拿掉1个小正方体.【考点】简单组合体的三视图.【专题】线段、角、相交线与平行线.【答案】见试题解答内容【分析】(1)由已知条件可知这个几何体由10小正方体组成;(2)由已知条件可知,主视图有3列,每列小正方数形数目分别为3,1,2,左视图有3列,每列小正方形数目分别为3,2,1;俯视图有3列,每列小正方数形数目分别为3,2,1,据此可画出图形.(3)底层第二列第一行加1个,第三列第一、二分别加1个;第二层第三列第二行加1个,共4共4个.【解答】解:这个几何体由10小正方体组成,最多可以拿掉1个小正方体,故答案为:10,1.【点评】本题考查几何体的三视图画法.由立体图形,可知主视图、左视图、俯视图,并能得出有几列即每一列上的数字.9.如图,从一个棱长为4cm的正方体的一个顶点挖去一个棱长为1cm的正方体后,从任何角度所能看到的所有面的面积为96cm2.【考点】简单组合体的三视图.【专题】投影与视图;空间观念.【答案】见试题解答内容【分析】观察图发现:挖去小正方体后,减少了三个面,又增加了三个面,剩下物体的表面积和原来的表面积相等.【解答】解:挖去小正方体后,剩下物体的表面积与原来的表面积相比较没变化,即从任何角度所能看到的所有面的面积为16×6=96cm2,故答案为:96cm2.【点评】本题考查了几何体的表面积,挖正方体的相对面的面积是相等的.10.三棱柱的三视图如图所示,已知△EFG中,EF=8cm,EG=12cm,∠EFG=45°.则AB的长为4cm.【考点】由三视图判断几何体.【专题】常规题型;投影与视图.【答案】见试题解答内容【分析】根据三视图的对应情况可得出,△EFG中FG上的高即为AB的长,进而求出即可.【解答】解:过点E作EQ⊥FG于点Q,由题意可得出:EQ=AB,∵EF=8cm,∠EFG=45°,∴EQ=AB=×8=4(cm).故答案为:4.【点评】此题主要考查了由三视图解决实际问题,根据已知得出EQ=AB是解题关键.三、解答题(共9小题)11.(2020秋•双流区校级期中)已知如图为一几何体的三视图:主视图和左视图都是长方形,俯视图是等边三角形(1)写出这个几何体的名称;(2)若主视图的高为10cm,俯视图中三角形的边长为4cm,求这个几何体的侧面积.【考点】几何体的表面积;简单几何体的三视图;由三视图判断几何体.【专题】线段、角、相交线与平行线.【答案】见试题解答内容【分析】(1)根据三视图的知识,主视图以及左视图都是长方形,俯视图为三角形,故可判断出该几何体是三棱柱;(2)侧面积为3个长方形,它的长和宽分别为10cm,4cm,计算出一个长方形的面积,乘3即可.【解答】解:(1)这个几何体是三棱柱;(2)三棱柱的侧面展开图形是长方形,长方形的长是等边三角形的周长即C=4×3=12cm,根据题意可知主视图的长方形的长是三棱柱的高,所以三棱柱侧面展开图形的面积为:S=12×10=120cm2.答:这个几何体的侧面面积为120cm2.【点评】本题主要考查由三视图确定几何体和求几何体的面积等相关知识,考查学生的空间想象能力.注意:棱柱的侧面都是长方形,上下底面是几边形就是几棱柱.12.(2020秋•会宁县期中)如图,是一个小正方体所搭几何体从上面看得到的平面图形,正方形中的数字表示在该位置小正方体的个数,请你画出它从正面和从左面看得到的平面图形.【考点】简单组合体的三视图.【答案】见试题解答内容【分析】由已知条件可知,主视图有3列,每列小正方形数目分别为3,2,3,左视图有2列,每列小正方形数目分别为3,3.据此可画出图形.【解答】解:【点评】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.13.某几何体从三个方向看到的图形分别如图:(1)该几何体是圆柱(2)求该几何体的体积?(结果保留π)【考点】由三视图判断几何体.【专题】几何图形.【答案】见试题解答内容【分析】(1)根据几何体的三视图即可判断;(2)圆柱体的体积公式=底面积•高;【解答】解:(1)这个几何体是圆柱,故答案为圆柱;(2)圆柱底面积=π•()2=π圆柱体积V=π•3=3π.【点评】本题考查几何体的三视图,解题的关键是理解三视图的定义,灵活运用所学知识解决问题,属于中考常考题型.14.根据如图所给出的几何体从三个方向看得到的形状图,试确定几何体中小正方体的数目的范围.【考点】由三视图判断几何体.【专题】投影与视图;几何直观.【答案】见试题解答内容【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,进而得出答案.【解答】解:根据题意,构成几何体所需正方体最多情况如图(1)所示,构成几何体所需正方体最少情况如图(2)所示:所以最多需要11个,最少需要9个小正方体.【点评】本题考查了对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.15.如图是一个密封纸盒的三视图,请你根据图中数据计算这个密封纸盒的表面积(结果保留根号)【考点】由三视图判断几何体.【专题】计算题;投影与视图.【答案】见试题解答内容【分析】由几何体的三视图,得到它是一个六棱柱,求出其侧面积与表面积即可.【解答】解:根据该密封纸盒的三视图知道它是一个六棱柱,∵其高为12cm,底面边长为5cm,∴其侧面积为6×5×12=360(cm2),密封纸盒的上、下底面的面积和为:12×5××5×=75(cm2),∴其表面积为(75+360)cm2.【点评】此题考查了由三视图判断几何体,弄清三视图的概念是解本题的关键.16.一个几何体是由若干个棱长为3cm的小正方体搭成的,从正面、左面、上面看到的几何体的形状图如图所示:(1)在“从上面看”的图中标出各个位置上小正方体的个数;(2)求该几何体的体积.【考点】由三视图判断几何体.【专题】常规题型;投影与视图.【答案】见试题解答内容【分析】(1)根据“俯视图打地基,主视图疯狂盖,左视图拆违章”的原则解答即可得;(2)根据每个正方体的体积乘以正方体的个数即可得.【解答】解:(1)如图所示:(2)该几何体的体积为33×(2+3+2+1+1+1)=27×10=270(cm3).【点评】本题考查学生对三视图的掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.17.如图是由8个相同的小立方体组成的几何体,请在下列方框内画出它的三视图.【考点】简单组合体的三视图.【答案】见试题解答内容【分析】主视图有3列,每列小正方形数目分别为3,1,2;左视图有2列,每列小正方形数目分别为3,1;俯视图有3列,每列小正方形数目分别为2,2,1.【解答】解:【点评】本题主要考查了简单组合体的三视图,主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.18.(1)如图①是一个组合几何体,右边是它的两种视图,在右边横线上填写出两种视图名称;(2)根据两种视图中尺寸(单位:cm),计算这个组合几何体的表面积.(π取3.14)【考点】几何体的表面积;简单组合体的三视图.【答案】见试题解答内容【分析】(1)找到从正面和上面看所得到的图形即可,注意所有的看到的棱都应表现在视图中.(2)根据题目所给尺寸,计算出下面长方体表面积+上面圆柱的侧面积.【解答】解:(1)如图所示:;(2)表面积=2(8×5+8×2+5×2)+4×π×6=2(8×5+8×2+5×2)+4×3.14×6=207.36(cm2).【点评】此题主要考查了简单几何体的三视图,以及几何体的表面积,关键是掌握三视图所看的位置.19.由几个相同的边长为1的小立方块搭成的几何体的俯视图如下图,格中的数字表示该位置的小立方块的个数.(1)请在下面方格纸中分别画出这个向何体的主视图和左视图.(2)根据三视图;这个组合几何体的表面积为24个平方单位.(包括底面积)(3)若上述小立方块搭成的几何体的俯视图不变,各位置的小立方块个数可以改变(总数目不变),则搭成这样的组合几何体中的表面积最大是为26个平方单位.(包括底面积)【考点】几何体的表面积;简单组合体的三视图.【专题】计算题.【答案】见试题解答内容【分析】(1)主视图有2列,每列小正方形数目分别为2,3;左视图有2列,每列小正方形数目分别为3,1;(2)上面共有3个小正方形,下面共有3个小正方形;左面共有4个小正方形,右面共有4个正方形;前面共有5个小正方形,后面共有5个正方形,继而可得出表面积.(3)要使表面积最大,则需满足两正方体重合的最少,画出俯视图,计算表面积即可.【解答】解:(1)主视图有2列,每列小正方形数目分别为2,3;左视图有2列,每列小正方形数目分别为3,1,图形分别如下:(2)由题意可得:上面共有3个小正方形,下面共有3个小正方形;左面共有4个小正方形,右面共有4个正方形;前面共有5个小正方形,后面共有5个正方形,故可得表面积为:1×(3+3+4+4+5+5)=24.(3)要使表面积最大,则需满足两正方体重合的最少,此时俯视图为:这样上面共有3个小正方形,下面共有3个小正方形;左面共有5个小正方形,右面共有5个正方形;前面共有5个小正方形,后面共有5个正方形,表面积为:1×(3+3+5+5+5+5)=26.故答案为:24、26.【点评】此题考查了简单几何体的三视图及几何体的表面积的计算,解答本题的关键是掌握三视图的观察方法,在计算表面积时容易出错,要一个面一个面的进行查找,避免遗漏,有一定难度.。
2022年人教版七年级上册第4章《几何图形初步》测试卷(附答案)(3)

第4章几何图形初步测试卷〔3〕一、选择题〔每题3分,共36分〕1.〔3分〕如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“建〞字一面的相对面上的字是〔〕A.和B.谐C.社D.会2.〔3分〕如图是用八块完全相同的小正方体搭成的几何体,从左面看几何体得到的图形是〔〕A.B.C.D.3.〔3分〕如图,四个图形是由立体图形展开得到的,相应的立体图形顺次是〔〕A.正方体、圆柱、三棱柱、圆锥B.正方体、圆锥、三棱柱、圆柱C.正方体、圆柱、三棱锥、圆锥D.正方体、圆柱、四棱柱、圆锥4.〔3分〕如图,对于直线AB,线段CD,射线EF,其中能相交的图是〔〕A.B.C. D.5.〔3分〕以下说法中正确的选项是〔〕A.画一条3厘米长的射线B.画一条3厘米长的直线C.画一条5厘米长的线段D.在线段、射线、直线中直线最长6.〔3分〕如图,将一副三角尺按不同位置摆放,摆放方式中∠α与∠β互余的是〔〕A.B.C.D.7.〔3分〕点E在线段CD上,下面的等式:①CE=DE;②DE=CD;③CD=2CE;④CD=DE.其中能表示E是CD中点的有〔〕A.1个 B.2个 C.3个 D.4个8.〔3分〕C是线段AB上一点,D是BC的中点,假设AB=12cm,AC=2cm,那么BD的长为〔〕A.3cm B.4cm C.5cm D.6cm9.〔3分〕如图是一正方体的平面展开图,假设AB=4,那么该正方体A、B两点间的距离为〔〕A.1 B.2 C.3 D.410.〔3分〕用度、分、秒表示91.34°为〔〕A.91°20′24″B.91°34′C.91°20′4″ D.91°3′4″11.〔3分〕以下说法中正确的选项是〔〕A.假设∠AOB=2∠AOC,那么OC平分∠AOBB.延长∠AOB的平分线OCC.假设射线OC、OD三等分∠AOB,那么∠AOC=∠DOCD.假设OC平分∠AOB,那么∠AOC=∠BOC12.〔3分〕甲乙两人各用一张正方形的纸片ABCD折出一个45°的角〔如图〕,两人做法如下:甲:将纸片沿对角线AC折叠,使B点落在D点上,那么∠1=45°;乙:将纸片沿AM、AN折叠,分别使B、D落在对角线AC上的一点P,那么∠MAN=45°.对于两人的做法,以下判断正确的选项是〔〕A.甲乙都对B.甲对乙错C.甲错乙对D.甲乙都错二、填空题〔每题3分,共24分〕14.〔3分〕以下各图中,不是正方体的展开图〔填序号〕.15.〔3分〕M、N是线段AB的三等分点,C是BN的中点,CM=6cm,那么AB= cm.16.〔3分〕线段AB,延长AB到C,使BC=2AB,D为AB的中点,假设BD=3cm,那么AC的长为cm.17.〔3分〕假设时针由2点20分走到2点55分,那么时针转过度,分针转过度.18.〔3分〕一个角的补角是这个角的余角的4倍,那么这个角的度数为°.19.〔3分〕如图,点O是直线AD上的点,∠AOB,∠BOC,∠COD三个角从小到大依次相差25°,那么这三个角的度数是.20.〔3分〕如图,将一副三角板折叠放在一起,使直角的顶点重合于点O,那么∠AOC+∠DOB=度.21.〔3分〕如下图,一艘船从A点出发,沿东北方向航行至B,再从B点出发沿南偏东15°方向航行至C点,那么∠ABC等于多少度.三、解答题:〔本大题共52分〕22.〔3分〕线段a、b,画一条线段,使它等于2a﹣b〔不写作法,保存作图痕迹〕23.〔3分〕根据以下语句,画出图形.四点A、B、C、D.①画直线AB;②连接AC、BD,相交于点O;③画射线AD、BC,交于点P.24.〔20分〕计算题:〔1〕〔180°﹣91°32′24″〕×3〔2〕34°25′×3+35°42′〔3〕一个角的余角比它的补角的还少20°,求这个角.〔4〕如图,AOB为直线,OC平分∠AOD,∠BOD=42°,求∠AOC的度数.25.〔9分〕如图,是由7块正方体木块堆成的物体,请说出图〔1〕、图〔2〕、图〔3〕分别是从哪一个方向看得到的?26.〔7分〕如图是一个正方体的平面展开图,标注了A字母的是正方体的正面,如果正方体的左面与右面标注的式子相等.〔1〕求x的值.〔2〕求正方体的上面和底面的数字和.27.〔10分〕如图,将书页一角斜折过去,使角的顶点A落在A′处,BC为折痕,BD平分∠A′BE,求∠CBD的度数.参考答案与试题解析一、选择题〔每题3分,共36分〕1.〔3分〕如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“建〞字一面的相对面上的字是〔〕A.和B.谐C.社D.会【考点】专题:正方体相对两个面上的文字.【分析】利用正方体及其外表展开图的特点解题.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“建〞与面“会〞相对,面“设〞与面“谐〞相对,“和〞与面“社〞相对.应选D.【点评】注意正方体的空间图形,从相对面入手,分析及解答问题.2.〔3分〕如图是用八块完全相同的小正方体搭成的几何体,从左面看几何体得到的图形是〔〕A.B.C.D.【考点】简单组合体的三视图.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答】解:从左面看易得上面一层左边有1个正方形,下面一层有2个正方形.应选A.【点评】此题考查了三视图的知识,左视图是从物体的左面看得到的视图.3.〔3分〕如图,四个图形是由立体图形展开得到的,相应的立体图形顺次是〔〕A.正方体、圆柱、三棱柱、圆锥B.正方体、圆锥、三棱柱、圆柱C.正方体、圆柱、三棱锥、圆锥D.正方体、圆柱、四棱柱、圆锥【考点】几何体的展开图.【分析】根据正方体、圆锥、三棱柱、圆柱及其外表展开图的特点解题.【解答】解:观察图形,由立体图形及其外表展开图的特点可知相应的立体图形顺次是正方体、圆柱、三棱柱、圆锥.应选A.【点评】可根据所给图形判断具体形状,也可根据所给几何体的面数进行判断.4.〔3分〕如图,对于直线AB,线段CD,射线EF,其中能相交的图是〔〕A.B.C. D.【考点】直线、射线、线段.【分析】根据直线、射线、线段的定义对各选项分析判断利用排除法求解.【解答】解:A、直线AB与线段CD不能相交,故本选项错误;B、直线AB与射线EF能够相交,故本选项正确;C、射线EF与线段CD不能相交,故本选项错误;D、直线AB与射线EF不能相交,故本选项错误.应选B.【点评】此题考查了直线、射线、线段,熟记定义并准确识图是解题的关键.5.〔3分〕以下说法中正确的选项是〔〕A.画一条3厘米长的射线B.画一条3厘米长的直线C.画一条5厘米长的线段D.在线段、射线、直线中直线最长【考点】直线、射线、线段.【分析】利用直线、射线、线段的意义和特点,逐项分析,找出正确答案即可.【解答】解:A、射线可无限延长,不可测量,所以画一条3厘米长的射线是错误的;B、直线是无限长的,直线是不可测量长度的,所以画一条3厘米长的直线是错误的;C、线段有两个端点,有限长度,可以测量,所以画一条5厘米长的线段是正确的;D、直线、射线都是无限延长,不可测量,不能比拟长短,只有线段可以比拟长短,所以在线段、射线、直线中直线最长是错误的.应选:C.【点评】此题考查直线、射线、线段的意义以及特点:直线两端都可以无限延长的线,两端都没有端点,直线是无限长的,直线是不可测量长度的.射线是直线上的一点和它一旁的局部所组成的图形称为射线或半直线,只有一个端点,另一边可无限延长,射线可无限延长,不可测量.线段是直线上两个点和它们之间的局部叫做线段,有限长度,可以测量,有两个端点.6.〔3分〕如图,将一副三角尺按不同位置摆放,摆放方式中∠α与∠β互余的是〔〕A.B.C.D.【考点】余角和补角.【分析】根据图形,结合互余的定义判断即可.【解答】解:A、∠α与∠β不互余,故本选项错误;B、∠α与∠β不互余,故本选项错误;C、∠α与∠β互余,故本选项正确;D、∠α与∠β不互余,∠α和∠β互补,故本选项错误;应选C.【点评】此题考查了对余角和补角的应用,主要考查学生的观察图形的能力和理解能力.7.〔3分〕点E在线段CD上,下面的等式:①CE=DE;②DE=CD;③CD=2CE;④CD=DE.其中能表示E是CD中点的有〔〕A.1个 B.2个 C.3个 D.4个【考点】两点间的距离.【专题】推理填空题.【分析】点E如果是线段CD的中点,那么点E将线段CD分成两段长度相等的线段.即:CE=DE.由此性质可判断出哪一项符合要求.【解答】解:假设点E是线段CD的中点,那么CE=DE,故①正确;当DE=CD时,那么CE=CD,点E是线段CD的中点,故②正确;当CD=2CE,那么DE=2CE﹣CE=CE,点E是线段CD的中点,故③正确;④CD=DE,点E不是线段CD的中点,故④不正确;综上所述:①、②、③正确,只有④是错误的.应选:C.【点评】此题考点:线段中点的性质,线段的中点将线段分成两个长度相等的线段.8.〔3分〕C是线段AB上一点,D是BC的中点,假设AB=12cm,AC=2cm,那么BD的长为〔〕A.3cm B.4cm C.5cm D.6cm【考点】两点间的距离.【分析】先求出BC,再根据线段中点的定义解答.【解答】解:∵AB=12cm,AC=2cm,∴BC=AB﹣AC=12﹣2=10cm.∵D是BC的中点,∴BD=BC=×10=5cm.应选C.【点评】此题考查了两点间的距离,主要利用了线段中点的定义,熟记概念是解题的关键,作出图形更形象直观.9.〔3分〕如图是一正方体的平面展开图,假设AB=4,那么该正方体A、B两点间的距离为〔〕A.1 B.2 C.3 D.4【考点】几何体的展开图.【分析】首先求出正方体的棱长,进而得出正方体A、B两点间的距离即可.【解答】解:∵AB=4那么该正方体的棱长为,∴把正方形组合起来之后会发现A、B在同一平面的对角线上,所以该正方体A、B两点间的距离为2,应选:B.【点评】此题主要考查了几何体的展开图,得出正方体的棱长是解题关键.10.〔3分〕用度、分、秒表示91.34°为〔〕A.91°20′24″B.91°34′C.91°20′4″ D.91°3′4″【考点】度分秒的换算.【分析】根据度分秒的进率,可得答案.【解答】解:91.34°=91°+×60′=91°20′+×60″=91°20′24″,应选A.【点评】此题考查了度分秒的换算,度化成分乘以60,分化成秒乘以60.11.〔3分〕以下说法中正确的选项是〔〕A.假设∠AOB=2∠AOC,那么OC平分∠AOBB.延长∠AOB的平分线OCC.假设射线OC、OD三等分∠AOB,那么∠AOC=∠DOCD.假设OC平分∠AOB,那么∠AOC=∠BOC【考点】角平分线的定义.【分析】画出反例图形,即可判断A、C;根据延长线的意义和射线的意义即可判断B;根据角平分线定义即可判断D.【解答】解:A、如图,符合条件,但是OC不是∠AOB平分线,故本选项错误;B、反向延长∠AOB的角平分线OC,故本选项错误;C、如图,∠AOC=2∠DOC,故本选项错误;D、∵OC平分∠AOB,∴∠AOC=∠BOC,故本选项正确;应选D.【点评】此题考查了角平分线的定义,射线的应用,主要考查学生的理解能力和辨析能力.12.〔3分〕甲乙两人各用一张正方形的纸片ABCD折出一个45°的角〔如图〕,两人做法如下:甲:将纸片沿对角线AC折叠,使B点落在D点上,那么∠1=45°;乙:将纸片沿AM、AN折叠,分别使B、D落在对角线AC上的一点P,那么∠MAN=45°.对于两人的做法,以下判断正确的选项是〔〕A.甲乙都对B.甲对乙错C.甲错乙对D.甲乙都错【考点】翻折变换〔折叠问题〕.【分析】甲沿正方形的对角线进行折叠,根据正方形对角线的性质,可得∠1=45°,故甲的做法是正确的;乙进行折叠后,可得两对等角,而四个角的和为90°,故∠MAN=45°是正确的,这样答案可得.【解答】解:∵AC为正方形的对角线,∴∠1=×90°=45°;∵AM、AN为折痕,∴∠2=∠3,4=∠5,又∵∠DAB=90°,∴∠3+∠4=×90°=45°.∴二者的做法都对.应选A.【点评】此题考查了图形的翻折问题;解答此类问题的关键是找着重合的角,结合直角进行求解.二、填空题〔每题3分,共24分〕14.〔3分〕以下各图中,③不是正方体的展开图〔填序号〕.【考点】几何体的展开图.【分析】利用正方体及其外表展开图的特点解题.【解答】解:只要有“田〞字格的展开图都不是正方体的外表展开图,所以③不是正方体的展开图.故答案为:③.【点评】解题时勿忘记四棱柱的特征及正方体展开图的各种情形.15.〔3分〕M、N是线段AB的三等分点,C是BN的中点,CM=6cm,那么AB= 12cm.【考点】两点间的距离.【分析】根据得出AM=MN=BN,AB=3BN,BN=2CN=MN,根据CM=6cm求出CN=2cm,求出BN=2CN,AB=3BN,即可求出答案.【解答】解:∵M、N是线段AB的三等分点,∴AM=MN=BN,AB=3BN,∵C是BN的中点,∴BN=2CN=MN,∵CM=6cm,∴3CN=6cm,∴CN=2cm,∴BN=2CN=4cm,∴AB=3BN=12cm,故答案为:12.【点评】此题考查了求两点之间的距离的应用,关键是求出CN的长度.16.〔3分〕线段AB,延长AB到C,使BC=2AB,D为AB的中点,假设BD=3cm,那么AC的长为18cm.【考点】两点间的距离.【专题】计算题.【分析】根据题意得出AB的长,进而利用BC=2AB求出AC的长即可.【解答】解:如下图:∵D为AB的中点,BD=3cm,∴AB=6cm,∵BC=2AB,∴BC=2×6=12〔cm〕,∴AC=BC+AB=12+6=18〔cm〕.故答案为:18.【点评】此题主要考查了两点之间距离,利用中点性质转化线段之间的倍分关系是解题的关键.17.〔3分〕假设时针由2点20分走到2点55分,那么时针转过17.5度,分针转过210度.【考点】钟面角.【分析】根据时针的速度乘以时针的时间,可得答案,根据分针的速度乘以分针转的时间,可得答案.【解答】解:假设时针由2点20分走到2点55分,那么时针转过17.5度,分针转过210度,故答案为:17.5;210.【点评】此题考查了钟面角,利用了时针的速度乘以时针的时间.18.〔3分〕一个角的补角是这个角的余角的4倍,那么这个角的度数为60°.【考点】余角和补角.【分析】根据互余的两角之和为90°,互补的两角之和为180°,表示出余角和补角,然后列方程求解即可.【解答】解:设这个角为x,那么补角为〔180°﹣x〕,余角为〔90°﹣x〕,由题意得,4〔90°﹣x〕=180°﹣x,解得:x=60,即这个角为60°.故答案为:60°.【点评】此题考查了余角和补角的知识,属于根底题,关键是掌握互余的两角之和为90°,互补的两角之和为180°.19.〔3分〕如图,点O是直线AD上的点,∠AOB,∠BOC,∠COD三个角从小到大依次相差25°,那么这三个角的度数是35°,60°,85°.【考点】角的计算.【专题】计算题.【分析】由题意可知,三个角之和为180°,又知三个角之间的关系,故能求出各个角的大小.【解答】解:设∠AOB=x,∠BOC=x+25°,∠COD=x+50°,∵∠AOB+∠BOC+∠COD=180°,∴3x+75°=180°,x=35°,∴这三个角的度数是35°,60°,85°,故答案为35°,60°,85°.【点评】此题考查角与角之间的运算,注意结合图形,发现角与角之间的关系,进而求解.20.〔3分〕如图,将一副三角板折叠放在一起,使直角的顶点重合于点O,那么∠AOC+∠DOB=180度.【考点】角的计算.【专题】计算题.【分析】此题考查了角度的计算问题,因为此题中∠AOC始终在变化,因此可以采用“设而不求〞的解题技巧进行求解.【解答】解:设∠AOD=a,∠AOC=90°+a,∠BOD=90°﹣a,所以∠AOC+∠BOD=90°+a+90°﹣a=180°.故答案为180°.【点评】在此题中要注意∠AOC始终在变化,因此可以采用“设而不求〞的解题技巧进行求解.21.〔3分〕如下图,一艘船从A点出发,沿东北方向航行至B,再从B点出发沿南偏东15°方向航行至C点,那么∠ABC等于多少60度.【考点】方向角;平行线的性质.【专题】应用题.【分析】将实际问题转化为方向角的问题,利用平行线的性质解答即可.【解答】解:从图中我们发现向北的两条方向线平行,∠NAB=45°,∠MBC=15°,根据平行线的性质:两直线平行内错角相等,可得∠ABM=∠NAB=45°,所以∠ABC=45°+15°=60°.故答案为:60.【点评】根据方位角的概念,画图正确表示出方位角,利用平行线的性质作答.三、解答题:〔本大题共52分〕22.〔3分〕线段a、b,画一条线段,使它等于2a﹣b〔不写作法,保存作图痕迹〕【考点】作图—根本作图.【专题】作图题.【分析】根据线段的和、差的作法,先作出2a的长度,然后在2a上作出b的长度,即可得到2a﹣b.【解答】解:如下图,线段AC就是所要求作的线段2a﹣b.【点评】此题主要考查了线段的和差的作法,是根底题,需熟练掌握.23.〔3分〕根据以下语句,画出图形.四点A、B、C、D.①画直线AB;②连接AC、BD,相交于点O;③画射线AD、BC,交于点P.【考点】直线、射线、线段.【专题】作图题.【分析】根据直线、线段和射线的定义作出即可.【解答】解:如下图.【点评】此题考查了直线、射线、线段,主要是对文字语言转化为图形语言的能力的培养.24.〔20分〕计算题:〔1〕〔180°﹣91°32′24″〕×3〔2〕34°25′×3+35°42′〔3〕一个角的余角比它的补角的还少20°,求这个角.〔4〕如图,AOB为直线,OC平分∠AOD,∠BOD=42°,求∠AOC的度数.【考点】余角和补角;度分秒的换算;角的计算.【分析】〔1〕先算括号内的减法运算,再算乘法即可;〔2〕先算乘法,再算加法;〔3〕设这个角为x°,根据一个角的余角比它的补角的还少20°列出方程,解方程即可;〔4〕先由邻补角定义求出∠AOD的度数,再根据角平分线定义即可求出∠AOC 的度数.【解答】解:〔1〕〕〔180°﹣91°32′24″〕×3=88°27′36″×3=264°81′108″=265°22′48″;〔2〕34°25′×3+35°42′=103°15′+35°42′=138°57′;〔3〕设这个角为x°,根据题意得90﹣x=〔180﹣x〕﹣20,解得x=75;〔4〕∵AOB为直线,∠BOD=42°,∴∠AOD=180°﹣∠BOD=138°,∵OC平分∠AOD,∴∠AOC=∠AOD=69°.【点评】此题考查了余角和补角的定义,度分秒的换算,邻补角定义及角平分线定义,是根底知识,需熟练掌握.25.〔9分〕如图,是由7块正方体木块堆成的物体,请说出图〔1〕、图〔2〕、图〔3〕分别是从哪一个方向看得到的?【考点】简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,从上面看得到的图形是俯视图,从左面看得到的图形是左视图,可得答案.【解答】解:〔1〕、是从上面看;〔2〕、是从正面看到;〔3〕、是从左面看.【点评】此题考查了简单组合体的三视图,利用了三视图的定义.26.〔7分〕如图是一个正方体的平面展开图,标注了A字母的是正方体的正面,如果正方体的左面与右面标注的式子相等.〔1〕求x的值.〔2〕求正方体的上面和底面的数字和.【考点】专题:正方体相对两个面上的文字.【分析】〔1〕正方体的外表展开图,相对的面之间一定相隔一个正方形确定出相对面,然后列出方程求解即可;〔2〕确定出上面和底面上的两个数字3和1,然后相加即可.【解答】解:正方体的外表展开图,相对的面之间一定相隔一个正方形,“A〞与“﹣2〞是相对面,“3〞与“1〞是相对面,“x〞与“3x﹣2〞是相对面,〔1〕∵正方体的左面与右面标注的式子相等,∴x=3x﹣2,解得x=1;〔2〕∵标注了A字母的是正方体的正面,左面与右面标注的式子相等,∴上面和底面上的两个数字3和1,∴3+1=4.【点评】此题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.27.〔10分〕如图,将书页一角斜折过去,使角的顶点A落在A′处,BC为折痕,BD平分∠A′BE,求∠CBD的度数.【考点】角的计算;翻折变换〔折叠问题〕.【分析】根据翻折变换的性质可得∠ABC=∠A′BC,再根据角平分线的定义可得∠A′BD=∠EBD,再根据平角等于180°列式计算即可得解.【解答】解:由翻折的性质得,∠ABC=∠A′BC,∵BD平分∠A′BE,∴∠A′BD=∠EBD,∵∠ABC+∠A′BC+∠A′BD+∠EBD=180°,∴∠A′BC+∠A′BD=90°,即∠CBD=90°.【点评】此题考查了角的计算,主要利用了翻折变换的性质,角平分线的定义,熟记概念与性质是解题的关键.第二十四章二次函数周周测1一、选择题〔共16小题〕1.如图,△ABC内接于⊙O,AB=BC,∠ABC=120°,AD为⊙O的直径,AD=6,那么AB 的值为〔〕A.3 B.2C.3D.22.如图,OA是⊙O的半径,弦BC⊥OA,D是⊙O上一点,假设∠ADB=28°,那么∠AOC 的度数为〔〕A.14°B.28°C.56°D.84°3.如图,⊙O的直径CD过弦EF的中点G,∠DCF=20°,那么∠EOD等于〔〕A.10°B.20°C.40°D.80°4.如图,点C,D是半圆上的三等分点,连接AC,BC,CD,OD,BC和OD相交于点E.那么以下结论:①∠CBA=30°,②OD⊥BC,③OE=AC,④四边形AODC是菱形.正确的个数是〔〕A.1 B.2 C.3 D.45.如图,圆心角∠BOC=78°,那么圆周角∠BAC的度数是〔〕A.156°B.78°C.39°D.12°6.如图,点A,B,C,在⊙O上,∠ABO=32°,∠ACO=38°,那么∠BOC等于〔〕A.60°B.70°C.120°D.140°7.如图,▱ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE上,∠ADC=54°,连接AE,那么∠AEB的度数为〔〕A.36°B.46°C.27°D.63°8.如图,A、B、C是⊙O上的三点,且∠ABC=70°,那么∠AOC的度数是〔〕A.35°B.140°C.70°D.70°或140°9.以下四个图中,∠x是圆周角的是〔〕A.B.C.D.10.〔2021•龙岩〕如图,A、B、P是半径为2的⊙O上的三点,∠APB=45°,那么弦AB 的长为〔〕A.B.2 C.2D.411.如图,在⊙O中,∠OAB=22.5°,那么∠C的度数为〔〕A.135°B.122.5°C.115.5°D.112.5°12.如图,⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,那么∠BCD等于〔〕A.116°B.32°C.58°D.64°13.如图,在⊙O中,直径CD⊥弦AB,那么以下结论中正确的选项是〔〕A.AD=AB B.∠BOC=2∠D C.∠D+∠BOC=90°D.∠D=∠B14.如图,在⊙O中,∠CBO=45°,∠CAO=15°,那么∠AOB的度数是〔〕A.75°B.60°C.45°D.30°15.如图,⊙O是△ABC的外接圆,∠OCB=40°,那么∠A的度数是〔〕A.40°B.50°C.60°D.100°16.如图,AB是⊙O的直径,AB垂直于弦CD,∠BOC=70°,那么∠ABD=〔〕A.20°B.46°C.55°D.70°二、填空题〔共13小题〕17.如图,点A、B、C、D在⊙O上,OB⊥AC,假设∠BOC=56°,那么∠ADB=______度.18.如图,点A、B、C在⊙O上,假设∠C=30°,那么∠AOB的度数为______°.19.如图,⊙O的直径AB与弦CD垂直,且∠BAC=40°,那么∠BOD=______.20.〔2021•盘锦〕如图,⊙O直径AB=8,∠CBD=30°,那么CD=______.21.在圆中,30°的圆周角所对的弦的长度为2,那么这个圆的半径是______.22.如图,⊙O是△ABC的外接圆,假设∠BOC=100°,那么∠BAC=______.23.如图,AB是⊙O的直径,点C在⊙O上,点P在线段OA上运动.设∠BCP=α,那么α的最大值是______.24.如图,P是⊙O外一点,A、B、C是⊙O上的三点,∠AOB=60°,PA、PB分别交于M、N两点,那么∠APB的范围是______.25.如下图⊙O中,∠BAC=∠CDA=20°,那么∠ABO的度数为______.26.点O是△ABC外接圆的圆心,假设∠BOC=110°,那么∠A的度数是______.27.如图,点A、B、C、D都在⊙O上,∠ABC=90°,AD=3,CD=2,那么⊙O的直径的长是______.28.如图,OC是⊙O的半径,AB是弦,且OC⊥AB,点P在⊙O上,∠APC=26°,那么∠BOC=______度.29.如图,边长为1的小正方形网格中,⊙O的圆心在格点上,那么∠AED的余弦值是______.三、解答题〔共1小题〕30.〔1〕甲市共有三个郊县,各郊县的人数及人均耕地面积如表所示:人均耕地面积/公郊县人数/万顷A 20B 5C 10求甲市郊县所有人口的人均耕地面积〔精确到0.01公顷〕;〔2〕先化简下式,再求值:,其中,;〔3〕如图,A,B,C,D是⊙O上的四点,延长DC,AB相交于点E,假设BC=BE.求证:△ADE是等腰三角形.答案一、选择题〔共16小题〕1.A;2.C;3.C;4.D;5.C;6.D;7.A;8.B;9.C;10.C;11.D;12.B;13.B;14.B;15.B;16.C;二、填空题〔共13小题〕17.28;18.60;19.80°;20.4;21.2;22.50°;23.90°;24.0°<∠APB<30°;25.50°;26.55°或125°;27.;28.52;29.;三、解答题〔共1小题〕30.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三视图与展开图
一、选择题:
1、下面右边的图形是由8个棱长为1个单位的小立方体组成的立体图形,这个立体图形的左视图是( )
A. B.C.D.
2、右图中几何体的正视图是( )
A B C D
3、某工艺品由一个长方体和球组成(右图),则其俯视图是( )
A. B. C. D.
4、某几何体的三视图如左图所示,则此几何体是( )
A.正三棱柱B.圆柱C.长方体D.圆锥
5、图所示的物体,从左面看得到的图是()
6、小明从正面观察下图所示的物体,看到的是( )
正面A.B.C.D.
7、某同学把下图所示的几何体的三种视图画出如下(不考虑尺寸);在这三种视图中,其正确的是:( )
A、①②,
B、①③,
C、②③,
D、②
8、 由若干个同样大小的正方体堆积成一个实物,不同侧面观察到如图8所示的投影图,则构成该实物的小正方体个
数为 ( )
A. 6
B. 7
C. 8
D. 9 9、 某超市货架上摆放着“康师傅”红烧肉面,如图1是
它们的三视图,则货架上的“康师傅”红烧肉面至少有 ( ) A.8桶 B.9桶 C.10桶 D.11桶
10、 图2中几何体的正视图是( )
11、由一些完全相同的小立方块搭成的几何体的三种视图,那么搭成这个几何体所用的小立方块的个数 ( ) A 、6个 B 、7个 C 、8个 D 、9个
主视图 左视图 俯视图 (第12题)
12、 如图是一些相同的小正方体构成的几何体的正视图和左视图,在这个几何体中,小正方体的个数不可能是( )
A 、7
B 、8
C 、9
D 、10
13、如图是正方体的展开图,则原正方体相对两个面上的数字和最小的是( ). A. 4 B. 6 C. 7 D.8 14、 右图所示是一个三棱柱纸盒,在下面四个图中,只有一个是这个纸盒的展开图,那么这个展开图是( )
15、
如图所示,右面水杯的俯视图是( )
16、 下列几何体,正(主)视图是三角形的是 ( )
A
B C D 1 4
2 5 3
6
第13题图
主视图 左视图 俯视图 图1 A B C D
A.B.C.D.
17、有一实物如图所示,它的主视图是( )
18、骰子是一种特别的数字立方体,它符合规则:相对两面的点数之和总是7.下面四幅图中可以折成符合规则的骰子的是
19、一个画家有14个边长为1m的正方体,他在地面上把它们摆成如图所示的形式,然后他把露
出的表面都涂上颜色,那么被涂上颜色的总面积为()
A. 19m2
B. 21m2
C. 33m2
D. 34m2
20、如图,以Rt△ABC为直角边AC所在直线为轴,将△ABC旋转一周所形成的几何体的俯视图是( )
21、下面的图形是由8个棱长为1个单位的小立方体组成的立体图形,这个立体图形的左视图是( )
D
C
B
A
22、有6个大小相同的正方体搭成的几何体如图所示,则关于它的视图说法正确的是( )
A 主视图的面积最大
B 左视图的面积最大
C 俯视图的面积最大
D 三个视图的面积一样大
23、想一想:将左边的图形折成一个立方体,右边的
四个立方体哪一个是由左边的图形折成的()
24、
如图所示的立方体,如果把它展开,可以是下列图形中的( )
25、下列四个图形中,每个小正方形都标上了颜色. 若要求一个正方体两个相对面上的颜色都一样,那么不可能是这一个正方体的展开图的是( )
26、
下列展开图中,不是正方体是
A 、
B 、
C 、
D 、- 27、
一个由若干个相同的正方体搭成的物体的主视图与左视图都是右边的图形,这个物体有( )种不同的搭
建办法.
A 、2
B 、3
C 、4
D 、5
二、填空题:
1. 如图是一个几何体的三视图,根据图中提供的数据 (单位:cm)可求得这个几何体的体积为 .
2、如图所示,用字母M 表示与A 相对的面,请在下面的正方体展开图中填写相应的字母.
3、如图是一个由若干个正方体搭建而成的几何体的主视图与左视图,那么下列图形中可以作为该几何体的俯视图的序号是:
主视图 左视图 1
2
俯视图
1
3
2
3
黄 红 黄 红
绿
绿
黄
红 绿
红
绿 黄 绿
红 红
绿 黄
黄 绿
红
黄 红 黄 绿
A .
B .
C .
D .
主视图
左视图
4、 如图,是由若干个相同正方体组成的几何体的主视图和左视图,则组成这个几何体最少的正方体的个数是 -个.
5、 桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,这个几何体最多可以由
个这样的正方体组成。
6、如图,右图是左图表面的展开图,右图已有两个面标出是长方体的下面和右面,请你在右图中把长方体的其他面标出来.
7、如图是由大小相同的小正方体组成的简单几何体的主视图和左视图,那么组成这个几何体的小正方体的个数最多为 .
6、 如图是一个由若干个棱长相等的正方体构成的几何体的三视图。
(1)请写出构成这个几何体的正方体个数;
(2)请根据图中所标的尺寸,计算这个几何体的表面积...。
7、 下图是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,请画出这个几何体
的正视图和左视图。
8、 用小立方块搭成一个几何体,使它的正视图和俯视图如下图所示,这样的几何体只有一种吗?它最多需要多少个
小立方体?最少需要多少个立方体?如何摆放?
a 主视图 左视图
俯视图
3、如图所示的是一个物体的三视图,试回答下列问题: (1)该物体有几层高? (2)该物体的长度是多少?
(3)该物体的最高部分位于哪里在?
4、两点之间,线段最短与勾股定理相结合。
(1)台阶问题 如图,是一个三级台阶,它的每一级的长、宽和高分别等于5cm ,3cm 和1cm ,A 和B 是这个台阶的两个相对的端点,A 点上有一只蚂蚁,想到B 点去吃可口的食物.请你想一想,这只蚂蚁从A 点出发,沿着台阶面爬到B 点,最短线路是多少?
析:展开图如图所示,AB=131252
2
=+cm
(2)圆柱问题 有一圆形油罐底面圆的周长为24m ,高为6m ,一只老鼠从距底面1m 的A 处爬行到对角B 处吃食物,它爬行的最短路线长为多少?
析:展开图如图所示,AB=
1312522=+m 变式1:有一圆柱形油罐,已知油罐周长是12m ,高AB 是5m ,要从点A 处开始绕油罐一周建造梯子,正好到达A
点的正上方B 处,问梯子最短有多长?
A
B
5
31
A
B
5
(3+1)×3=12
A
B
A
B
C
A B
A
B
c。