数学实验迭代:分形
分形图形与分形的产生

分形图形分形理论是非线性科学的主要分支之一,它在计算机科学、化学、生物学、天文学、地理学等众多自然科学和经济学等社会科学中都有广泛的应用。
分形的基本特征是具有标度不变性。
其研究的图形是非常不规则和不光滑的已失去了通常的几何对称性;但是,在不同的尺度下进行观测时,分形几何学却具有尺度上的对称性,或称标度不变性。
研究图形在标度变换群作用下不变性质和不变量对计算机图形技术的发展有重大的意义。
说到分形(fractal),先来看看分形的定义。
分形这个词最早是分形的创始人曼德尔布诺特提来的,他给分形下的定义就是:一个集合形状,可以细分为若干部分,而每一部分都是整体的精确或不精确的相似形。
分形这个词也是他创造的,含有“不规则”和“支离破碎”的意思。
分形的概念出现很早,从十九世纪末维尔斯特拉斯构造的处处连续但处处不可微的函数,到上个世纪初的康托三分集,科赫曲线和谢尔宾斯基海绵。
但是分形作为一个独立的学科被人开始研究,是一直到七十年代曼德尔布诺特提出分形的概念开始。
而一直到八十年代,对于分形的研究才真正被大家所关注。
分形通常跟分数维,自相似,自组织,非线性系统,混沌等联系起来出现。
它是数学的一个分支。
我之前说过很多次,数学就是美。
而分形的美,更能够被大众所接受,因为它可以通过图形化的方式表达出来。
而更由于它美的直观性,被很多艺术家索青睐。
分形在自然界里面也经常可以看到,最多被举出来当作分形的例子,就是海岸线,源自于曼德尔布诺特的著名论文《英国的海岸线有多长》。
而在生物界,分形的例子也比比皆是。
近20年来,分形的研究受到非常广泛的重视,其原因在于分形既有深刻的理论意义,又有巨大的实用价值。
分形向人们展示了一类具有标度不变对称性的新世界,吸引着人们寻求其中可能存在着的新规律和新特征;分形提供了描述自然形态的几何学方法,使得在计算机上可以从少量数据出发,对复杂的自然景物进行逼真的模拟,并启发人们利用分形技术对信息作大幅度的数据压缩。
数学实验中的迭代思想

●作 者 简 介 :叶 传 秀 ( 1 9 7 9一) ,男 , 理 学 硕 士 , 讲 师 ,计 算 机
学 问题 的主 要 方 法 。
以下 Ma t h e ma t i c a语 句 。
2 迭 代 法 的 步骤
利 用 迭 代 算 法 解 决 问题 ,需 要 做 好 以下 三 个 方 面 的
工作 。
I n[ 1 ] := f[ 1 ] = 1 ; f[ 2 ] =1 ;f i b = { } ; f[ n 一] := f[ n一 1 ] +f[ n一 2 ] ; i f b := T a b l e[ f[ i ] ,{ i ,1 ,I 1 } ] ; I n[ 4 ] := i f b[[ 1 2 ] ] 调用实测数据可 以求 出 l 2月 份 的 时 候 兔 子 的 对 数
很 多 分 支 领 域 中 常 用 迭 代 的 方 法 求 得 某 些 问 题 的 近 似 对 成 熟 兔 子 每 月 会 生 一对 兔 子 ,那 么 , 由一 对 初 生 兔 子
解 。它 不 断 地 用 变 量 的 旧 值 ,根 据定 义 的 规 则 递 推 出新 开始 ,一 年 后 会 生 多 少 对兔 子 ?观 察 发 现 ,前 几 个 月 份
3 . 1 F i b o n a c c i 数 列 问 题
现 代 数 学 中的 一 个 重要 思 想 ,在 数 学 的
在1 2 0 2年 ,斐波那 契在他 的著 作 中 ,提出 以下 问题 :
分形原理及其应用

分形原理及其应用
分形是一种几何图形,它具有自相似的特性,即整体的形状和局部的形状都具
有相似性。
分形原理最早由法国数学家Mandelbrot提出,他认为自然界中的许多
现象都可以用分形来描述。
分形原理不仅在数学领域有着广泛的应用,还在生物学、物理学、经济学等领域都有着重要的意义。
在数学领域,分形可以用来描述自然界中的许多复杂现象,比如云彩的形状、
树叶的脉络、河流的分布等。
利用分形原理,我们可以更好地理解这些现象背后的规律。
而在生物学领域,分形原理也有着广泛的应用。
比如,我们可以利用分形原理来研究植物的生长规律,动物的群体分布等。
在物理学领域,分形可以用来描述许多复杂的物理现象,比如分形几何可以用来描述分形维度,分形维度可以用来描述物体的复杂程度。
除了在基础科学领域有着广泛的应用之外,分形原理还在工程技术领域有着重
要的意义。
比如,在图像处理领域,我们可以利用分形原理来进行图像的压缩和识别。
在信号处理领域,分形原理也可以用来进行信号的分析和处理。
在金融领域,分形原理可以用来描述股票价格的波动规律,从而帮助投资者进行风险管理。
总的来说,分形原理是一种非常有用的数学工具,它不仅可以用来描述自然界
中的复杂现象,还可以在工程技术领域有着广泛的应用。
随着科学技术的不断发展,相信分形原理会有更多的应用场景被发现,为人类的发展带来更多的帮助和便利。
希望本文的介绍能够让读者对分形原理有更深入的了解,并且能够在实际应用
中发挥更大的作用。
分形原理的应用领域还在不断扩大,希望大家能够关注并且深入研究,为人类的发展做出更大的贡献。
分形与迭代

实验三迭代与分形一、实验目的与要求1.了解分形几何的基本情况;2.了解通过迭代方式产生分形图的方法;3.了解matlab软件中简单的程序结构;4.掌握matlab软件中plot, fill等函数的基本用法;二、问题描述1.对一个等边三角形,每条边按照Koch曲线的方式进行迭代,产生的分形图称为Koch雪花。
编制程序绘制出它的图形,并计算Koch雪花的面积,以及它的分形维数。
2.自己构造生成元(要有创意),按照图形迭代的方式产生分形图,用计算机编制程序绘制出它的图形,并计算其分形维数。
三、问题分析1.第一题要求我们利用一个等边三角形然后在三角形的基础上利用理论课上的Koch曲线的画法,产生一朵Koch雪花,由于Koch雪花的产生相当于将三条等长的直线分别产生的Koch曲线按照等边三角形的坐标形式组合起来然后在同一个坐标系中表示出来,这就形成了Koch雪花图案。
四、背景知识介绍1.什么是迭代迭代法是常用的一种数学方法,就是将一种规则反复作用在某个对象上,它可以产生非常复杂的行为。
我们这里介绍图形迭代和函数迭代两种方式。
(1)图形迭代。
给定初始图形F0,以及一个替换规则R,将R反复作用在初始图形F0上,产生一个图形序列:R(F0)=F1,R(F1)=F2,R(F2)=F3,…(2)函数迭代。
给定初始值x0,以及一个函数f(x),将f(x)反复作用在初始值x0上,产生一个数列:f(x)=x1,f(x1)=x2,f(x2)=x3,…2.p lot函数介绍plot是最重要最基本的二维曲线绘图指令,基本功能是画折线和曲线。
基本调用格式如下:(1)plot(Y,LineSpec)。
其中,Y一般是数组;而LineSpec是用来指定线型、色彩等的选项字符串,可省略。
本功能是以数组Y作为竖坐标,以数组元素的下标为横坐标,画出一条折线。
当数组元素很多时,就出现连续曲线的效果。
(2) plot(X,Y)。
其中,X、Y一般是相同长度的数组。
分形理论

分形理论及其在水处理工程中的应用凝聚和絮凝是混凝过程的两个重要阶段, 絮凝过程的完善程度直接影响后续处理(沉淀和过滤)的处理效果。
但絮凝体结构具有复杂、易碎和不规则的特性,以往对絮凝的研究中由于缺乏适用的研究方法,通常只考虑混凝剂的投入和出水的混凝效果, 而把混凝体系当作一个―黑箱‖, 不做深入研究。
即使考虑微观过程, 也只是将所有的胶粒抽象为球形, 用已有的胶体化学理论及化学动力学理论去加以解释[1],得出的结论与实验中实际观察到的胶体和絮凝体的特性有较大的差别。
尽管有的研究者在理论推导和形成最终的数学表达式时引入了颗粒系数加以修正, 但理论与实验结果仍难以一致。
而分形理论的提出,填补了絮凝体研究方法的空白。
作为一种新兴的絮凝研究手段, ,分形理论启发了研究人员对絮凝体结构、混凝机理和动力学模型作进一步的认识。
1 分形理论的概述1.1 分形理论的产生1975年[2],美籍法国数学家曼德布罗特(B. B. Mandelbrot)提出了一种可以用于描绘和计算粗糙、破碎或不规则客体性质的新方法,并创造了分形(fractal) 一词来描述。
分形是指一类无规则、混乱而复杂, 但其局部与整体有相似性的体系, 自相似性和标度不变性是其重要特征。
体系的形成过程具有随机性,体系的维数可以不是整数而是分数[3]。
它的外表特征一般是极易破碎、无规则和复杂的,而其内部特征则是具有自相似性和自仿射性。
自相似性是分形理论的核心,指局部的形态和整体的形态相似,即把考察对象的部分沿各个方向以相同比例放大后,其形态与整体相同或相似。
自仿射性是指分形的局部与整体虽然不同, 但经过拉伸、压缩等操作后, 两者不仅相似, 而且可以重叠。
分形理论给部分与整体、无序与有序、有限与无限、简单与复杂、确定性与随机性等概念注入了新的内容,使人们能够以新的观念和手段探索这些复杂现象背后的本质联系。
1.2 絮凝体的分形特性絮凝体的成长是一个随机过程, 具有非线性的特征。
华南理工大学-数学实验报告二

for i=1:n %每条边计算一次
q1=p(i,:); %目前线段的起点坐标
q2=p(i+1,:); %目前线段的终点坐标
d=(q2-q1)/3;
j=j+1;r(j,:)=q1; %原起点存入a
j=j+1;r(j,:)=q1+d; %新1点存入a
n=1; %存放线段的数量,初始值为1
for s=1:k %实现迭代过程,计算所有的结点的坐标
j=0;
for i=1:n %每条边计算一次
q1=l(i,:); %目前线段的起点坐标
q2=l(i+1,:); %目前线段的终点坐标
d=(q2-q1)/3;
j=j+1;e(j,:)=q1; %原起点存入a
j=j+1;e(j,:)=q1+d; %新1点存入a
程序:
function frat2(k) %显示等边三角形迭代k次后的图形
A=[cos(pi/3) sin(pi/3);-sin(pi/3) cos(pi/3)];
%用于计算新的结点
B=[cos(pi/3) -sin(pi/3);sin(pi/3) cos(pi/3)];
%用于计算新的结点
p=[0 0;10 0]; %存放结点坐标
B=[cos(pi/3)-sin(pi/3);sin(pi/3) cos(pi/3)];
得出这两个重要的曲线旋转公式。
感悟:
实现雪花的算法有多种,有时选择的算法虽然繁琐,往往却很好理解和方便调试错误。
d=(q2-q1)/3;
j=j+1;w(j,:)=q1; %原起点存入a
j=j+1;w(j,:)=q1+d; %新1点存入a
2020年华工数学实验实验报告 实验四迭代与分形

制出它的图形。
3.对一个等腰直角三角形,取三条边的中点相连,得到三个与原三角形相似但边
长缩小 1/2 的等腰直角三角形,迭代一次变成下图 3-23,继续迭代得到分型图。
图 3-23 等腰直角三角形一次迭代
三、 实验过程
1. 编程绘制 Minkowski 香肠图形,并计算它的分形维数
代码如下:
function frat1(k) %显示迭代k次后的Minkowski曲线图
p=[0,0;10,0];
%存放结点坐标,每行一个点,初始值为两结点的坐标
n=1;
%存放线段的数量,初始值为1
A=[0,1;-1,0];
%用于计算新的结点
for s=1:k
%实现迭代过程,计算所有的结点的坐标
j=0;
for i=1:n
%每条边计算一次
q1=p(i,:);
%目前线段的起点坐标
q2=p(i+1,:); %目前线段的终点坐标
p=[r;q2];
%重新装载本次迭代后的全部结点
end
plot(p(:,1),p(:,2)) %显示各结点的连线图
axis equal
%各坐标轴同比例
结果如下图:
令 k=1,即运行 frat1(1),可得下图
Minkowski 香肠 1 次迭代 令 k=2,即运行 frat1(2),可得下图
Minkowski 香肠 2 次迭代 令 k=3,即运行 frat1(3),可得下图
%新4点存入r
j=j+1;r(j,:)=q1+2*d-d*A'; %新5点存入r,A'即转置
j=j+1;r(j,:)=q1+3*d-d*A'; %新6点存入r,A'即转置
分形标度律

分形标度律一、分形标度律的起源分形标度律是一个揭示自然界和社会现象中自相似性和尺度相关性的概念。
它的起源可以追溯到20世纪80年代,当时法国数学家曼德布罗特在研究自然界和艺术中的自相似性时,提出了分形几何的概念。
分形几何描述的是具有非整数维度的几何形状,其中每个部分都以某种方式与整体相似。
这种自相似性和尺度相关性在许多自然现象和社会现象中都有所体现,如云彩的形状、山脉的高度分布、人口的分布、网络的连接等等。
二、分形的基本概念分形是指具有自相似性的几何形状,其每个部分都与整体相似。
这种自相似性可以是数学上的精确相似,也可以是统计上的相似。
分形可以是规则的,也可以是非规则的。
规则分形可以通过简单的数学公式或迭代算法来生成,如谢尔宾斯基三角形、科赫曲线等;而非规则分形则无法通过简单的数学公式来描述,只能通过计算机模拟或统计分析来近似描述。
三、分形标度律的数学表述分形标度律是指在一定条件下,某些量与尺度的对数成正比。
这个规律可以用数学公式来表示:y = c * x^n,其中y是某个量,x是尺度,c和n是常数。
在这个公式中,y与x的对数成正比,因此可以得出结论:这个量具有分形标度律。
分形标度律不仅在自然科学中有广泛的应用,在社会科学中也有广泛的应用,如人口统计学、市场营销、网络分析等等。
四、分形标度律的应用领域1.物理学:在物理学中,分形标度律被广泛应用于描述物质的扩散、凝聚和热传导等过程。
例如,在研究布朗运动时,通过测量不同尺度下颗粒的扩散距离,可以验证分形标度律的存在。
2.生物学:在生物学中,分形标度律被广泛应用于描述生物体的结构和功能。
例如,许多生物体的血管、肺部和消化道等都具有分形结构,这种结构有助于提高生物体的生存能力和适应环境的能力。
此外,在研究物种分布和生态系统的稳定性等方面,分形标度律也具有重要的应用价值。
3.地理学:在地理学中,分形标度律被广泛应用于描述地形地貌、城市规模分布和自然灾害等方面的现象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
迭代:分形
姓名:
学号:
班级:数学与应用数学4班
实验报告
实验目的:以迭代的观点介绍分形的基本特性以及生成分形图形的基本方法,使读者在欣赏美丽的分形图案的同时对分形几何这门学科有一个直观的了解,并从哲理的高度理解这门学科诞生的必然,激发读者探寻科学真理的兴趣。
实验环境:Mathematica软件
实验基本理论和方法:
在19世纪末及20世纪初,一些数学家就构造出一些边界形状极不光滑的图形,而这类图形的构造方式都有一个共同的特点,即最终图形F都是按照一定的规则R通过对初始图形不断修改得到的。
其中最有代表性的图形是Koch曲线,Koch曲线的构造方式是:给定一条直线段,将该直线段三等分,并将中间的一段用以该线段为边的等边三
角形的另外两条边代替,得到图形,然后再对图形中的每一小段都按上述方式修改,以至无穷。
则最后得到的极限曲线即是所谓的Koch曲线。
生成元:Koch曲线的修改规则R是将每一条直线段用一条折线代替,我们称为该分形的生成元。
分形的基本特性完全由生成元确定,因此,给定一个生成元,我们就可以生成各种各样的分形图形。
Julia集绘制方法:(1)设定初值p,q,一个最大的迭代次数N,图形的分辨率的大小a,b,和使用的颜色数(如K=16)(或者给定灰度
级L);(2)设定一个上界值;(3)将矩形区域
分成的网格,分别以每个网格点,
,,,作为初值利用riter做迭代(实际上,只需对满足的初值点做迭代)。
如果对所有,,则将图形的像素点用黑
色显示,否则,如果从迭代的某一步开始有,则用
modK种颜色显示相应像素(或者用相应的灰度级显示)。
Mandelbrot集绘制方法:设定一个最大的迭代次数N,图形的分辨率的大小a,b,和使用的颜色数(如K=16)(或者给定灰度级L);(2)
设定一个上界值;(3)将矩形区域分成
的网格,分别以每个网格点,,,
,作为参数值利用riter做迭代(实际上,只需对的初值点做迭代),每次迭代的初值均取为。
如果对所有,,则将图形的像素点用黑色显示,否则,如果从迭代的某一步开始有,则用modK种颜色显示相应像素(或者用相应的灰度级显示)。
IFS迭代绘制分形:设计算机屏幕的可视窗口为
,
按分辨率大小的要求将分成的网格,网格点为,这里
,,
,,
用表示矩形区域,假设我们采取具有
L(如L=256)级灰度的黑白图像绘制,总共的迭代次数为N,其中落于区域中的点的个数为,再记
,,,
则像素的灰度与落于区域中的点数成正比:
,于是即给出了IFS迭代产生的分形的L级灰度图像。
实验内容和步骤及结果分析:
问题一:几个经典的分形图形及其生成元。
Koch雪花曲线
其步骤是:(1)打开Mathematica软件;
(2)输入下列语句:
(3)运行。
结果如下图:
Minkowski香肠
其步骤是:(1)打开Mathematica软件;
(2)输入下列语句:
(3)运行。
结果如下图:
Sierpinski三角形
其步骤是:(1)打开Mathematica软件;
(2)输入下列语句:
(3)运行。
结果如下图:
树木花草
其步骤是:(1)打开Mathematica软件;
(2)输入下列语句:
(3)运行。
结果如下图:
问题二:定义Weierstrass函数如下:
,.
对不同的s值,画出函数的图像,观察图像的不规则性与s的关系,由此猜测Weierstrass函数图像的维数与s的关系。
其步骤是:(1)打开Mathematica软件;
(2)输入下列语句:
(3)运行。
结果如下图:
结果分析:由上图可知,当s的值越大时,图像越有规则。
故Weierstrass 函数图像的维数与s的关系是s的值越大,维数越大。
问题三:编写绘制Julia集和Mandelbrot集的程序及他们的局部放大。
其步骤是:(1)打开Mathematica软件;
(2)输入下列语句:
Julia集:
Mandelbrot集
(3)运行。
结果如下图:
问题四:IFS迭代生成Sierpinski三角形,其程序是:
附录(源程序)见文章具体步骤.。