高考数学试题汇编合情推理与演绎推理

合集下载

高考数学2.1合情推理与演绎推理专题1

高考数学2.1合情推理与演绎推理专题1

高考数学2.1合情推理与演绎推理专题12020.031,已知)(x f 是定义在R 上的函数,对任意R x ∈均有)()1(x f x f -=+,)1()1(x f x f +=-,且当[)2,0∈x 时,22)(x x x f -=。

①求证:)(x f 为周期函数; ②求证:)(x f 为偶函数;③试写出)(x f 的解析式。

(不必写推导过程)2,有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线b ⊆/平面α,直线⊂a 平面α,直线b ∥平面α,则直线b ∥直线a ”的结论显然是错误的,这是因为 ( ) A .大前提错误 B .小前提错误 C .推理形式错误 D .非以上错误3,已知数列3021,,,a a a Λ,其中1021,,,a a a Λ是首项为1,公差为1的等差数列;201110,,,a a a Λ是公差为d的等差数列;302120,,,a a a Λ是公差为2d 的等差数列(0≠d ).(1)若4020=a ,求d ;(2)试写出30a 关于d 的关系式,并求30a 的取值范围;(3)续写已知数列,使得403130,,,a a a Λ是公差为3d 的等差数列,……,依次类推,把已知数列推广为无穷数列. 提出同(2)类似的问题((2)应当作为特例),并进行研究,你能得到什么样的结论?4,已知13a =,133n n n a a a +=+,试通过计算2a ,3a ,4a ,5a 的值,推测出n a =___________.5,用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,反设正确的是( )。

A .假设三内角都不大于60度;B .假设三内角都大于60度;C .假设三内角至多有一个大于60度;D .假设三内角至多有两个大于60度。

6,对“a,b,c 是不全相等的正数”,给出两个判断:①0)()()(222≠-+-+-a c c b b a ;②a c c b b a ≠≠≠,,不能同时成立,下列说法正确的是( )A .①对②错B .①错②对C .①对②对D .①错②错7,一同学在电脑中打出如下若干个圈:○●○○●○○○●○○○○●○○○○○●…若将此若干个圈依此规律继续下去,得到一系列的圈,那么在前120个圈中的●的个数是 。

推理与演绎 高考数学真题分类题库2020解析版 考点28

推理与演绎 高考数学真题分类题库2020解析版  考点28

考点28合情推理与演绎推理一、选择题1.(2020·全国卷Ⅱ文科·T3)如图,将钢琴上的12个键依次记为a1,a2,…,a12.设1≤i<j<k≤12.若k-j=3且j-i=4,则称a i,a j,a k为原位大三和弦;若k-j=4且j-i=3,则称a i,a j,a k为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为()A.5B.8C.10D.15【命题意图】本题主要考查列举法的应用,意在考查学生对新定义的理解和应用.【解析】选C.根据题意可知,原位大三和弦满足:k-j=3,j-i=4.所以i=1,j=5,k=8;i=2,j=6,k=9;i=3,j=7,k=10;i=4,j=8,k=11;i=5,j=9,k=12.原位小三和弦满足:k-j=4,j-i=3.所以i=1,j=4,k=8;i=2,j=5,k=9;i=3,j=6,k=10;i=4,j=7,k=11;i=5,j=8,k=12.故个数之和为10.2.(2020·浙江高考·T10)设集合S,T,S⊆N*,T⊆N*,S,T中至少有两个元素,且S,T满足:①对于任意x,y∈S,若x≠y,都有xy∈T;②对于任意x,y∈T,若x<y,则∈S;下列命题正确的是()A.若S有4个元素,则S∪T有7个元素B.若S有4个元素,则S∪T有6个元素C.若S有3个元素,则S∪T有4个元素D.若S有3个元素,则S∪T有5个元素【命题意图】本题主要考查集合的基本运算与推理证明等基础知识,考查基本思维与辨别能力,体现逻辑推理与数学抽象等核心素养.【解析】选A.对于AB,构造S={q,q2,q3,q4},则T={q3,q4,q5,q6,q7},q≠1且q∈N*,则S∪T={q,q2,q3,q4,q5,q6,q7}共7个元素,对于CD,不妨设S={a,b,c},且a<b<c,则T={ab,ac,cb},且bc>ac>ab,,,∈S,显然>,>,①=b,=a,=a,则S={a,a2,a3},T={a3,a4,a5},S∪T有5个元素,②=c⇒a=1,=b,有2种可能,(ⅰ)=a,b=c与S为集合矛盾,(ⅱ)=b,b2=c,S=1,,2,T=,2,3,S∪T有4个元素,所以,当S中有三个元素时,S∪T的元素个数可为4,可为5,不唯一.。

高考数学一轮复习专题训练—合情推理与演绎推理

高考数学一轮复习专题训练—合情推理与演绎推理

合情推理与演绎推理考纲要求1.了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用;2.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理;3.了解合情推理和演绎推理之间的联系和差异.知识梳理1.合情推理(1)定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由一般到特殊的推理.(2)“三段论”是演绎推理的一般模式,包括:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况作出的判断.1.合情推理包括归纳推理和类比推理,其结论是猜想,不一定正确,若要确定其正确性,则需要证明.2.在进行类比推理时,要从本质上去类比,只从一点表面现象去类比,就会犯机械类比的错误.3.应用三段论解决问题时,要明确什么是大前提、小前提,如果前提与推理形式是正确的,结论必定是正确的.若大前提或小前提错误,尽管推理形式是正确的,但所得结论是错误的.诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.()(2)由平面三角形的性质推测空间四面体的性质,这是一种合情推理.()(3)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.()(4)在演绎推理中,只要符合演绎推理的形式,结论就一定正确.()答案(1)×(2)√(3)×(4)×解析(1)类比推理的结论不一定正确.(3)平面中的三角形与空间中的四面体作为类比对象较为合适.(4)演绎推理是在大前提、小前提和推理形式都正确时,得到的结论一定正确.2.如图,根据图中的数构成的规律,得a表示的数是()A.12 B.48 C.60 D.144答案 D解析由题干图中的数据可知,每行除首末两数外,其他数等于其上一行两肩上的数字的乘积.所以a=12×12=144.3.在等差数列{a n}中,若a10=0,则有a1+a2+…+a n=a1+a2+…+a19-n(n<19,且n∈N*)成立.类比上述性质,在等比数列{b n}中,若b9=1,则存在的等式为________.答案b1b2…b n=b1b2…b17-n(n<17,且n∈N*)解析根据类比推理的特点可知:等比数列和等差数列类比,在等差数列中是和,在等比数列中是积,故有b1b2…b n=b1b2…b17-n(n<17,且n∈N*).4.(2020·贵阳一模)有一段“三段论”推理是这样的:对于可导函数f(x),若f′(x0)=0,则x=x0是函数f(x)的极值点,因为f(x)=x3在x=0处的导数值为0,所以x=0是f(x)=x3的极值点,以上推理()A.大前提错误B.小前提错误C.推理形式错误D.结论正确答案 A解析大前提是“对于可导函数f(x),若f′(x0)=0,则x=x0是函数f(x)的极值点”,不是真命题,因为对于可导函数f(x),如果f′(x0)=0,且满足在x0附近左右两侧导函数值异号,那么x=x0才是函数f(x)的极值点,所以大前提错误.故选A.5.(2021·郑州质检)某学校甲、乙、丙、丁四人竞选校学生会主席职位,在竞选结果出来前,甲、乙、丙、丁四人对竞选结果做了如下预测:甲说:丙或丁竞选成功;乙说:甲和丁均未竞选上;丙说:丁竞选成功;丁说:丙竞选成功.若这四人中有且只有两人预测的正确,则成功竞选学生会主席职位的是()A.甲B.乙C.丙D.丁答案 D解析若成功竞选的是甲,则甲、乙、丙、丁四人的预测均错误,故不合题意;若成功竞选的是乙,则甲、丙、丁三人的预测错误,乙的预测正确,故不合题意;若成功竞选的是丙,则甲、乙、丁三人的预测正确,丙的预测错误,故不合题意;若成功竞选的是丁,则甲、丙两人的预测正确,乙、丁两人的预测错误,符合题意.故选D.6.(2020·桂林模拟)已知函数f(x)满足f(1)=f(2)=1,且对任意n∈N*恒有f(n+2)=f(n+1)+f(n),观察下列等式:f(1)+f(2)=2=3-1,f(1)+f(2)+f(3)=4=5-1,f(1)+f(2)+f(3)+f(4)=7=8-1,f(1)+f(2)+f(3)+f(4)+f(5)=12=13-1,可推测f(1)+f(2)+f(3)+…+f(n+1)=________.答案f(n+3)-1解析根据题意可得f(3)=2,f(4)=3,f(5)=5,f(6)=8,f(7)=13,因为f(1)+f(2)=2=3-1=f(4)-1,f(1)+f(2)+f(3)=4=5-1=f(5)-1,f(1)+f(2)+f(3)+f(4)=7=8-1=f(6)-1,f(1)+f(2)+f(3)+f(4)+f(5)=12=13-1=f(7)-1,可推测f(1)+f(2)+f(3)+…+f(n+1)=f(n+3)-1.故答案为f(n+3)-1.考点一归纳推理角度1与图形变化有关的推理【例1】中国有句名言“运筹帷幄之中,决胜千里之外”,其中的“筹”原意是指《孙子算经》中记载的算筹,古代是用算筹来进行计算的,算筹是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放有纵横两种形式,如图,当表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位数用横式表示,以此类推.例如6 613用算筹表示就是,则8 335用算筹可表示为()答案 B解析各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位数用横式表示,则8 335用算筹可表示为.故选B.角度2与数字或式子有关的推理【例2】 已知32+27=2327,33+326=33326,34+463=43463,……,3 2 021+mk=2 0213m k ,则k +1m 2=________.答案 2 021解析 由已知32+27=2327,33+326=33326,34+463=43463,……,可归纳出3n +n n 3-1=n 3nn 3-1, 又因为32 021+mk =2 0213m k,所以m =2 021,k =2 0213-1, 所以k +1m 2=2 0213-1+12 0212=2 021.感悟升华 归纳推理问题的常见类型及解题策略体以某种方式相似的形体称为分形.分形是一种具有自相似特性的现象、图象或者物理过程.标准的自相似分形是数学上的抽象,迭代生成无限精细的结构.也就是说,在分形中,每一组成部分都在特征上和整体相似,只仅仅是变小了一些而已,谢尔宾斯基三角形就是一种典型的分形,是由波兰数学家谢尔宾斯基在1915年提出的,按照如下规律依次在一个黑色三角形内去掉小三角形,则当n =6时,该黑色三角形内去掉小三角形个数为( )A .81B .121C .364D .1 093(2)观察下列等式:⎝⎛⎭⎫sin π3-2+⎝⎛⎭⎫sin 2π3-2=43×1×2; ⎝⎛⎭⎫sin π5-2+⎝⎛⎭⎫sin 2π5-2+⎝⎛⎭⎫sin 3π5-2+⎝⎛⎭⎫sin 4π5-2 =43×2×3; ⎝⎛⎭⎫sin π7-2+⎝⎛⎭⎫sin 2π7-2+⎝⎛⎭⎫sin 3π7-2+…+⎝⎛⎭⎫sin 6π7-2=43×3×4; ⎝⎛⎭⎫sin π9-2+⎝⎛⎭⎫sin 2π9-2+⎝⎛⎭⎫sin 3π9-2+…+⎝⎛⎭⎫sin 8π9-2=43×4×5; …… 照此规律,⎝⎛⎭⎫sin π2n +1-2+⎝⎛⎭⎫sin 2π2n +1-2+⎝⎛⎭⎫sin 3π2n +1-2+…+⎝⎛⎭⎫sin 2n π2n +1-2=________. 答案 (1)C (2)4n n +13解析 (1)由图可知,每一个图形中去掉小三角形的个数等于前一个图形去掉小三角形个数的3倍加1,所以,n =1时,a 1=1; n =2时,a 2=3+1=4; n =3时,a 3=3×4+1=13; n =4时,a 4=3×13+1=40; n =5时,a 5=3×40+1=121; n =6时,a 6=3×121+1=364,故选C. (2)观察前4个等式,由归纳推理可知⎝⎛⎭⎫sin π2n +1-2+⎝⎛⎭⎫sin 2π2n +1-2+…+⎝⎛⎭⎫sin 2n π2n +1-2=43×n ×(n +1)=4n n +13.考点二 类比推理【例3】 (1)在平面上,设h a ,h b ,h c 是△ABC 三条边上的高,P 为三角形内任一点,P 到相应三边的距离分别为P a ,P b ,P c ,我们可以得到结论:P a h a +P b h b +P ch c =1.把它类比到空间中,则三棱锥中的类似结论为________.(2)已知命题:在平面直角坐标系xOy 中,椭圆x 2a 21+y 2b 21=1(a 1>b 1>0),△ABC 的顶点B 在椭圆上,顶点A ,C 分别为椭圆的左、右焦点,椭圆的离心率为e 1,则sin A +sin C sin B =1e 1,现将该命题类比到双曲线中,△ABC 的顶点B 在双曲线上,顶点A ,C 分别为双曲线的左、右焦点,设双曲线的方程为x 2a 22-y 2b 22=1(a 2>0,b 2>0),双曲线的离心率为e 2,则有________.答案 (1)P a h a +P b h b +P c h c +P dh d =1(2)|sin A -sin C |sin B =1e 2解析 (1)设h a ,h b ,h c ,h d 分别是三棱锥A -BCD 四个面上的高,P 为三棱锥A -BCD 内任一点,P 到相应四个面的距离分别为P a ,P b ,P c ,P d ,于是可以得出结论:P a h a +P b h b +P c h c +P dh d =1.(2)因为△ABC 的顶点B 在双曲线x 2a 22-y 2b 22=1(a 2>0,b 2>0)上,顶点A ,C 分别是双曲线的左、右焦点,所以有|BA -BC |=2a 2, 所以1e 2=2a 22c 2=|BA -BC |AC,由正弦定理可得BC sin A =AC sin B =AB sin C ,所以|sin A -sin C |sin B =1e 2.感悟升华 1.进行类比推理,应从具体问题出发,通过观察、分析、联想进行类比,提出猜想.其中找到合适的类比对象是解题的关键.2.类比推理常见的情形有平面与空间类比;低维的与高维的类比;等差数列与等比数列类比;实数的运算与向量的运算类比;圆锥曲线间的类比等.【训练2】(2020·赣州一模)我们把平面内与直线垂直的非零向量称为直线的法向量.在平面直角坐标系中,利用求动点轨迹方程的方法,可以求出过点A(-2,3)且法向量为n=(4,-1)的直线(点法式)方程为4×(x+2)+(-1)×(y-3)=0,化简得4x-y+11=0.类比以上方法,在空间直角坐标系中,经过点B(2,3,4)且法向量为n=(-1,-2,1)的平面(点法式)方程为________.答案x+2y-z-4=0解析将平面中的运算类比到空间中的运算得:经过点B(2,3,4)且法向量为n=(-1,-2,1)的平面(点法式)方程为(-1)×(x-2)+(-2)×(y-3)+1×(z-4)=0,化简得x+2y-z-4=0,即平面的方程为x+2y-z-4=0.考点三演绎推理【例4】(2020·河南六校联考)自主招生联盟成形于2009年清华大学等五校联考,主要包括“北约”联盟,“华约”联盟,“卓越”联盟和“京派”联盟.调查某高中学校学生自主招生报考的情况,得到如下结果:①报考“北约”联盟的学生,都没报考“华约”联盟;②报考“华约”联盟的学生,也报考了“京派”联盟;③报考“卓越”联盟的学生,都没报考“京派”联盟;④不报考“卓越”联盟的学生,就报考“华约”联盟.根据上述调查结果,下列结论错误的是()A.没有同时报考“华约”和“卓越”联盟的学生B.报考“华约”和“京派”联盟的考生一样多C.报考“北约”联盟的考生也报考了“卓越”联盟D.报考“京派”联盟的考生也报考了“北约”联盟答案 D解析设该校报考“北约”联盟,“华约”联盟,“京派”联盟和“卓越”联盟的学生分别为集合A,B,C,D,报考自主招生的总学生为U,则由题意,知A∩B=∅,B⊆C,D∩C=∅,∁U D=B,∴A⊆D,B=C,B∩D=∅.选项A,B∩D=∅,正确;选项B,B=C,正确;选项C,A⊆D,正确,故选D.感悟升华解决逻辑推理问题的两种方法:(1)假设反证法:先假设题中给出的某种情况是正确的,并以此为起点进行推理.如果推理导致矛盾,则证明此假设是错误的,再重新提出一个假设继续推理,直到得到符合要求的结论为止.(2)枚举筛选法:即不重复、不遗漏地将问题中的有限情况一一枚举,然后对各种情况逐个检验,排除一些不可能的情况,逐步归纳梳理,找到正确答案.【训练3】(1)(2019·全国Ⅱ卷)在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为()A.甲、乙、丙B.乙、甲、丙C.丙、乙、甲D.甲、丙、乙(2)某学习小组由学生和教师组成,人员构成同时满足以下三个条件:(ⅰ)男学生人数多于女学生人数;(ⅱ)女学生人数多于教师人数;(ⅲ)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为________.②该小组人数的最小值为________.答案(1)A(2)①6②12解析(1)由于三人成绩互不相同且只有一个人预测正确,故若甲预测正确,则乙、丙预测错误,于是三人按成绩由高到低的次序为甲、乙、丙;若甲预测错误,则甲、乙按成绩由高到低的次序为乙、甲,又假设丙预测正确,则乙、丙按成绩由高到低的次序为丙、乙,于是甲、乙、丙按成绩由高到低排序为丙、乙、甲,从而乙的预测也正确,与事实矛盾;若甲、丙预测错误,则可推出乙的预测也错误.综上所述,三人按成绩由高到低的次序为甲、乙、丙.故选A.(2)设男学生人数为x ,女学生人数为y ,教师人数为z ,由已知得⎩⎪⎨⎪⎧x >y ,y >z ,2z >x ,且x ,y ,z 均为正整数.①当z =4时,8>x >y >4,∴x 的最大值为7,y 的最大值为6,故女学生人数的最大值为6. ②x >y >z >x 2,当x =3时,条件不成立,当x =4时,条件不成立,当x =5时,5>y >z >52,此时z =3,y =4.∴该小组人数的最小值为12.基础巩固一、选择题1.已知数列{a n }中,a 1=1,n ≥2时,a n =a n -1+2n -1,依次计算a 2,a 3,a 4后,猜想a n 的表达式是( ) A .a n =3n -1 B .a n =4n -3 C .a n =n 2 D .a n =3n -1答案 C解析 a 1=1,a 2=4,a 3=9,a 4=16,猜想a n =n 2.2.观察(x 2)′=2x ,(x 4)′=4x 3,(cos x )′=-sin x ,由归纳推理得:若定义在R 上的函数f (x )满足f (-x )=f (x ),记g (x )为f (x )的导函数,则g (-x )=( ) A .f (x ) B .-f (x ) C .g (x ) D .-g (x )答案 D解析 由已知得偶函数的导函数为奇函数,故g (-x )=-g (x ).3.(2020·合肥一模)2019年10月1日,为了庆祝中华人民共和国成立70周年,小明、小红、小金三人以国庆为主题各自独立完成一幅十字绣赠送给当地的村委会,这三幅十字绣分别命名为“鸿福齐天”“国富民强”“兴国之路”,为了弄清“国富民强”这一作品是谁制作的,村支书对三人进行了问话,得到回复如下:小明说:“鸿福齐天”是我制作的;小红说:“国富民强”不是小明制作的,就是我制作的;小金说:“兴国之路”不是我制作的.若三人的说法有且仅有一个是正确的,则“鸿福齐天”的制作者是()A.小明B.小红C.小金D.小金或小明答案 B解析依题意,三个人制作的所有情况如下所示:12345 6鸿福齐天小明小明小红小红小金小金国富民强小红小金小金小明小红小明兴国之路小金小红小明小金小明小红若小明的说法正确,则均不满足;若小红的说法正确,则4满足;若小金的说法正确,则3满足.故“鸿福齐天”的制作者是小红,故选B.4.(2021·安徽六校测试)如图,第1个图形由正三角形扩展而成,共12个顶点.第n个图形由正n+2边形扩展而来,其中n∈N*,则第n个图形的顶点个数是()A.(2n+1)(2n+2) B.3(2n+2)C.2n(5n+1) D.(n+2)(n+3)答案 D解析(1)由已知中的图形可以得到:当n=1时,图形的顶点个数为12=3×4,当n=2时,图形的顶点个数为20=4×5,当n=3时,图形的顶点个数为30=5×6,当n=4时,图形的顶点个数为42=6×7,……由此可以推断:第n个图形的顶点个数为(n+2)(n+3),故选D.5.下列推理是归纳推理的是()A.A,B为定点,动点P满足|P A|+|PB|=2a>|AB|,则P点的轨迹为椭圆B.由a1=1,a n=3n-1,求出S1,S2,S3,猜想出数列{a n}的前n项和S n的表达式C.由圆x2+y2=r2的面积πr2,猜想出椭圆x2a2+y2b2=1(a>b>0)的面积S=πabD.科学家利用鱼的沉浮原理制造潜艇答案 B解析从S1,S2,S3猜想出数列{a n}的前n项和S n,是从特殊到一般的推理,所以B是归纳推理,故应选B.6.“对数函数是非奇非偶函数,f(x)=log2|x|是对数函数,因此f(x)=log2|x|是非奇非偶函数”,以上推理()A.结论正确B.大前提错误C.小前提错误D.推理形式错误答案 C解析本命题的小前提是f(x)=log2|x|是对数函数,但是这个小前提是错误的,因为f(x)=log2|x|不是对数函数,它是一个复合函数,只有形如y=log a x(a>0且a≠1)的才是对数函数.故选C.7.若等差数列{a n}的前n项之和为S n,则一定有S2n-1=(2n-1)a n成立.若等比数列{b n}的前n项之积为T n,类比等差数列的性质,则有()A.T2n-1=(2n-1)+b n B.T2n-1=(2n-1)-b nC.T2n-1=(2n-1)b n D.T2n-1=b2n-1n答案 D解析 在等差数列{a n }中,a 1+a 2n -1=2a n , a 2+a 2n -2=2a n ,…,故有S 2n -1=(2n -1)a n , 在等比数列{b n }中,b 1b 2n -1=b 2n ,b 2·b 2n -2=b 2n ,…,故有T 2n -1=b 1b 2…b 2n -1=b 2n -1n. 8.(2020·昆明质检)斐波那契数列,又称黄金分割数列,指的是这样一个数列:1,1,2,3,5,8,13,21,34,55,89,…,在数学上,斐波那契数列{a n }定义为:a 1=1,a 2=1,a n +2=a n +a n +1,斐波那契数列有种看起来很神奇的巧合,如根据a n +2=a n +a n +1可得a n =a n +2- a n +1,所以a 1+a 2+…+a n =(a 3-a 2)+(a 4-a 3)+…+(a n +2-a n +1)=a n +2-a 2=a n +2-1,类比这一方法,可得a 21+a 22+…+a 210=( )A .714B .1 870C .4 895D .4 896答案 C解析 将a n +1=a n +2-a n 两边同乘a n +1,可得a 2n +1=a n +2a n +1-a n +1a n ,则a 21+a 22+…+a 210=a 21+(a 2a 3-a 2a 1)+(a 3a 4-a 2a 3)+…+(a 10a 11-a 9a 10)=1-a 2a 1+a 10a 11=1-1+55×89=4 895.故选C. 二、填空题9.观察下列式子:1+122<32,1+122+132<53,1+122+132+142<74,…,根据以上式子可以猜想:1+122+132+…+12 0202<________. 答案4 0392 020解析 由题意得,不等式右边分数的分母是左边最后一个分数的分母的底数,分子是一个以3为首项,2为公差的等差数列中的项,可以推出1+122+132+…+1n 2<2n -1n ,所以1+122+132+…+12 0202<2 020×2-12 020=4 0392 020. 10.某种树的分枝生长规律如图所示,第1年到第5年的分枝数分别为1,1,2,3,5,则预计第10年树的分枝数为________.答案 55解析 由2=1+1,3=1+2,5=2+3知,从第三项起,每一项都等于前两项的和,则第6年为8,第7年为13,第8年为21,第9年为34,第10年为55.11.若P 0(x 0,y 0)在椭圆x 2a 2+y 2b 2=1(a >b >0)外,过P 0作椭圆的两条切线,切点为P 1,P 2,则切点弦P 1P 2所在的直线方程是x 0x a 2+y 0yb 2=1,那么对于双曲线,则有如下命题:若P (x 0,y 0)在双曲线x 2a 2-y 2b 2=1(a >0,b >0)外,过P 0作双曲线的两条切线,切点为P 1,P 2,则切点弦P 1P 2所在直线的方程是________. 答案x 0x a 2-y 0y b 2=1 解析 类比椭圆的切点弦方程可得双曲线x 2a 2-y 2b 2=1的切点弦方程为x 0x a 2-y 0yb2=1.12.如下分组的正整数对:第1组为{(1,2),(2,1)},第2组为{(1,3),(3,1)},第3组为{(1,4),(2,3),(3,2),(4,1)},第4组为{(1,5),(2,4),(4,2),(5,1)},……,则第40组的第21个数对为________. 答案 (22,20)解析 由题意可得第1组数对中的各数的和为3,第2组数对中各数的和为4,第3组数对中各数的和为5,第4组数对中各数的和为6, ……第n 组数对中各数的和为n +2,且各个数对中无重复数字, 可得第40组数对中各数的和为42, 则第40组的第21个数对为(22,20).能力提升13.天干地支纪年法源于中国,中国自古便有十天干与十二地支.十天干即甲、乙、丙、丁、戊、己、庚、辛、壬、癸;十二地支即子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,例如,第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”,…,以此类推,排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”,“乙亥”,然后地支回到“子”重新开始,即“丙子”,以此类推.已知1949年为“己丑”年,那么到中华人民共和国成立70周年时为( ) A .“丙酉”年 B .“戊申”年 C .“己申”年 D .“己亥”年答案 D解析 中华人民共和国成立70周年时为2019年,从1949到2019共有71个数,若把天干排成一列,记为{a n },且a 1=“己”,则a 71=a 7×10+1=a 1=“己”;若把地支排成一列,记为{b n },且b 1=“丑”,则b 71=b 5×12+11=b 11=“亥”.所以中华人民共和国成立70周年时为“己亥”年,故选D.14.我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”它体现了一种无限与有限的转化过程.比如在表达式1+11+11+…中“…”代表无数次重复,但原式却是个定值,它可以通过方程1+1x =x求得x =5+12.类比上述过程,3+23+2…=( ) A .3 B .13+12C .6D .2 2答案 A解析 由已知代数式的求值方法:先换元,再列方程,解方程,求解(舍去负根), 令3+23+2…=m (m >0),则两边平方得,3+23+23+2…=m 2,即3+2m =m 2,解得m =3或m =-1(舍去).故选A. 15.(2021·武汉模拟)观察下列数表: 2 4 68 10 12 1416 18 20 22 24 26 28 30 …设数100为该数表中的第n 行,第m 列,则mn =________. 答案 114解析 观察数表可知第n 行的数的个数为a n =2n -1,则前n 行的所有数的个数之和S n =1-2n1-2=2n -1,数表中的数是由正偶数排列而成的,而数100是第50个数,令2n -1=50,解得5<n <6,则100在这个数表中的第6行,S 5=31,则100在这个数表中的第19列,即n =6,m =19,所以mn =6×19=114.16.(2021·豫南九校质量考评)已知函数f (x )=1x +1x +1+1x +2,由f (x -1)=1x -1+1x +1x +1是奇函数,可得函数f (x )的图象关于点(-1,0)对称,类比这一结论,可得函数g (x )=x +2x +1+x +3x +2+…+x +7x +6的图象关于点________对称.答案 ⎝⎛⎭⎫-72,6 解析 由题意得g (x )-6=x +2x +1-1+x +3x +2-1+x +4x +3-1+x +5x +4-1+x +6x +5-1+x +7x +6-1=1x +1+1x +2+1x +3+1x +4+1x +5+1x +6, 则g ⎝⎛⎭⎫x -72-6=1x -72+1+1x -72+2+1x -72+3+1x -72+4+1x -72+5+1x -72+6=1x -52+1x -32+1x -12+1x +12+1x +32+1x +52, 令g ⎝⎛⎭⎫x -72-6=h (x ), ∴h (-x )=1-x -52+1-x -32+1-x -12+1-x +12+1-x +32+1-x +52=-h (x ),∴h (x )是奇函数,∴函数g (x )=x +2x +1+x +3x +2+…+x +7x +6的图象关于点⎝⎛⎭⎫-72,6对称.。

高考数学总复习 第十二单元第一节合情推理与演绎推理

高考数学总复习 第十二单元第一节合情推理与演绎推理

第十二单元 第一节合情推理与演绎推理一、选择题1.(精选考题·福州质检)将正奇数1,3,5,7,…排成五列(如下表),按此表的排列规律,89所在的位置是( )A .第一列B .第二列C .第三列D .第四列【解析】 正奇数从小到大排,则89居第45位,而45=4×11+1,故89位于第四列. 【答案】 D2.已知{b n }为等比数列,b 5=2,则b 1·b 2·b 3·b 4·b 5·b 6·b 7·b 8·b 9=29.若{a n }为等差数列,a 5=2,则{a n }的类似结论为( )A .a 1·a 2·a 3·…·a 9=29B .a 1+a 2+a 3+…+a 9=29C .a 1·a 2·a 3·…·a 9=2×9D .a 1+a 2+a 3+…+a 9=2×9【解析】 根据等差数列中“若m +n =p +q ,则a m +a n =a p +a q ”,等比数列中“若m +n =p +q ,则a m ·a n =a p ·a q ”,可得a 1+a 2+a 3+…+a 9=2×9.【答案】 D3.(精选考题·深圳调研)已知扇形的弧长为α,半径为r ,类比三角形的面积公式S =底×高2,可推知扇形面积公式S 扇等于( ) A.r 22 B.l 22 C.lr2D .不可类比 【解析】 可将扇形的弧长与三角形的底边相类比,将扇形的半径与三角形的高相类比. 【答案】 C4.定义A *B ,B *C ,C *D ,D *B 分别对应下列图形:那么下列图形中,可以分别表示A *D ,A *C 的是( )A .(1)(2)B .(2)(3)C .(2)(4)D .(1)(4)【解析】 依据条件可知:A B C ———D ∴A *D ,A *C 分别对应(2),(4). 【答案】 C 5.观察等式:sin 230°+cos 260°+sin30°cos60°=34;sin 220°+cos 250°+sin20°cos50°=34;sin 215°+cos 245°+sin15°cos45°=34.由此得出以下推广命题,不正确的是( )A .sin 2α+cos 2β+sin αcos β=34B .sin 2(α-30°)+cos 2α+sin(α-30°)cos α=34C .sin 2(α-15°)+cos 2(α+15°)+sin(α-15°)cos(α+15°)=34D .sin 2α+cos 2(α+30°)+sin αcos(α+30°)=34【解析】 条件给出的三个等式,角的特点为两已知角的差为常数30°,而选项A 不具备此特点,故A 项错误.【答案】 A6.已知x ∈R +,有不等式x +1x≥2x ·1x =2,x +4x 2=x 2+x 2+4x 2≥33x 2·x 2·4x2=3,…,启发我们可以推广为x +a xn ≥n +1(n ∈N *,a >0),则a 的值为( )A .n nB .2nC .n 2D .2n -1【解析】 由前面两个式子可得x +a x n =x n +x n +…+x n +a xn≥(n +1)错误!=n +1,∴a =n n. 【答案】 A7.如果f (x +y )=f (x )·f (y )且f (1)=1,则f 2f 1+f 4f 3+…+f 2 010f 2 009+f 2 012f 2 011等于( )A .1 005B .1 006C .2 008D .2 010 【解析】 ∵f (x +y )=f (x )·f (y ), ∴f n +1f n=f (1)=1,∴f 2f 1+f 4f 3+…+f 2 012f 2 011=1 006f (1)=1 006. 【答案】 B 二、填空题8.(精选考题·南京第一次调研)五位同学围成一圈依次循环报数,规定:第一位同学首次报出的数为2,第二位同学首次报出的数为3,之后每位同学所报出的数都是前两位同学所报出数的乘积的个位数字,则第2 010个被报出的数为________.【解析】 根据规则,五位同学第一轮报出的数依次为2,3,6,8,8,第二轮报出的数依次为4,2,8,6,8,第三轮报出的数依次为8,4,2,8,6,故除第一、第二位同学第一轮报出的数为2,3外,从第三位同学开始报出的数依次按6,8,8,4,2,8循环,则第2 010个被报出的数为4.【答案】 49.在三棱锥S -ABC 中,SA ⊥SB ,SB ⊥SC ,SA ⊥SC ,且SA 、SB 、SC 和底面ABC 所成的角分别为α1、α2、α3,三侧面△SBC 、△SAC 、△SAB 面积分别为S 1、S 2、S 3.类比三角形中的正弦定理,给出空间中的一个猜想________.【解析】 与三角形三条边的边长对应的是四面体三个侧面的面积,与三角形的三个角对应的是SA 、SB 、SC 与底面ABC 所成的三个线面角α1、α2、α3,由此类比三角形中的正弦定理,得出四面体S -ABC 中相应关系.【答案】S 1sin α1=S 2sin α2=S 3sin α310.(精选考题·深圳模拟)现有一个关于平面图形的命题:如图,同一个平面内有两个边长都是a 的正方形,其中一个的某顶点在另一个的中心,则这两个正方形重叠部分的面积恒为a 24.类比到空间:有两个棱长均为a 的正方体,其中一个的某顶点在另一个的中心,则这两个正方体重叠部分的体积恒为________.【解析】 本题考查类比推理知识.可取特殊情况研究,当将一个正方体的一个顶点垂直放在另一个正方体的中心时,易知两正方体的重叠部分占整个正方体的18,故其体积为a 38.【答案】a 38三、解答题11.若函数f (x )=e x+e -x2,g (x )=e x -e-x2,分别计算g (4)-2f (2)g (2)和g (6)-2f (3)g (3)的值,由此归纳出函数f (x )和g (x )的对于所有实数x 都成立的一个等式,并加以证明.【解析】 g (4)-2f (2)g (2)=0,g (6)-2f (3)g (3)=0, 由此归纳出g (2x )-2f (x )g (x )=0.证明如下:g (2x )-2f (x )g (x )=e 2x -e -2x 2-2·e x +e -x 2·e x -e-x 2=e 2x -e -2x 2-e 2x -e -2x 2=0.12.已知双曲线x 24-y 29=1,F 1,F 2分别是双曲线的两个焦点,点M 在双曲线上.(1)若∠F 1MF 2=90°,求△F 1MF 2的面积; (2)若∠F 1MF 2=120°,△F 1MF 2的面积是多少?若∠F 1MF 2=60°,△F 1MF 2的面积又是多少? (3)观察上述运算结果,你能看出随∠F 1MF 2的变化,△F 1MF 2的面积将怎样变化吗(不要求证明)?【解析】 (1)由双曲线方程知a =2,b =3,c =13, 设|MF 1|=r 1,|MF 2|=r 2(r 1>r 2), 由双曲线定义,有r 1-r 2=2a =4,两边平方得r 12+r 22-2r 1r 2=16,即|F 1F 2|2-4S △F 1MF 2=16,也即52-16=4S △F 1MF 2,解得S △F 1MF 2=9. (2)若∠F 1MF 2=120°,在△MF 1F 2中,由余弦定理得|F 1F 2|2=r 12+r 22-2r 1r 2cos120°,∴|F 1F 2|2=(r 1-r 2)2+3r 1r 2,∴r 1r 2=12,求得S △F 1MF 2=12r 1r 2sin120°=33,同理可求得若∠F1MF2=60°,S△F1MF2=9 3.(3)由以上结果猜想,随着∠F1MF2的增大,△F1MF2的面积将减小.。

高考数学复习合情推理与演绎推理理含解析

高考数学复习合情推理与演绎推理理含解析

高考数学复习核心素养提升练三十八合情推理与演绎推理(25分钟45分)一、选择题(每小题5分,共35分)1.已知数列{a n}的前n项和为S n,则a1=1,S n=n2a n,试归纳猜想出S n的表达式为( ) A.S n= B.S n=C.S n=D.S n=【解析】选A.S n=n2a n=n2(S n-S n-1),所以S n=S n-1(n≥2,n∈N*),S1=a1=1,则S2=,S3==,S4=.所以猜想得S n=.2.(2018·武汉模拟)演绎推理“因为对数函数y=log a x(a>0且a≠1)是增函数,而函数y=lo x是对数函数,所以y=lo x是增函数”所得结论错误的原因是( )A.大前提错误B.小前提错误C.推理形式错误D.大前提和小前提都错误【解析】选A.因为当a>1时,y=log a x在定义域内单调递增,当0<a<1时,y=log a x在定义域内单调递减,所以大前提错误.【变式备选】(2018·南阳模拟)某单位安排甲、乙、丙三人在某月1日至12日值班,每人4天.甲说:我在1日和3日都有值班;乙说:我在8日和9日都有值班;丙说:我们三人各自值班的日期之和相等.据此可判断丙必定值班的日期是( )A.2日和5日B.5日和6日C.6日和11日D.2日和11日【解析】选C.1~12日期之和为78,三人各自值班的日期之和相等,故每人值班四天的日期之和是26,甲在1日和3日都有值班,故甲余下的两天只能是10日和12日;而乙在8日和9日都有值班,8+9=17,所以11日只能是丙去值班了.余下还有2日、4日、5日、6日、7日五天,显然,6日只能是丙去值班了.3.下列类比推理中,得到的结论正确的是 ( )A.把log a(x+y)与a(b+c)类比,则有log a(x+y)=log a x+log a yB.向量a,b的数量积运算与实数a,b的运算性质|ab|=|a|·|b|类比,则有|a·b|=|a||b|C.把(a+b)n与(ab)n类比,则有(a+b)n=a n+b nD.把长方体与长方形类比,则有长方体的对角线平方等于长宽高的平方和【解析】选D.根据对数运算法则,可得A不正确;利用向量的数量积运算,可得B不正确;利用乘方运算,可得C不正确;把长方体与长方形类比,则有长方体的对角线平方等于长宽高的平方和,可知D正确.4.设三角形ABC的三边长分别为a,b,c,面积为S,内切圆半径为r,则r=;类比这个结论可知:若四面体S-ABC的四个面的面积分别为S1,S2,S3,S4,内切球的半径为r,四面体S-ABC的体积为V,则r等于( )A. B.C. D.【解析】选C.设四面体的内切球的球心为O,则V=V O-ABC+V O-SAB+V O-SAC+V O-SBC,即V=S1r+S2r+S3r+S4r,所以r=.5.(2019·渭南模拟)古希腊人常用小石子在沙滩上摆成各种形状来研究数,例如:他们研究过图中的1,3,6,10,…,由于这些数能够表示成三角形,故将其称为三角形数,由以上规律,知这些三角形数从小到大形成一个数列{a n},那么a10的值为( )A.45B.55C.65D.66【解析】选B.第1个图中,小石子有1个,第2个图中,小石子有3=1+2个,第3个图中,小石子有6=1+2+3个,第4个图中,小石子有10=1+2+3+4个,…故第10个图中,小石子有1+2+3+…+10==55个,即a10=55.6.如图所示,是某小朋友在用火柴拼图时呈现的图形,其中第1个图形用了3根火柴,第2个图形用了9根火柴,第3个图形用了18根火柴,…,则第 2 018个图形用的火柴根数为( )A.2 014×2 017B.2 015×2 016C.3 024×2 018D.3 027×2 019【解析】选D.由题意,第1个图形需要火柴的根数为3×1;第2个图形需要火柴的根数为3×(1+2);第3个图形需要火柴的根数为3×(1+2+3);…由此,可以推出第n个图形需要火柴的根数为3×(1+2+3+…+n).所以第 2 018个图形所需火柴的根数为3×(1+2+3+…+2 018)=3×=3 027×2 019.7.在锐角三角形ABC中,下列结论正确的是( )A.sinA<cosBB.tanA>tanBC.sinA+sinB+sinC>cosA+cosB+cosCD.sinA+sinB+sinC<cosA+cosB+cosC【解析】选C.因为△ABC为锐角三角形,所以A+B>,所以A>-B,因为y=sin x在上是增函数,所以sin A>sin =cos B,同理可得sin B>cos C,sin C>cos A,所以sin A+sin B+sin C>cos A+cos B+cos C.二、填空题(每小题5分,共10分)8.(2019·咸阳模拟)观察下列式子:<2,+<,++<8,+++<,…,根据以上规律,第n(n∈N*)个不等式是________.【解析】根据所给不等式可得第n个不等式是++…+<.答案:++…+<9.在数列{a n}中,a1=2,a n+1=λa n+λn+1+(2-λ)2n(n∈N*),其中λ>0,{a n}的通项公式是________.【解析】a1=2,a2=2λ+λ2+(2-λ)·2=λ2+22,a3=λ(λ2+22)+λ3+(2-λ)·22=2λ3+23,a4=λ(2λ3+23)+λ4+(2-λ)·23=3λ4+24.由此猜想出数列{a n}的通项公式为a n=(n-1)λn+2n.答案:a n=(n-1)λn+2n(15分钟30分)1.(5分)若大前提是:任何实数的平方都大于0,小前提是:a∈R,结论是:a2>0,那么这个演绎推理出错在( )A.大前提B.小前提C.推理过程D.没有出错【解析】选A.要分析一个演绎推理是否正确,主要观察所给的大前提、小前提和推理形式是否都正确,只有这几个方面都正确,才能得到这个演绎推理正确.本题中大前提:任何实数的平方都大于0,是不正确的.2.(5分)如图是今年元宵花灯展中一款五角星灯连续旋转闪烁所成的三个图形,照此规律闪烁,下一个呈现出来的图形是( )【解析】选A.依照该五角星连续呈现阴影的两个角按逆时针方向旋转的规律性知,下一个呈现出来的图形是A.【变式备选】如图所示是由长为1的小木棒拼成的图形,其中第n个图形由n个正方形组成:观察图形,根据第1个、第2个、第3个、第4个图形中小木棒的根数,得出第n个图形中,小木棒的根数为______.【解析】观察题干中图形可得,第1个、第2个、第3个、第4个图形中小木棒的根数分别为4,7,10,13,而4=3×1+1,7=3×2+1,10=3×3+1,13=3×4+1,由归纳推理得,第n个图形中,小木棒的根数为3n+1.答案:3n+13.(5分)我国古代数学名著《九章算术》中割圆术有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”其体现的是一种无限与有限的转化过程,比如在中“…”即代表无限次重复,但原式却是个定值x,这可以通过方程=x确定x=2,则1+= ( )A. B.C. D.【解析】选C.1+=x,即1+=x,即x2-x-1=0,解得x=,故1+=.4.(15分)祖暅是我国南北朝时的数学家,是祖冲之的儿子.他提出了一条原理:“幂势既同,则积不容异.”这里的“幂”指水平截面的面积,“势”指高.这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体体积相等.设由椭圆+=1(a>b>0)所围成的平面图形绕y轴旋转一周后,得一橄榄状的几何体(称为椭球体)(如图),课本中介绍了应用祖暅原理求球体体积公式的方法,请类比此法,求出椭球体体积.【解析】椭圆的长半轴长为a,短半轴长为b,现构造两个底面半径为b,高为a的圆柱,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,根据祖暅原理得出椭球体的体积V=2(V圆柱-V圆锥)=2(π×b2a-π×b2a)=πb2a.【变式备选】已知O是△ABC内任意一点,连接AO,BO,CO并延长,分别交对边于A′,B′,C′,则++=1,这是一道平面几何题,其证明常采用“面积法”:++=++==1.请运用类比思想猜想,对于空间中的四面体V-BCD,存在什么类似的结论,并用“体积法”证明.【解析】结论:在四面体V-BCD中,任取一点O,连接VO,DO,BO,CO并延长,分别交四个面于E,F,G,H点.则+++=1.证明如下:在四面体O-BCD与V-BCD中,设其高分别为h1,h,则===.同理,=;=;=,所以+++===1.。

高考数学真题 推理与证明

高考数学真题 推理与证明

12.2推理与证明考点一合情推理与演绎推理1.(2017课标Ⅱ理,7,5分)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩答案D本题主要考查逻辑推理能力.由题意可知,“甲看乙、丙的成绩,不知道自己的成绩”说明乙、丙两人是一个优秀一个良好,则乙看了丙的成绩,可以知道自己的成绩;丁看了甲的成绩,也可以知道自己的成绩.故选D.2.(2014北京理,8,5分)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有()A.2人B.3人C.4人D.5人答案B设学生人数为n,因为成绩评定只有“优秀”“合格”“不合格”三种情况,所以当n≥4时,语文成绩至少有两人相同,若此两人数学成绩也相同,与“任意两人成绩不全相同”矛盾;若此两人数学成绩不同,则此两人有一人比另一人成绩好,也不满足条件.因此:n<4,即n≤3.当n=3时,评定结果分别为“优秀,不合格”“合格,合格”“不合格,优秀”,符合题意,故n=3,选B.3.(2012江西理,6,5分)观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,……,则a10+b10=()A.28B.76C.123D.199答案C解法一:由a+b=1,a2+b2=3得ab=-1,代入后三个等式中符合,则a10+b10=(a5+b5)2-2a5b5=123,故选C. 解法二:令a n=a n+b n,则a1=1,a2=3,a3=4,a4=7,……得a n+2=a n+a n+1,从而a6=18,a7=29,a8=47,a9=76,a10=123,故选C.评析本题考查了合情推理和递推数列,考查了推理论证和运算求解能力.4.(2016北京,8,5分)袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则( ) A.乙盒中黑球不多于丙盒中黑球 B.乙盒中红球与丙盒中黑球一样多 C.乙盒中红球不多于丙盒中红球 D.乙盒中黑球与丙盒中红球一样多答案 B 解法一:假设袋中只有一红一黑两个球,第一次取出后,若将红球放入了甲盒,则乙盒中有一个黑球,丙盒中无球,A 错误;若将黑球放入了甲盒,则乙盒中无球,丙盒中有一个红球,D 错误;同样,假设袋中有两个红球和两个黑球,第一次取出两个红球,则乙盒中有一个红球,第二次必然拿出两个黑球,则丙盒中有一个黑球,此时乙盒中红球多于丙盒中的红球,C 错误.故选B.解法二:设袋中共有2n 个球,最终放入甲盒中k 个红球,放入乙盒中s 个红球.依题意知,甲盒中有(n-k)个黑球,乙盒中共有k 个球,其中红球有s 个,黑球有(k-s)个,丙盒中共有(n-k)个球,其中红球有(n-k-s)个,黑球有(n-k)-(n-k-s)=s 个.所以乙盒中红球与丙盒中黑球一样多.故选B.5.(2017北京文,14,5分)某学习小组由学生和教师组成,人员构成同时满足以下三个条件: (i)男学生人数多于女学生人数; (ii)女学生人数多于教师人数; (iii)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为 ; ②该小组人数的最小值为 . 答案 ①6 ②12解析 设男学生人数为x,女学生人数为y,教师人数为z,由已知得{x >y,y >z,2z >x,且x,y,z 均为正整数.①当z=4时,8>x>y>4,∴x 的最大值为7,y 的最大值为6, 故女学生人数的最大值为6.②x>y>z>x 2,当x=3时,条件不成立,当x=4时,条件不成立,当x=5时,5>y>z>52,此时z=3,y=4. ∴该小组人数的最小值为12.6.(2016山东文,12,5分)观察下列等式: (sin π3)-2+(sin2π3)-2=43×1×2;(sin π5)-2+(sin 2π5)-2+(sin 3π5)-2+(sin 4π5)-2=43×2×3; (sin π7)-2+(sin2π7)-2+(sin 3π7)-2+…+(sin 6π7)-2=43×3×4; (sin π9)-2+(sin 2π9)-2+(sin 3π9)-2+…+(sin 8π9)-2=43×4×5;…… 照此规律,(sin π2n+1)-2+(sin 2π2n+1)-2+(sin 3π2n+1)-2+…+(sin 2nπ2n+1)-2= .答案4n(n+1)3解析 观察前4个等式,由归纳推理可知(sinπ2n+1)-2+(sin 2π2n+1)-2+…+(sin 2nπ2n+1)-2=43×n×(n+1)=4n(n+1)3. 评析 本题主要考查了归纳推理,认真观察题中给出的4个等式即可得出结论.7.(2015福建理,15,4分)一个二元码是由0和1组成的数字串x 1x 2…x n (n ∈N *),其中x k (k=1,2,…,n)称为第k 位码元.二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0).已知某种二元码x 1x 2…x 7的码元满足如下校验方程组:{x 4⊕x 5⊕x 6⊕x 7=0,x 2⊕x 3⊕x 6⊕x 7=0,x 1⊕x 3⊕x 5⊕x 7=0,其中运算⊕定义为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0.现已知一个这种二元码在通信过程中仅在第k 位发生码元错误后变成了1101101,那么利用上述校验方程组可判定k 等于 . 答案 5解析 设a,b,c,d ∈{0,1},在规定运算法则下满足:a ⊕b ⊕c ⊕d=0,可分为下列三类情形:①4个1:1⊕1⊕1⊕1=0,②2个1:1⊕1⊕0⊕0=0,③0个1:0⊕0⊕0⊕0=0,因此,错码1101101通过校验方程组可得: 由x 4⊕x 5⊕x 6⊕x 7=0,∴1⊕1⊕0⊕1≠0; 由x 2⊕x 3⊕x 6⊕x 7=0,∴1⊕0⊕0⊕1=0; 由x 1⊕x 3⊕x 5⊕x 7=0,∴1⊕0⊕1⊕1≠0, ∴错码可能出现在x 5,x 7上,若x 5=0,则检验方程组都成立,故k=5.若x 7=0,此时x 2⊕x 3⊕x 6⊕x 7≠0,故k ≠7. 综上分析,x 5为错码,故k=5.评析 本题主要考查推理,考查学生分析、解决问题的能力,属中等难度题. 8.(2015陕西文,16,5分)观察下列等式 1-12=121-12+13-14=13+14 1-12+13-14+15-16=14+15+16 ……据此规律,第n 个等式可为 . 答案 1-12+13-14+…+12n -1-12n =1n+1+1n+2+ (12)解析 规律为等式左边共有2n 项且等式左边分母分别为1,2,…,2n,分子为1,奇数项为正、偶数项为负,即为1-12+13-14+…+12n -1-12n ;等式右边共有n 项且分母分别为n+1,n+2,...,2n,分子为1,即为1n+1+1n+2+ (12).所以第n 个等式可为1-12+13-14+…+12n -1-12n =1n+1+1n+2+ (12). 9.(2014课标Ⅰ,理14,文14,5分)甲、乙、丙三位同学被问到是否去过A,B,C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市; 丙说:我们三人去过同一城市.由此可判断乙去过的城市为 . 答案 A解析 由于甲、乙、丙三人去过同一城市,而甲没有去过B 城市,乙没有去过C 城市,因此三人去过的同一城市应为A,而甲去过的城市比乙多,但没去过B 城市,所以甲去过的城市数应为2,乙去过的城市应为A. 10.(2014陕西理,14,5分)观察分析下表中的数据:多面体 面数(F) 顶点数(V)棱数(E) 三棱柱 5 6 9 五棱锥 6 6 10 立方体6812猜想一般凸多面体中F,V,E 所满足的等式是 . 答案 F+V-E=2解析 观察表中数据,并计算F+V 分别为11,12,14,又其对应E 分别为9,10,12,容易观察并猜想F+V-E=2. 11.(2014北京文,14,5分)顾客请一位工艺师把A,B 两件玉石原料各制成一件工艺品.工艺师带一位徒弟完成这项任务.每件原料先由徒弟完成粗加工,再由工艺师进行精加工完成制作,两件工艺品都完成后交付顾客.两件原料每道工序所需时间(单位:工作日)如下:原料时间工序粗加工 精加工 原料A 9 15 原料B621则最短交货期为 个工作日. 答案 42解析 工序流程图如图所示:则最短交货期为6+21+15=42个工作日.12.(2014安徽文,12,5分)如图,在等腰直角三角形ABC 中,斜边BC=2√2.过点A 作BC 的垂线,垂足为A 1;过点A 1作AC 的垂线,垂足为A 2;过点A 2作A 1C 的垂线,垂足为A 3;…,依此类推.设BA=a 1,AA 1=a 2,A 1A 2=a 3,…,A 5A 6=a 7,则a 7= .答案14解析 由BC=2√2得AB=a 1=2⇒AA 1=a 2=√2⇒A 1A 2=a 3=√2×√22=1,由此可归纳出{a n }是以a 1=2为首项,√22为公比的等比数列,因此a 7=a 1×q 6=2×(√22)6=14.13.(2013安徽理,14,5分)如图,互不相同的点A 1,A 2,…,A n ,…和B 1,B 2,…,B n ,…分别在角O 的两条边上,所有A n B n 相互平行,且所有梯形A n B n B n+1A n+1的面积均相等.设OA n =a n .若a 1=1,a 2=2,则数列{a n }的通项公式是 .答案 a n =√3n -2解析 记△OA 1B 1的面积为S,则△OA 2B 2的面积为4S. 从而四边形A n B n B n+1A n+1的面积均为3S. 即得△OA n B n 的面积为S+3(n-1)S=(3n-2)S.∴a n 2=3n-2,即a n =√3n -2.评析 △OA n B n 的面积构成一个等差数列,而△OA n B n 与△OA 1B 1的面积比为a n 2,从而得到{a n}的通项公式.本题综合考查了平面几何、数列的知识.考点二 直接证明与间接证明1.(2014山东理,4,5分)用反证法证明命题“设a,b 为实数,则方程x 3+ax+b=0至少有一个实根”时,要做的假设是( )A.方程x 3+ax+b=0没有实根 B.方程x 3+ax+b=0至多有一个实根 C.方程x 3+ax+b=0至多有两个实根 D.方程x 3+ax+b=0恰好有两个实根答案 A 因为“方程x 3+ax+b=0至少有一个实根”等价于“方程x 3+ax+b=0的实根的个数大于或等于1”,因此,要做的假设是方程x 3+ax+b=0没有实根.2.(2015北京理,20,13分)已知数列{a n }满足:a 1∈N *,a 1≤36,且a n+1={2a n ,a n ≤18,2a n -36,a n >18(n=1,2,…).记集合M={a n |n ∈N *}.(1)若a 1=6,写出集合M 的所有元素;(2)若集合M 存在一个元素是3的倍数,证明:M 的所有元素都是3的倍数; (3)求集合M 的元素个数的最大值. 解析 (1)6,12,24.(2)证明:因为集合M 存在一个元素是3的倍数,所以不妨设a k 是3的倍数. 由a n+1={2a n ,a n ≤18,2a n -36,a n >18可归纳证明对任意n ≥k,a n 是3的倍数.如果k=1,则M 的所有元素都是3的倍数.如果k>1,因为a k =2a k-1或a k =2a k-1-36, 所以2a k-1是3的倍数,于是a k-1是3的倍数. 类似可得,a k-2,…,a 1都是3的倍数.从而对任意n ≥1,a n 是3的倍数,因此M 的所有元素都是3的倍数. 综上,若集合M 存在一个元素是3的倍数,则M 的所有元素都是3的倍数. (3)由a 1≤36,a n ={2a n -1,a n -1≤18,2a n -1-36,a n -1>18可归纳证明a n ≤36(n=2,3,…).因为a 1是正整数,a 2={2a 1,a 1≤18,2a 1-36,a 1>18,所以a 2是2的倍数,从而当n ≥3时,a n 是4的倍数.如果a 1是3的倍数,由(2)知对所有正整数n,a n 是3的倍数, 因此当n ≥3时,a n ∈{12,24,36}, 这时M 的元素个数不超过5.如果a 1不是3的倍数,由(2)知对所有正整数n,a n 不是3的倍数, 因此当n ≥3时,a n ∈{4,8,16,20,28,32}, 这时M 的元素个数不超过8.当a 1=1时,M={1,2,4,8,16,20,28,32}有8个元素. 综上可知,集合M 的元素个数的最大值为8.考点三 数学归纳法1.(2017浙江,22,15分)已知数列{x n }满足:x 1=1,x n =x n+1+ln(1+x n+1)(n ∈N *). 证明:当n ∈N *时,(1)0<x n+1<x n ; (2)2x n+1-x n ≤x n x n+12; (3)12n -1≤x n ≤12n -2.证明 本题主要考查数列的概念、递推关系与单调性基础知识,不等式及其应用,同时考查推理论证能力、分析问题和解决问题的能力. (1)用数学归纳法证明:x n >0. 当n=1时,x 1=1>0.假设n=k 时,x k >0,那么n=k+1时,若x k+1≤0,则0<x k =x k+1+ln(1+x k+1)≤0,矛盾,故x k+1>0. 因此x n >0(n ∈N *).所以x n =x n+1+ln(1+x n+1)>x n+1.因此0<x n+1<x n (n ∈N *).(2)由x n =x n+1+ln(1+x n+1)得,x n x n+1-4x n+1+2x n =x n+12-2x n+1+(x n+1+2)ln(1+x n+1).记函数f(x)=x 2-2x+(x+2)ln(1+x)(x ≥0),f '(x)=2x 2+xx+1+ln(1+x)>0(x>0). 函数f(x)在[0,+∞)上单调递增,所以f(x)≥f(0)=0,因此x n+12-2x n+1+(x n+1+2)ln(1+x n+1)=f(x n+1)≥0,故2x n+1-x n ≤x n x n+12(n ∈N *). (3)因为x n =x n+1+ln(1+x n+1)≤x n+1+x n+1=2x n+1,所以x n ≥12n -1.由x n x n+12≥2x n+1-x n 得1x n+1-12≥2(1x n -12)>0, 所以1x n -12≥2(1x n -1-12)≥…≥2n-1(1x 1-12)=2n-2, 故x n ≤12n -2.综上,12n -1≤x n ≤12n -2(n ∈N*).方法总结 1.证明数列单调性的方法.①差比法:作差a n+1-a n ,然后分解因式,判断符号,或构造函数,利用导数求函数的值域,从而判断其符号. ②商比法:作商a n+1a n ,判断an+1a n与1的大小,同时注意a n 的正负. ③数学归纳法.④反证法:例如求证:n ∈N *,a n+1<a n ,可反设存在k ∈N *,有a k+1≥a k ,从而导出矛盾. 2.证明数列的有界性的方法.①构造法:构造函数,求函数的值域,得数列有界. ②反证法. ③数学归纳法. 3.数列放缩的方法.①裂项法:利用不等式性质,把数列的第k 项分裂成某数列的相邻两项差的形式,再求和,达到放缩的目的. ②累加法:先把a n+1-a n 进行放缩.例:a n+1-a n ≤q n,则有n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1)≤a 1+q+q 2+…+q n-1.③累乘法:先把a n+1a n 进行放缩.例:an+1a n≤q(q>0), 则有n ≥2时,a n =a 1·a2a 1·a 3a 2·…·a n a n -1≤a 1q n-1(其中a 1>0).④放缩为等比数列:利用不等式性质,把非等比数列{a n}放缩成等比数列{b n},求和后,再进行适当放缩.2.(2014重庆理,22,12分)设a1=1,a n+1=√a n2-2a n+2+b(n∈N*).(1)若b=1,求a2,a3及数列{a n}的通项公式;(2)若b=-1,问:是否存在实数c使得a2n<c<a2n+1对所有n∈N*成立?证明你的结论.解析(1)解法一:a2=2,a3=√2+1.由题设条件知(a n+1-1)2=(a n-1)2+1.从而{(a n-1)2}是首项为0,公差为1的等差数列,故(a n-1)2=n-1,即a n=√n-1+1(n∈N*).解法二:a2=2,a3=√2+1,可写为a1=√1-1+1,a2=√2-1+1,a3=√3-1+1.因此猜想a n=√n-1+1.下用数学归纳法证明上式:当n=1时结论显然成立.假设n=k时结论成立,即a k=√k-1+1,则a k+1=√(a k-1)2+1+1=√(k-1)+1+1=√(k+1)-1+1.这就是说,当n=k+1时结论成立.所以a n=√n-1+1(n∈N*).(2)解法一:设f(x)=√(x-1)2+1-1,则a n+1=f(a n).令c=f(c),即c=√(c-1)2+1-1,解得c=14.下用数学归纳法证明加强命题a2n<c<a2n+1<1.当n=1时,a2=f(1)=0,a3=f(0)=√2-1,所以a2<14<a3<1,结论成立.假设n=k时结论成立,即a2k<c<a2k+1<1.易知f(x)在(-∞,1]上为减函数,从而c=f(c)>f(a2k+1)>f(1)=a2,即1>c>a2k+2>a2.再由f(x)在(-∞,1]上为减函数得c=f(c)<f(a2k+2)<f(a2)=a3<1.故c<a2k+3<1,因此a2(k+1)<c<a2(k+1)+1<1.这就是说,当n=k+1时结论成立.综上,符合条件的c存在,其中一个值为c=14.解法二:设f(x)=√(x -1)2+1-1,则a n+1=f(a n ). 先证:0≤a n ≤1(n ∈N *).①当n=1时,结论明显成立. 假设n=k 时结论成立,即0≤a k ≤1. 易知f(x)在(-∞,1]上为减函数, 从而0=f(1)≤f(a k )≤f(0)=√2-1<1.即0≤a k+1≤1.这就是说,当n=k+1时结论成立.故①成立. 再证:a 2n <a 2n+1(n ∈N *).②当n=1时,a 2=f(1)=0,a 3=f(a 2)=f(0)=√2-1,有a 2<a 3,即n=1时②成立. 假设n=k 时,结论成立,即a 2k <a 2k+1. 由①及f(x)在(-∞,1]上为减函数,得 a 2k+1=f(a 2k )>f(a 2k+1)=a 2k+2, a 2(k+1)=f(a 2k+1)<f(a 2k+2)=a 2(k+1)+1.这就是说,当n=k+1时②成立.所以②对一切n ∈N *成立.由②得a 2n <√a 2n 2-2a 2n +2-1, 即(a 2n +1)2<a 2n 2-2a 2n +2,因此a 2n <14.③又由①、②及f(x)在(-∞,1]上为减函数得f(a 2n )>f(a 2n+1), 即a 2n+1>a 2n+2,所以a 2n+1>√a 2n+12-2a 2n+1+2-1,解得a 2n+1>14.④综上,由②、③、④知存在c=14使a 2n <c<a 2n+1对一切n ∈N *成立.评析 本题考查由递推公式求数列的通项公式,数学归纳法,等差数列等内容.用函数的观点解决数列问题是处理本题的关键.。

高考数学《合理推理与演绎推理》综合复习练习题(含答案)

高考数学《合理推理与演绎推理》综合复习练习题(含答案)

高考数学《合理推理与演绎推理》综合复习练习题(含答案)一、单选题1.甲、乙、丙做同一道题,仅有一人做对.甲说:“我做错了.”乙说:“甲做对了.”丙说:“我做错了.”如果三人中只有一人说的是真的,以下判断正确的是( ) A .甲做对了B .乙做对了C .丙做对了D .以上说法均不对2.观察下列算式:122=,224=,328=,4216=,…,则20222的个位数字是( ) A .2B .4C .6D .83.第24届冬季奥林匹克运动会,将于2022年2月4日~2月20日在北京和张家口联合举行.为了更好地安排志愿者工作,现需要了解每个志愿者掌握的外语情况,已知志愿者小明只会德、法、日、英四门外语中的一门.甲说,小明不会法语,也不会日语:乙说,小明会英语或法语;丙说,小明会德语.已知三人中只有一人说对了,由此可推断小明掌握的外语是( ) A .德语B .法语C .日语D .英语4.下面几种推理为合情推理的是( ) ①由圆的性质类比出球的性质;②由11,21,n a a n ==-凭记忆求出2=n S n ;③,M N 是平面内两定点,平面内动点P 满足2PM PN a MN +=>(a 为常数),得点P 的轨迹是椭圆;④由三角形的内角和是180,四边形内角和是360,五边形的内角和是540,由此归纳出凸多边形的内角和是(2)180n -⋅. A .①④B .②③C .①②④D .①②③④5.在2022年北京冬奥会冰雪项目中,小将苏翊鸣荣获单板滑雪男子大跳台金牌.李先生由于当天有事,错过了观看苏翊鸣夺冠的高光时刻.赛后,他向当天观看比赛的甲、乙、丙、丁四名观众询问了比赛情况,甲说:“2号或3号选手获得金牌”,乙说:“1号和3号选手都没有获得金牌”,丙说:“3号选手获得了金牌”,丁说:“2号选手获得金牌”.若这四名观众中有2人说的与实际赛况不符,则小将苏翊鸣是( ) A .1号选手B .2号选手C .3号选手D .4号选手6.甲、乙、丙三人共同收看第24届冬奥会某项目的决赛,他们了解到该项目的参赛运动员来自丹麦、瑞典、挪威、芬兰、冰岛这五个北欧国家,三人做了一个猜运动员国籍的游戏.他们选定了某位运动员,甲说:此运动员来自丹麦或挪威;乙说:此运动员一定不是瑞典和挪威的;丙说:此运动员来自芬兰或冰岛.最后证实,甲、乙、丙三人之中有且只有一人的猜测是正确的,则此运动员来自( ) A .丹麦B .挪威C .芬兰D .冰岛7.给出如下“三段论”的推理过程:已知'()f x 是函数()f x 的导函数,如果0'()0f x =,那么0x x =是函数()f x 的极值点,(大前提);因为函数3()f x x =在0x =处的导数值'(0)0f =,(小前提);所以0x =是函数3()f x x =的极值点.(结论)则上述推理错误的原因是( ) A .大前提错误B .小前提错误C .大前提、小前提都错误D .推理形式错误8.已知数列{}n a 的前n 项和为n S ,且11a =,2n n S n a =*()n N ∈,可归纳猜想出n a 的表达式为A .21nn + B .311n n -+ C .212n n ++ D .22n n+ 9.任取一个正整数,若是奇数,就将该数乘3加1;若是偶数,就将该数除以2.反复进行上述运算,经过有限次步骤,必进入循环圈1→4→2→1.这就是数学史上著名的“冰雹猜想”(又称“角谷猜想”).如果对于正整数m ,经过n 步变换,第一次到达1,就称为n 步“雹程”.如取3m =,由上述运算法则得出:3→10→5→16→8→4→2→1,共需经过7个步骤变成1,得7n =.则下列命题错误的是( ) A .若2n =,则m 只能是4 B .当17m =时,12n =C .随着m 的增大,n 也增大D .若7n =,则m 的取值集合为{}3,20,21,12810.观察下面数阵,则该数阵中第9行,从左往右数的第20个数是( ) A .545B .547C .549D .55111.在一个正三角形的三边上,分别取一个距顶点最近的十等分点,连接形成的三角形也为正三角形(如图1所示,图中共有2个正三角形),然后在较小的正三角形中,以同样的方式形成一个更小的正三角形,如此重复多次,可得到如图2所示的优美图形(图中共有11个正三角形),这个过程称之为迭代.如果在边长为27的正三角形三边上,分别取一个三等分点,连接成一个较小的正三角形,然后迭代得到如图3所示的图形(图中共有7个正三角形),则图3中最小的正三角形面积为( )A .336B .312C .34D .93412.数学源于生活,数学在生活中无处不在!学习数学就是要学会用数学的眼光看现实世界!1906年瑞典数学家科赫构造了能够描述雪花形状的图案,他的做法如下:从一个边长为2的正三角形开始,把每条边分成三等份,然后以各边的中间一段为底边,分别向外作正三角形,再去掉底边(如图①、②、③等).反复进行这一过程,就得到雪花曲线.不妨记第(1,2,3,)n n =⋅⋅⋅个图中的图形的周长为n a ,则5a =( ) A .2569B .25627C .51227D .51281二、填空题13.运动会上甲、乙、丙、丁四人参加100米比赛,A ,B ,C ,D 四位旁观者预测比赛结果,A 说:甲第三,乙第四;B 说:甲第二,丙第一;C 说:乙第二,丙第三;D 说:乙第三,丁第一.比赛结束后发现,四位旁观者每人预测的两句话中,有且只有一句是正确的,比赛结果没有并列名次,则甲是第______名. 14.观察下列各式:2318-=, 27148-=,2111120-=,2151124-=, …据此规律,推测第n 个式子为___________.15.甲、乙、丙三位同学,其中一位是班长,一位是体育委员,一位是学习委员,已知丙的年龄比学委大,甲与体委的年龄不同,体委比乙的年龄小.据此推断班长是________. 16.如图,连接△ABC 的各边中点得到一个新的111A B C △,又连接111A B C △的各边中点得到222A B C △,如此无限继续下去,得到一系列三角形:ABC ,111A B C △,222A B C △,…,这一系列三角形趋向于一个点M .已知A (0,0),B (3,0),C (2,2),则点M 的坐标是______.三、解答题17.已知数列{}n a 中,112a =,()12n n n a n a +=+. (1)求2a ,3a ,4a ,5a 的值;(2)根据(1)的计算结果,猜想{}n a 的通项公式,并用数学归纳法证明.18.已知数列1,112+,1123++,11234+++, (1123)+++⋅⋅⋅+(n *∈N )的前n 项和为n S .(1)求2S ,3S ,4S ;(2)猜想前n 项和n S ,并证明.19.阅读以下案例,并参考此案例化简0112233434343434C C C C C C C C +++.案例:观察恒等式()()()523111x x x +=++左右两边2x 的系数.因为等式右边()()()()230122031223222333311C C C C C C C x x x x x x x ++=+++++,所以等式右边2x 的系数为011223232323C C C C C C ++, 又等式左边2x 的系数为25C ,所以01122322323235C C C C C C C ++=.20.下表称为杨辉三角,是二项式系数在三角形中的一种几何排列,是我国古代数学伟大成就之一.杨辉三角中,我们称最上面一行为第0行,第1行有2个数,第2行有3个数,…,第10行有11个数.(1)求杨辉三角中第10行的各数之和;(2)求杨辉三角中第2行到第15行各行第3个数之和.21.已知2223sin 30sin 90sin 1502++=,2223sin 5sin 65sin 1252++=,2223sin 21sin 81sin 141.2++=通过观察等式的规律,写出一般性规律的命题,并给出证明.22.设()1n f n n +=,()()1ng n n =+,*N n ∈.(1)当1,2,3,4n =时,试比较()()f ng n 与1的大小; (2)根据(1)的结果猜测一个一般性结论,并加以证明.23.开普勒说:“我珍视类比胜过任何别的东西,它是我最可信赖的老师,它能揭示自然界的秘密.”波利亚也曾说过:“类比是一个伟大的引路人,求解立体几何问题往往有赖于平面几何中的类比问题.”在教材选修1—2第二章《推理与证明》的学习中,我们知道,很多平面图形可以推广为空间图形.如正三角形可以推广到正四面体,圆可以推广到球,平行四边形可以推广到平行六面体等.如图1,在三角形ABC 中,已知AB AC ⊥,若AD BC ⊥,则2AB BD BC =⋅.类比该命题:(1)如图2,三棱锥A —BCD 中,已知AD ⊥平面ABC ,若A 点在三角形BCD 所在的平面内的射影为M ,你能得出什么结论; (2)判断该命题的真假,并证明.24.在平面直角坐标系内,我们知道ax +by +c =0(a 、b 不全为0)是直线的一般式方程.而在空间直角坐标系内,我们称ax +by +cz +d =0(a 、b 、c 不全为0)为平面的一般式方程......... (1)求由点()2,0,0A ,()0,3,0B ,()0,0,4C 确定的平面的一般式方程;(2)证明:(),,n a b c =为平面ax +by +cz +d =0(a 、b 、c 不全为0)的一个法向量;(3)若平面α的一般式方程为ax +by +cz +d =0(a 、b 、c 不全为0),()000,,P x y z为平面α外一点,求点P 到平面α的距离.参考答案1.C2.B3.B4.A5.C6.B7.A8.D9.C10.C11.C12.C 13.二14.()()2411821n n n --=- 15.乙 16.52,33⎛⎫ ⎪⎝⎭17.(1)因为112a =,()12n n n a n a +=+,所以211233a a ==. 因为223a =,所以322344a a ==. 因为334a =,所以433455a a ==. 因为445a =,所以544566a a ==. (2)根据(1)的计算结果,猜想数列{}n a 的通项公式为1n na n =+. 证明如下:①当n =1时,等式成立. ②假设当n =k 时,1k ka k =+成立. 当n =k +1时,()()111221121k k k k k k a kk a k k k k +++====+++++⋅+. 则n =k +1时,等式成立.由①②可知,对任意的n +∈N ,1n na n =+. 18.(1)2141123S =+=+,32131232S S =+=++,431812345S S =+=+++;(2)猜想前n 项,21n n S n =+证明:当1n =时,111S ==,成立, 当*,n k k N =∈时,假设命题成立,即21k kS k =+, 那么当1n k =+时,11211123 (1)k k k k S S a k k ++=+=+++++++, ()()()()()()()()222221221121212k k k k k k k k k k k +++=+==+++++++ ()()()2121211k k k k ++==+++, 即当1n k =+时,命题成立,综上可知当*n ∈N 时,命题成立,即21n nS n =+. 19.观察恒等式()()()734111x x x +=++左右两边3x 的系数. 因为等式右边()()3411++x x()()01223304132234333344444C C C C C C C C C =+++++++x x x x x x x ,所以等式右边3x 的系数为0112233434343434C C C C C C C C +++, 又等式左边3x 的系数为37C ,所以011223343343434347C C C C C C C C C +++=.20.(1)杨辉三角中第10行的各数之和为0121010101010C +C C C +++102=1024=. (2)杨辉三角中第2行到第15行各行第3个数之和为22222234515C C C C C +++++32222334515C C C C C =+++++ 322244515C C C C =++++3225515C C C =+++321515C C ==+316C =161514560321⨯⨯==⨯⨯.21.一般形式:()()2223sin sin 60sin 1202ααα++︒++︒=, 证明:左边()()1cos 21201cos 22401cos 2222ααα-+︒-+︒-=++()()31cos 2cos 2120cos 224022ααα⎡⎤=-++︒++︒⎣⎦ 31cos2cos2cos120sin2sin120cos2cos240sin 2sin 24022ααααα⎡⎤=-+-+-︒⎣⎦31113cos 2cos 22cos 2222222ααααα⎡⎤=---==⎢⎥⎣⎦ 右边 , ∴原式得证.22.(1)∵()2111f ==,()1122g ==,∴()()11f g <,()()111f g <. ∵()3228f ==,()2239g ==,∴()()22f g <,()()212f g <. ∵()43381f ==,()33464g ==,∴()()33f g >,()()313f g >. ∵()5441024f ==,()445625g ==,∴()()44f g >,()()414f g >. (2)猜想:当3n ≥,*N n ∈时,有()()1f n g n >. 证明:①当3n =时,猜想成立.②假设当n k =(3k ≥,*N k ∈)时猜想成立,()()()111k kf k kg k k +=>+. 当1n k =+,()()()()()()()()()222221111111112122k k k k k k k k f k k k k k g k k k k k k k +++++++++++==⋅>+++++⎡⎤⎡⎤⎣⎦⎣⎦.∵()()2212120k k k k k +=++>+>,∴()()2112k k k +>+,则()()12112k k k k +⎡⎤+>⎢⎥+⎢⎥⎣⎦,即()()221112k k k k k +++>+⎡⎤⎣⎦, ∴当1n k =+时,猜想成立. 由①②知,当3n ≥,*N n ∈时,有()()1f n g n >. 23.(1)命题是:在三棱锥A BCD -中,已知AD ⊥平面ABC ,若A 点在三角形BCD 所在的平面内的射影为M ,则有2ABC BCM BCD S S S =⋅△△△;(2)该命题为真命题. 证明如下:连接DM 并延长交BC 于点E ,连接AE ,因为AD ⊥平面ABC ,AE 、BC ⊂平面ABC , 所以BC AD ⊥,AE AD ⊥.因为AM ⊥平面BCD ,DE 、BC ⊂平面BCD , 所以BC AM ⊥,AM DE ⊥. 因为ADAM A =,所以BC ⊥平面ADE . 因为AE 、DE ⊂平面ADE , 所以DE BC ⊥,AE BC ⊥, 因为AE AD ⊥,AM DE ⊥, 所以,cos EM AEAED AE DE∠==, 所以,2AE EM DE =⋅,所以,2111222BC AE EM BC DE BC ⎛⎫⎛⎫⎛⎫⋅=⋅⋅⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 即2ABC BCM BCD S S S =⋅△△△. 24.(1)将点()2,0,0A ,()0,3,0B ,()0,0,4C 代入后得:203040a d b d c d +=⎧⎪+=⎨⎪+=⎩,不妨令1d =-,则111,,234a b c ===, 故平面的一般方程为:10234x y z ++-=,即6x +4y +3z -12=0; (2)记平面α的方程为ax +by +cz +d =0,在平面α上任取一条直线,该直线上任取两个不同的点()111,,M x y z 和()222,,N x y z ,则M α∈,N α∈,故有11122200ax by cz d ax by cz d +++=⎧⎨+++=⎩; 因为()212121,,MN x x y y z z =---,(),,n a b c =,所以()()()()()2121212221110n MN a x x b y y c z z ax by cz ax by cz d d ⋅=-+-+-=++-++=-+=, 故n MN ⊥所以n 垂直于平面α上的任意一条直线,所以n 是平面α的一个法向量.(3)由(2)知:(),,n a b c =为平面ax +by +cz +d =0(a 、b 、c 不全为0)的一个法向量, 任取平面α上一点()111,,Q x y z ,则1110ax by cz d +++=,点P 到平面α的距离d 是向量PQ 在n 的方向上的投影的模,于是(1n PQa x d n ⋅===,所以点P 到平面α。

高考数学 试题汇编 第二节合情推理与演绎推理 文(含解析)

高考数学 试题汇编 第二节合情推理与演绎推理 文(含解析)

第二节合情推理与演绎推理合情推理考向聚焦由已知条件归纳出一个结论或运用类比的形式给出某个问题的结论,是高考对合情推理的常规考法,从题型上看,以选择、填空为主,所占分值4~5分,属中低档题备考指津合情推理(归纳推理和类比推理)都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想.归纳推理时要做到归纳到位、准确;类比推理时,要从本质上去类比,不要被表面现象所迷惑1.(2012年江西卷,文5,5分)观察下列事实:|x|+|y|=1的不同整数解(x,y)的个数为4,|x|+|y|=2的不同整数解(x,y)的个数为8,|x|+|y|=3的不同整数解(x,y)的个数为12,…,则|x|+|y|=20的不同整数解(x,y)的个数为( )(A)76 (B)80(C)86 (D)92解析:本题考查归纳推理能力.通过观察可以发现|x|+|y|的值为1,2,3时,对应的不同整数解(x,y)的个数为4,8,12,可推出当|x|+|y|=n时,对应的不同整数解(x,y)的个数为4n,所以|x|+|y|=20的不同整数解(x,y)的个数为80.故应选B.答案:B.应用归纳推理解题的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个一般性命题(猜想).2.(2011年江西卷,文6)观察下列各式:72=49,73=343,74=2401,…,则72011的末两位数字为( )(A)01 (B)43(C)07 (D)49解析:末两位数字具有周期性且T=4.∴72011与73末两位数字相同.∴72011的末两位数字为43.答案:B.3.(2012年陕西卷,文12,5分)观察下列不等式1+<,1++<,1+++<,……照此规律,第五个不等式为.解析:观察题中几个不等式可以发现规律得1+++++<.答案:1+++++<4.(2011年陕西卷,文13)观察下列等式1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49照此规律,第五个等式应为.解析:由已知四个等式的变化规律可知,第五个等式为5+6+7+8+9+10+11+12+13=81.答案:5+6+7+8+9+10+11+12+13=815.(2010年陕西卷,文11)观察下列等式:13+23=(1+2)2,13+23+33=(1+2+3)2,13+23+33+43=(1+2+3+4)2,…,根据上述规律,第四个等式为.解析:由前三个式子可得出如下规律:每个式子等号的左边是从1开始的连续正整数的立方和,且个数依次加1,等号的右边是从1开始的连续正整数和的完全平方,个数也是依次加1,因此,第四个等式为13+23+33+43+53=(1+2+3+4+5)2.答案:13+23+33+43+53=(1+2+3+4+5)2此类题目要对所给的已知等式进行观察,分析其结构特征,再进行比较和联想,发现规律,归纳得出结论.6.(2010年浙江卷,文14)在如下数表中,已知每行、每列中的数都成等差数列,第1列第2列第3列…第1行 1 2 3 …第2行 2 4 6 …第3行 3 6 9 ………………那么位于表中的第n行第n+1列的数是.解析:由题中数表知:第n行中的项分别为n,2n,3n,…,组成一等差数列,所以第n行第n+1列的数是n2+n.答案:n2+n7.(2010年福建卷,文16)观察下列等式:①cos 2α=2cos2α-1;②cos 4α=8cos4α-8cos2α+1;③cos 6α=32cos6α-48cos4α+18cos2α-1;④cos 8α=128cos8α-256cos6α+160cos4α-32cos2α+1;⑤cos 10α=mcos10α-1280cos8α+1120cos6α+ncos4α+pcos2α-1.可以推测,m-n+p= .解析:观察各式容易得m=29=512,注意各等式右面的表达式各项系数和均为1,故有m-1280+1120+n+p-1=1,将m=512代入得n+p+350=0.对于等式⑤,令α=60°,则有cos 600°=512·-1280·+1120·+n+p-1,化简整理得n+4p+200=0,联立方程组得∴m-n+p=962.答案:962演绎推理考向聚焦演绎推理也是高考重点考查的内容,渗透于各种题型的各个问题中,主要以综合题的形式考查演绎推理的基本步骤与严谨性,有时也会出现高难度题,12~14分备考指津在数学研究中,合情推理获得的结论,仅仅是一种猜想,未必可靠,它只能帮助我们猜想和发现结论,由已知条件归纳或类比出的结论,需要再运用演绎推理进行证明.也就是说,合情推理的结论需要演绎推理的验证,而演绎推理的内容一般是通过合情推理获得的.在前提和推理形式都正确的情况下,利用演绎推理证明所得结论是正确的8.(2011年浙江卷,文20)如图,在三棱锥P ABC中,AB=AC,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上.(1)证明:AP⊥BC;(2)已知BC=8,PO=4,AO=3,OD=2,求二面角B AP C的大小.(1)证明:由AB=AC,D是BC的中点,得AD⊥BC.又PO⊥平面ABC,得PO⊥BC.因为PO∩AD=O,所以BC⊥平面PAD,故BC⊥PA.(2)解:如图,在平面PAB内作BM⊥PA于M,连CM.因为BC⊥PA,得PA⊥平面BMC,所以AP⊥CM.故∠BMC为二面角B AP C的平面角.在Rt△ADB中,AB2=AD2+BD2=41,得AB=.在Rt△POD中,PD2=PO2+OD2,在Rt△PDB中,PB2=PD2+BD2,所以PB2=PO2+OD2+BD2=36,得PB=6.在Rt△POA中,PA2=AO2+OP2=25,得PA=5.又cos ∠BPA==,从而sin ∠BPA=.故BM=PBsin ∠BPA=4.同理CM=4.得BM2+MC2=BC2,所以∠BMC=90°,即二面角B AP C的大小为90°.演绎推理的主要形式,就是由大前提、小前提推出结论的三段论式推理,在应用三段论来求解问题时,首先应该明确什么是问题中的大前提和小前提.在演绎推理中,只有前提和推理形式是正确的,结论才是正确的.(2011年江苏卷,19)已知a,b是实数,函数f(x)=x3+ax,g(x)=x2+bx,f'(x)和g'(x)分别是f(x)和g(x)的导函数.若f'(x)g'(x)≥0在区间I上恒成立,则称f(x)和g(x)在区间I上单调性一致.(1)设a>0,若f(x)和g(x)在区间[-1,+∞)上单调性一致,求b的取值范围;(2)设a<0且a≠b,若f(x)和g(x)在以a,b为端点的开区间上单调性一致,求|a-b|的最大值.难题特色:给出“函数f(x)和g(x)在区间I上单调性一致”这么一个新定义.难点突破:第(2)问由f(x)和g(x)在开区间(a,b)上单调性一致,求|a-b|的最大值转化为求a,b的取值范围.解:f'(x)=3x2+a,g'(x)=2x+b.(1)由题意知f'(x)g'(x)≥0在[-1,+∞)上恒成立.因为a>0,故3x2+a>0,进而2x+b≥0,即b≥-2x在区间[-1,+∞)上恒成立,所以b≥2.因此b的取值范围是[2,+∞).(2)令f'(x)=0,解得x=±.若b>0,由a<0得0∈(a,b).又因为f'(0)g'(0)=ab<0,所以函数f(x)和g(x)在(a,b)上的单调性是不一致的,因此b≤0.由此得,当x∈(-∞,0)时,g'(x)<0.当x∈(-∞,-)时,f'(x)>0,因此,当x∈(-∞,-)时,f'(x)g'(x)<0,故由题设得a≥-且b≥-,从而-≤a<0,于是-≤b≤0.因此|a-b|≤,且当a=-,b=0时等号成立.又当a=-,b=0时,f'(x)g'(x)=6x(x2-),从而当x∈(-,0)时,f'(x)g'(x)>0,故函数f(x)和g(x)在(-,0)上单调性一致.因此|a-b|的最大值为.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二节 合情推理与演绎推理高考试题考点一 合情推理1.(2011年江西卷,理7)观察下列各式:55=3125,56=15625,57=78125,…,则52011的末四位数字为( )(A)3125 (B)5625 (C)0625 (D)8125解析:∵55=3125,56=15625,57=78125,58=390625,59=1953125,510=9765625,…,∴5n(n ∈Z 且n ≥5)的末四位数字呈周期性变化,记5n(n ∈Z 且n ≥5)的末四位数为f(n),则f(2011)=f(501×4+7)=f(7), ∴52011与57的末四位数字相同,均为8125.答案:D2.(2012年湖北卷,理13)回文数是指从左到右读与从右到左读都一样的正整数,如22,121,3443,94249等,显然2位回文数有9个:11,22,33,…,99,3位回文数有90个:101,111,121,…,191,202,…,999,则 (1)4位回文数有 个;(2)2n+1(n ∈N +)位回文数有 个.解析:1位回文数有9个,2位回文数有9个,3位回文数有90=9×10个,4位回文数有1001,1111,1221,…,1991,2002,…,9999,共90个,5位回文数中,首末位数字不能为0,有9种选法,第2、4位数字有10种选法,第3位数字有10种选法,故5位回文数共有9×102=900个,故猜想2n+1(n ∈N +)位回文数有9×10n个.答案:(1)90 (2)9×10n3.(2013年陕西卷,理14)观察下列等式: 12=1,12-22=-3,12-22+32=6,12-22+32-42=-10,…照此规律,第n 个等式可为 .解析:观察规律可知,第n 个式子为12-22+32-42+…+(-1)n+1n 2=(-1)n+1()12n n +.答案:12-22+32-42+…+(-1)n+1n 2=(-1)n+1()12n n +4.(2012年陕西卷,理11)观察下列不等式 1+212<32, 1+212+213<53, 1+212+213+214<74, …照此规律,第五个不等式为 .解析:从几个不等式的左边分析,可得出第五个不等式的左边为1+212+213+214+215+216;从几个不等式的右边分析,其分母依次为:2,3,4, 所以第五个不等式的分母应为6, 而其分子依次为:3,5,7, 所以第五个不等式的分子应为11, 所以第五个不等式应为 1+212+213+214+215+216<116. 答案:1+212+213+214+215+216<1165.(2009年江苏卷,8)在平面上,若两个正三角形的边长比为1∶2,则它们的面积比为1∶4,类似地,在空间中,若两个正四面体的棱长比为1∶2,则它们的体积比为 .解析:两个正三角形是相似的三角形, ∴它们的面积之比是相似比的平方,同理,两个正四面体是两个相似几何体,体积之比为相似比的立方, ∴它们的体积比为1∶8. 答案:1∶8考点二 演绎推理1.(2010年福建卷,理6)如图所示,若Ω是长方体ABCD A 1B 1C 1D 1被平面EFGH 截去几何体EFGHB 1C 1得到的几何体,其中E 为线段A 1B 1上异于B 1的点,F 为线段BB 1上异于B 1的点,且EH ∥A 1D 1,则下列结论中不正确的是( )(A)EH ∥FG (B)四边形EFGH 是矩形 (C)Ω是棱柱 (D)Ω是棱台 解析:因为EH ∥A 1D 1,A 1D 1∥B 1C 1, 所以EH ∥B 1C 1, 又EH ⊄平面BCC 1B 1, 所以EH ∥平面BCC 1B 1,又EH ⊂平面EFGH,平面EFGH ∩平面BCC 1B 1=FG, 所以EH ∥FG, 故EH ∥FG ∥B 1C 1, 所以选项A 、C 正确;因为A 1D 1⊥平面ABB 1A 1,EH ∥A 1D 1, 所以EH ⊥平面ABB 1A 1, 又EF ⊂平面ABB 1A 1, 故EH ⊥EF,所以选项B 也正确,故选D. 答案:D2.(2012年福建卷,理17)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数: sin 213°+cos 217°-sin 13°cos 17°;sin 215°+cos 215°-sin 15°cos 15°; sin 218°+cos 212°-sin 18°cos 12°; sin 2(-18°)+cos 248°-sin(-18°)cos 48°;sin 2(-25°)+cos 255°-sin(-25°)cos 55°. (1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. 解:(1)选择第2个式子,计算如下: sin 215°+cos 215°-sin 15°cos 15°=1-12sin 30° =1-14=34. (2)三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)= 34. 证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos 30°cos α+sin 30°sin α)2-sin α(cos 30°cos α+sin 30°sin α)=sin 2α+34cos 2αsin αcos α+14sin 2αsin αcos α-12sin 2α=34sin 2α+34cos 2α=34. 模拟试题考点一 合情推理1.(2012汕头质检)由代数式的乘法法则类比推导向量的数量积的运算法则: ①“mn=nm ”类比得到“a ·b=b ·a ”;②“(m+n)t=mt+nt ”类比得到“(a+b)·c=a ·c+b ·c ”; ③“(m ·n)t=m(n ·t)”类比得到“(a ·b)·c=a ·(b ·c)”; ④“t ≠0,mt=xt ⇒m=x ”类比得到“p ≠0,a ·p=x ·p ⇒a=x ”; ⑤“|m ·n|=|m|·|n|”类比得到“|a ·b|=|a|·|b|”; ⑥“ac ba =a b”类比得到“⋅⋅a c b a =a b ”.以上的式子中,类比得到的结论正确的个数是( ) (A)1 (B)2 (C)3 (D)4解析:显然①②正确;对于③(a ·b)·c 、a ·(b ·c)分别表示与c 、a 共线的向量,故③错;由向量数量积的定义知④⑤⑥错.故选B. 答案:B2.(2013北京市东城区高三上学期期末)定义映射f:A →B,其中A={(m,n)|m,n ∈R},B=R,已知对所有的有序正整数对(m,n)满足下述条件:①f(m,1)=1,②若n>m,f(m,n)=0;③f(m+1,n)=n[f(m,n)+f(m,n-1)],则f(2,2)= ;f(n,2)= .解析:根据已知得,f(1,2)=0=21-2,f(2,2)=f(1+1,2)=2[f(1,2)+f(1,1)]=2f(1,1) =2×1=2,f(3,2)=f(2+1,2)=2[f(2,2)+f(2,1)]=2×(2+1) =6=23-2,f(4,2)=f(3+1,2)=2[f(3,2)+f(3,1)]=2×(6+1) =14=24-2,f(5,2)=f(4+1,2)=2[f(4,2)+f(4,1)]=2×(14+1) =30=25-2,所以根据归纳推理可知f(n,2)=2n-2.答案:2 2n-23.(2011杭州市第一次质检)设n为正整数,f(n)=1+12+13+…+1n,计算得f(2)=32,f(4)>2,f(8)>52,f(16)>3,观察上述结果,可推测一般的结论为.解析:f(2)=f(21)=12 2+,f(4)=f(22)>2=22 2+,f(8)=f(23)>52=322+,f(16)=f(24)>3=422+,…,f(2n)≥22n+(n∈N*).答案:f(2n)≥22n+(n∈N*)考点二演绎推理1.(2010绍兴调研)有一段演绎推理是这样的:“若直线平行于平面,则该直线平行于平面内所有直线;已知直线b∥平面α,直线a⊂平面α,则直线b∥直线a”,结论显然是错误的,这是因为( )(A)大前提错误(B)小前提错误(C)推理形式错误(D)非以上错误解析:大前提:“若直线平行于平面,则该直线平行于平面内所有直线”是错误的.答案:A2.(2013北京市丰台区期末)下表给出一个“三角形数阵”.已知每一列数成等差数列,从第三行起,每一行数成等比数列,而且每一行的公比都相等,记第i行第j列的数为a ij(i≥j,i,j∈N*),则a53等于,a mn= (m≥3).141 2, 1 434,38,316 …解析:由题意可知第一列首项为14,公差d=12-14=14,第二列的首项为14,公差d=38-14=18, 所以a 51=14+4×14=54,a 52=14+3×18=58, 所以第5行的公比为q=5251a a =12, 所以a 53=a 52q=58×12=516.由题意知a m1=14+(m-1)×14=4m , 第m 行的公比q=12, 所以a mn =a m1q n-1=4m ×12⎛⎫ ⎪⎝⎭n-1=12n m+,m ≥3. 答案:51612n m +综合检测1.(2012无锡一模)下面几种推理过程是演绎推理的是( )(A)某校高三有8个班,1班有51人,2班有53人,3班有52人,由此推测各班人数都超过50人 (B)由三角形的性质,推测空间四面体的性质(C)平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分 (D)在数列{a n }中,a 1=1,a n =12(a n-1+11n a -),由此归纳出{a n }的通项公式 解析:选项A 、D 是归纳推理;选项B 是类比推理;选项C 运用了“三段论”是演绎推理. 答案:C2.(2012青州月考)如图所示的三角形数阵叫“莱布尼兹调和三角形”,它们是由整数的倒数组成的,第n 行有n 个数且两端的数均为1n(n ≥2),每个数是它下一行左右相邻两数的和,如11=12+12,12=13+16,13=14+112,则第10行第4个数(从左往右数)为( )(A)11260 (B)1840(C)1504 (D)1360解析:三角形数阵可改写为11112C 1112C 0213C 1213C 2213C 0314C 1314C 2314C 3314C 0415C 1415C 2415C 3415C 4415C……因此第n 行的第k 个数(从左往右数)为111C k n n --(k ≤n,n ≥2,n ∈N,k ∈N *),则第10行第4个数为39110C =1840. 答案:B3.(2013北京市朝阳区高三上学期期末)将连续整数1,2,…,25填入如图所示的5行5列的表格中,使每一行的数从左到右都成递增数列,则第三列各数之和的最小值为 ,最大值为 .解析:因为第3列前面有两列,共有10个数分别小于第3列的数,因此:最小为:3+6+9+12+15=45.因为第3列后面有两列,共有10个数分别大于第3列的数,因此:最大为:23+20+17+14+11=85. 答案:45 854.(2011苏州模拟)已知结论:“在三边长都相等的△ABC 中,若D 是BC 的中点,G 是△ABC 外接圆的圆心,则AGGD=2”.若把该结论推广到空间,则有结论:“在六条棱长都相等的四面体ABCD 中,若M 是△BCD 的三边中线的交点,O 为四面体ABCD 外接球的球心,则AOOM= .”解析:如图所示,易知球心O 在线段AM 上, 不妨设四面体ABCD 的棱长为1,外接球的半径为R,则×23,,解得.于是,AOOM=3.答案:3。

相关文档
最新文档