现代控制理论综述论文
现代控制理论课程论文 浙江大学

现代控制理论课程论文现代控制理论综述姓名XXXX学号XXXX学院机械工程学院班级XXXXX专业机械设计及理论学位类型学术型2014年11月21日摘要本文对现代控制理论做了一次完整综述,主要讲了现代控制理论的起源、内容、发展及其特点。
本文简要说明了现代控制理论的主要内容,对系统的状态和状态方程、线性控制系统的能控性和能观性、系统的稳定性分析、线性定常系统的常规综合、最优控制做了简要概述。
最后介绍了一下现代控制技术在21世纪的发展趋势,主要包括信息技术与控制技术的结合、虚拟现实及计算机仿真技术、集成控制技术。
关键词:现代控制理论,综述,主要内容,发展趋势AbstractThis paper made a complete summary modern control theory, concerning the origin, content, development and characteristics of modern control theory. This paper made a brief description of the main elements of modern control theory, including the system's status and state equations, linear control system controllability and observability, the stability analysis, conventional integrated of linear time-invariant systems and optimal control. Finally we made a introduction about the trends of modern control theory in modern control technology of the 21st century, including the combination of information technology and control technology, virtual reality and computer simulation technology and integrated control technology.Key words: Modern control theory, summary, main content, development trend目录第一章绪论 (1)1.1现代控制理论的起源与发展 (1)1.2现代控制理论的特点及主要内容简介 (1)1.3现代控制理论的学习意义 (1)第二章现代控制理论的主要内容 (2)2.1系统的状态和状态方程 (2)2.2线性控制系统的能控性和能观性 (2)2.3系统的稳定性分析 (2)2.4线性定常系统的常规综合 (3)2.5最优控制 (4)第三章现代控制技术在21世纪的发展趋势 (5)3.1信息技术与控制技术的结合 (5)3.2虚拟现实及计算机仿真技术 (6)3.3集成控制技术 (6)第四章总结与展望 (7)参考文献 (8)第一章绪论1.1现代控制理论的起源与发展经典控制理论考虑的对象比较简单,对象为单输入单输出、线性、时不变系统;使用图形化方法,从而依赖于设计人员的经验;不能具有处理多目标,不能揭示系统的内部特性。
现代控制理论论文

单元机组负荷控制解耦方法探讨一、引言近年来,在世界范围内发生了多次的电网事故,如2003年美国东北部和加拿大部分地区发生大面积停电, 2008年,中国的南方雪灾和汶川地震及美国东岸的暴雪灾害导致较大范围电网严重损毁,许多地区出现了较长时间的大面积停电,给社会和人民生活造成了很大影响;2010年,智利大地震,造成了全国范围的停电事故,全国80%人口受到影响;这些大面积停电的事故,不断加深了人们对电力系统的安全性和可靠性给以了高度的关注,加紧制定应对大停电事故的各种措施。
除加强电网建设外,发电厂的机组快速甩负荷(FCB)功能建设已引起了越来越高的关注。
尽管我国许多大机组都有FCB的设计,但在真正意义上100%负荷下成功实现者甚少。
上世纪80年代后,我国引进的部分火电项目配置了FCB的设计.由于种种原因,这些机组很难在满负荷下实现FCB.即使在个别文章所介绍的FCB试验中,似乎能够成功,但这仅是个试验而已,离实用尚有很大的距离.因为,许多类似的试验都事先采取了一系列的措施,试问,在电网突发事故时,是否能事先通知电厂,使其有充分的时间去做FCB的准备?具有完善的自动调节和保护功能,并能够实现快关、快开的所谓超弛控制。
某一电厂600WM机组为例,机组参数: FCB(Fast Cut Back-FCB)是指机组在高于某一负荷之上运行时,由于机组内部故障或外部电网故障而与电网解列,瞬间甩掉全部对外供电负荷,但是并没有发生MFT(master fuel trip主燃料跳闸)并保持锅炉在最低负荷运行,维持发电机带厂用电运行或停机不停炉的自动控制功能。
当机组实现FCB功能后,具备发电机解列带厂用电的能力,有助于电网在可能的最短时间内恢复正常,也有助于发电机组的安全停运。
二、FCB实现的介绍:2.1 FCB实现的条件当汽轮机或发电机跳闸时,机组锅炉中汽包水位低、炉膛火焰丧失、燃料丧失、炉膛压力高、炉膛压力低,以上任一条件满足且负荷大于140MW触发FCB,而此时要求锅炉本身没有发生MFT条件,汽轮机真空正常,高压旁路控制应在自动方式,燃料主控必须在自动方式。
现代控制理论综述—课程论文

论文题目现代控制理论综述姓名 *** 学号 ***学科(专业) ***所在学院机械工程学院任课教师*** 提交日期***目录摘要 (1)Abstract (1)1绪论 (2)现代控制理论 (2)现代控制理论的发展历程 (2)现代控制理论与经典控制理论的异同 (3)2 现代控制理论的基本内容 (5)线性系统理论 (5)非线性系统理论 (5)最优控制理论 (6)最优估计理论 (6)随机控制理论 (6)适应控制理论 (7)2.7 系统辨识理论 (7)3现代控制理论的其他研究方向 (8)智能控制 (8)鲁棒性分析与鲁棒控制 (8)模糊控制 (9)神经网络控制 (9)实时专家控制 (9)分布参数系统控制 (10)预测控制 (10)4 现代控制理论的发展趋势和展望 (11)现代控制理论的发展趋势 (11)现代控制理论的前景展望 (11)5 参考文献 (13)摘要本文首先介绍了现代控制理论的发展历程以及现代控制理论和经典控制理论二者的异同点,然后介绍了现代控制技术的基本内容,之后又对现代控制理论目前研究的一些方向作了简要说明,包括智能控制、鲁棒控制、模糊控制、神经网络控制及实时专家控制等。
最后总结了现代控制技术的发展特点以及发展趋势。
关键词:现代控制理论控制概述发展内容AbstractThe paper introduces the development process of modern control at first. And then it compares the differences and similarities between modern control and classical control . Besides,it introduces the basic content of modern control technology and some new research directions , such us Intelligent control,robust control, fuzzy control, neural network control and real-time expert control ,etc. At last , this paper pointesout the development characteristics and development trend of modern control technology.Keywords: modern control technology control overview development content1绪论1.1现代控制理论现代控制理论是在经典控制理论基础上逐步发展起来的,建立在状态空间法基础上的一种控制理论,研究多输入多输出、变参数、非线性、高精度、高效能等控制系统的分析与设计问题,是自动控制理论的一个主要组成部分。
现代控制理论的论文

第一章经典控制理论和现代控制理论本学期学习了现代控制理论课程的主要内容,现代控制理论建立在状态空间法基础上的一种控制理论,是自动控制理论的一个主要组成部分。
在现代控制理论中,对控制系统的分析和设计主要是通过对系统的状态变量的描述来进行的,基本的方法是时间域方法。
现代控制理论比经典控制理论所能处理的控制问题要广泛得多,包括线性系统和非线性系统,定常系统和时变系统,单变量系统和多变量系统。
它所采用的方法和算法也更适合于在数字计算机上进行。
现代控制理论还为设计和构造具有指定的性能指标的最优控制系统提供了可能性。
现代控制理论的名称是在1960年以后开始出现的,用以区别当时已经相当成熟并在后来被称为经典控制理论的那些方法。
现代控制理论已在航空航天技术、军事技术、通信系统、生产过程等方面得到广泛的应用。
现代控制理论的某些概念和方法,还被应用于人口控制、交通管理、生态系统、经济系统等的研究中。
以下是经典控制理论和现代控制理论的比较:1、经典控制理论:(1)理论基础:Evens的根轨迹,Nyquist稳定判据。
(2)研究对象:线性定常SISO系统分析与设计。
(3)分析问题:稳、准、快(4)采用方法:是以频率域中传递函数为基础的外部描述方法。
(5)数学描述:高阶微分方程、传递函数、频率特性;方块图、信号流图、频率特性曲线。
(6)研究方法:时域法、根轨迹法、频率法。
2、现代控制理论:(1)理论基础:李雅普诺夫稳定性理论,Bellman动态规划,Понтрягин极值原理,Kalman 滤波。
(2)研究对象:MIMO系统分析与设计(复杂系统:多变量、时变、非线性)(3)分析问题:稳、准、快(4)设计(综合)问题:1)采用方法:是以时域中(状态变量)描述系统内部特征的状态空间方法为基础的内部描述方法。
2)数学描述:状态方程及输出方程、传递函数阵、频率特性;状态图、信号流图、频率特性曲线。
3)研究方法:状态空间法(时域法)、频率法。
现代控制理论结课论文

现代控制理论方法综述研电1610 秦晓 1162201332摘要:本文将控制理论方法分为现代控制理论基础,线性最优控制,非线性最优控制三大部分,查阅文献,综述了每一部分中的经典控制方法,以及每种控制方法的优缺点和在工业中的应用,最后提出了目前在现代控制理论中依旧存在的问题。
1.引言电力系统是一个复杂的非线性动态大系统,对于这个规模庞大的系统,研究其运行的动态特性进而构建先进的安全控制系统是极富挑战性的课题。
同时,各种新技术的应用,一方面增强了系统的调控能力和经济效益,另一方面也极大的增加了电网控制的复杂性,对电力系统的安全稳定运行提出了更严格的要求。
因此,改善与提高我国电力系统的动态品质、安全稳定和经济性成为了电力工作者的首要任务。
提高电力系统稳定性的最经济和最有效的手段之一是采用先进的控制理论和方法。
在过去的时间里,电力工作者们为改进与发展电力系统控制技术进行了大量研究。
本文主要梳理总结电力系统在现代控制方面的研究成果,分析了电力系统控制技术的发展趋势,并总结了目前现代控制理论还需要解决的问题。
2.现代控制的基础现代控制理论的基础是经典控制理论,在20世纪20年代到50年代间,为了满足第二次世界大战前后军事技术和工业发展的需求,经典控制理论有了飞速的发展。
经典控制理论主要研究线性时不变、单输入单输出的控制问题。
在分析和设计大型反馈控制系统时,经典控制论主要采用频域法,其中以 Nyquist 判据、Bode 图和根轨迹法最为广泛[1~2]。
经典控制理论的设计目标是使闭环系统特征方程的特征根全部位于左半开平面上。
上述设计目标可以描述为一类无目标函数的优化问题,即约束满足问题。
由于使系统稳定的控制器解并不唯一,所以根据经典控制理论设计的PID 控制器往往带有较大的冗余性[3]。
也正是由于经典控制理论设计目标及方向简单明确,计算方便,特别适合需要依赖工程经验或现场测试进行控制器设计的系统,所以至今仍在工业中广泛应用。
现代控制理论论文

李雅普诺夫稳定性理论李雅普诺夫稳定性理论是近代控制理论中一个重要的组成部分,它在近代控制理论中的最优控制,最优估计,滤波和自适应控制,神经网络等方面发挥了极其重要的作用。
在20世纪30到40年代,奈奎斯特、伯德、维纳等人的著作为自动控制理论的初步形成奠定了基础,经典控制理论以拉氏变换为数学工具,以单输入——单输出的线性定常系统为主要的研究对象。
将描述系统的微分方程或差分方程变换到复数域中,得到系统的传递函数,并以此作为基础在频率域中对系统进行分析和设计,确定控制器的结构和参数。
通常是采用反馈控制,构成所谓闭环控制系统。
经典控制理论具有明显的局限性,突出的是难以有效地应用于时变系统、多变量系统,也难以揭示系统更为深刻的特性。
当把这种理论推广到更为复杂的系统时,经典控制理论就显得无能为力了,即便对这些极简单的对象、对象描述及控制任务,理论上也尚不完整,从而促使现代控制理论的发展——对经典理的精确化、数学化及理论化。
俄国数学家和力学家李雅普诺夫在1892年所创立的用于分析系统稳定性的理论。
对于控制系统,稳定性是需要研究的一个基本问题。
在研究线性定常系统时,已有许多判据如代数稳定判据、奈奎斯特稳定判据等可用来判定系统的稳定性。
李雅普诺夫稳定性理论能同时适用于分析线性系统和非线性系统、定常系统和时变系统的稳定性,是更为一般的稳定性分析方法。
李雅普诺夫稳定性理论主要指李雅普诺夫第二方法,又称李雅普诺夫直接法。
李雅普诺夫第二方法可用于任意阶的系统,运用这一方法可以不必求解系统状态方程而直接判定稳定性。
对非线性系统和时变系统,状态方程的求解常常是很困难的,因此李雅普诺夫第二方法就显示出很大的优越性。
与第二方法相对应的是李雅普诺夫第一方法,又称李雅普诺夫间接法,它是通过研究非线性系统的线性化状态方程的特征值的分布来判定系统稳定性的。
第一方法的影响远不及第二方法。
在现代控制理论中,李雅普诺夫第二方法是研究稳定性的主要方法,既是研究控制系统理论问题的一种基本工具,又是分析具体控制系统稳定性的一种常用方法。
现代控制理论综述论文

论文题目:现代控制理论综述摘要本文是对现代控制理论课程的完整综述,现代控制理论的主要内容包括控制系统的状态空间表达式及其解,线性控制系统的能控性和能观性,稳定性与李雅普诺夫方法,线性定常系统的综合以及最优控制理论等部分。
本文通过对控制理论各部分的阐述,构出了现代控制理论的主要框架及各部门的基本内容。
关键词:现代控制;状态方程;稳定性;最优控制;AbstractThis article is a complete review of modern control theory course, the main contents of the modern control theory, including the control system of the state space expression and its solution, the controllability of linear control systems and can view, stability and Lyapunov method, the synthesis of linear time-invariant system and optimal control theory. This article through to all parts of the control theory, compose the main framework of modern control theory and the basic content of each department.Keywords: Modern control; State equation;Stability;Optimal control目录摘要 (I)Abstract ........................................................... I I一、控制理论的发展历史 (1)二、现代控制理论的基本内容 (2)2.1 控制系统的状态空间表达式 (3)2.2 线性控制系统的能控性和能观性 (3)2.2.1 线性控制系统的能控性 (3)2.2.2 线性控制系统的能观性 (4)2.3 自动控制系统的稳定性 (5)2.4 最优控制 (6)三、控制理论的发展展望 (6)四、总结 (6)参考文献 (8)一、控制理论的发展历史控制理论是关于各种系统的一般性控制规律的科学,它研究如何通过信号反馈来修正动态系统的行为和性能,以达到预期的控制目的。
现代控制理论论文

非线性系统的鲁棒自适应控制Robust Adaptive Control of Uncertain Nonlinear Systems郝仁剑 3120120359摘要:本文以非线性系统的控制问题为背景,介绍了多种经典的非线性系统的控制方法以及研究进展,分析了各种控制方法存在的优点和不足。
着重介绍了鲁棒自适应控制在非线性系统中的应用,结合该领域的近期研究进展和实际应用背景,给出对鲁棒自适应控制的进一步研究目标。
关键词:非线性系统鲁棒控制自适应控制1.前言任何实际系统都具有非线性特性,非线性现象无处不在。
严格地说,线性特性只是其中的特例,但是非线性系统与线性系统又具有本质的区别。
由于非线性系统不满足叠加原理,因此非线性特性千差万别,这也给非线性系统的研究带来了很大的困难。
同时,对于非线性系统很难求得完整的解,一般只能对非线性系统的运动情况做出估计。
众所周知,控制理论经历了经典控制理论和现代控制理论两个发展阶段。
在第二次世界大战前后发展起来的经典控制理论应用拉普拉斯变换等工程数学工具来分析系统的品质。
它广泛地应用于单输入单输出、线性、定常、集中参数系统的研究中。
随着控制对象的日益复杂以及人们对控制系统精度的不断提高,经典控制理论的局限性就暴露出来了。
在20世纪50年代,Bellman根据最优原理创立了动态规划。
同时庞特里亚金等学者创立了最大值原理。
后来,Kalman提出了一系列重要的概念,如可观性,可控性,最优线性二次状态反馈,Kalman滤波等。
这些理论和概念的提出大大促进了现代控制理论的发展。
控制系统的设计都需要以被控对象的数学模型为依据,然而对于任何被控对象不可能得到其精确的数学模型,如在建立机器人的数学模型时,需要做一些合理的假设,而忽略一些不确定因数。
不确定性的必然存在也正促使了现代控制理论中另一重要的研究领域——鲁棒控制理论的发展。
Zmaes关于小增益定理的研究以及Kalman关于单输入单输出系统LQ调节器稳定裕量的分析为鲁棒控制理论的发展产生了重要的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
论文题目:现代控制理论综述摘要本文是对现代控制理论课程的完整综述,现代控制理论的主要内容包括控制系统的状态空间表达式及其解,线性控制系统的能控性和能观性,稳定性与李雅普诺夫方法,线性定常系统的综合以及最优控制理论等部分。
本文通过对控制理论各部分的阐述,构出了现代控制理论的主要框架及各部门的基本内容。
关键词:现代控制;状态方程;稳定性;最优控制;AbstractThis article is a complete review of modern control theory course, the main contents of the modern control theory, including the control system of the state space expression and its solution, the controllability of linear control systems and can view, stability and Lyapunov method, the synthesis of linear time-invariant system and optimal control theory. This article through to all parts of the control theory, compose the main framework of modern control theory and the basic content of each department.Keywords: Modern control; State equation;Stability;Optimal control目录摘要 (I)Abstract........................................................... I I一、控制理论的发展历史 (1)二、现代控制理论的基本内容 (2)2.1 控制系统的状态空间表达式 (3)2.2 线性控制系统的能控性和能观性 (3)2.2.1 线性控制系统的能控性 (3)2.2.2 线性控制系统的能观性 (4)2.3 自动控制系统的稳定性 (5)2.4 最优控制 (6)三、控制理论的发展展望 (6)四、总结 (6)参考文献 (8)一、控制理论的发展历史控制理论是关于各种系统的一般性控制规律的科学,它研究如何通过信号反馈来修正动态系统的行为和性能,以达到预期的控制目的。
控制理论是有实践中发展而来的,自动控制理论的形成远比人们利用自动控制装置晚很多。
工业中最早的自动控制装置是瓦特发明的蒸汽机中的调速器,但那时他并不是建立在理论的基础上,而是一种凭借经验的所为。
当然也正是因为社会实践中遇到了很多的问题难以解决,才促使人们对其思考,总结,并逐渐形成今天我们所有的理论。
控制理论也是这样的,实际系统往往含有许多未知的不确定因素,为了对它进行有效的控制,就要对它进行系统辨识,建模,跟踪,对测量信号进行包括滤波,预测以及状态估计在内的各种科学处理,然后设计反馈控制规律,使系统的某些性能达到预期的最优控制目标。
概括的讲,控制理论的发展大体经历了三个时期:第一个阶段是20世纪40年代末到50年代的经典控制论时期,着重研究单机自动化,解决单输入单输出(SISO)系统的控制问题,它的主要数学工具是微分方程,拉普拉斯变换和传递函数,主要研究方法是时域法、频域法和根轨迹法,主要问题是控制系统的快速性,稳定性及其精度。
20世纪20年代到40年代,马克斯威尔对装有调速器的蒸汽机系统动态特性的分析,马诺斯基对船舶驾驶控制的研究都是控制理论的开拓性工作。
奈奎斯特,伯德等人对单回路反馈系统的研究结果显示出反馈系统即使在对系统情况知道不多时也能起到很好的作用。
第二个阶段是20世纪60年代的现代控制理论时期,着重解决机组自动化和生物系统的多输入多输出(MIMO)系统的控制问题;主要数学工具是一次微分方程组,矩阵论,状态空间法等;主要方法是变分法,极大值原理,动态规划理论等;重点是最优控制、随即控制、核心装置是电子计算机。
20世纪50年代后期到60年代初期是控制理论发展的转折时期,第二次世界大战后华尔德的序贯分析和贝尔曼的动态规划是转折时期的开端,这些理论受到最优统计决策和资源分配中的序贯规划问题的研究的激发。
他们在概念上的贡献是考虑了一大类以初始状态参数化了的动态优化问题,这个理论的中心问题是建立最优性能的动态规划方程,从它的解就可以确定最优反馈控制规律。
与此同时,优化领域中的另一个长期被忽视的强调不等式约束的线性和非线性规划也开始得到发展,这个领域的研究人员首先设计了便于计算机计算的数值方法,这种方法后来在控制中变得十分有用。
苏联学者在20世纪50年代对包含非线性特性、饱和作用和受到限制的控制等因素的系统的最优瞬态的研究表现出很大的兴趣,这些学者的研究导致了庞特里亚金的“极大值原理”,极大值原理的贡献可说是20世纪50年代和60年代对于大量轨迹优化数值计算方法的研究和冲力,这种研究最后导致许多空间运载器的成功的设计,其中包括阿波罗计划和宇航飞行计划。
第三个阶段是20世纪70年代的大系统理论时期,着重解决生物系统、社会系统这样一些众多变量的大系统的综合自动化问题;方法以时域法为主,重点是大系统的多级递阶控制;核心装置是网络化的电子计算机。
随着人工智能的发展和引入了新的计算机结构,控制理论和计算机科学的联系愈来愈密切,近年来已有一些专家系统可以自动寻求最优随即控制和滤波问题的理论解和数值解。
在控制框架上将符号运算和数值运算相结合的研究工作正在开展。
智能控制的概念也在发展,其目的之一是将当前的控制理论和尚未成型的人工智能成功的合为一体。
离散时间系统理论架起了一座通向扩展了的状态机器理论的桥梁,在将来可能为评价计算机系统的性能提供了一个建模工具。
二、现代控制理论的基本内容现代控制一般是指20世纪五六十年代所产生的一些重要控制理论,主要包括:用状态空间法对多输入多输出复杂系统建模,并进一步通过状态方程求解分析,研究系统的可控性、可观性及其稳定性,分析系统的实现问题;用变分法、最大值原理、动态规划原理等求解系统的最优控制问题,其中常见的最优控制问题包括时间最短、耗能最少等,以及它们的组合优化问题,相应的有状态调节器、输出调节器、跟踪器等综合设计问题;最优控制往往要求系统的状态反馈控制,但许多情况下,系统的状态很难求出,往往需要一些专门的处理方法,如卡尔曼滤波技术等。
2.1 控制系统的状态空间表达式在经典控制理论中,对一个线性定常系统,可用常微分方程或者传递函数加以描述,可将某个单变量作为输出,直接和输入联系起来。
实际上系统除了输出量这个变量之外,还包含其他相互独立的变量,而微分方程或传递函数对这些内部的中间变量是不便描述的,因而不能包含系统的所有信息。
显然,从能否完全揭示系统的全部运动状态来讲,用微分方程或传递函数来描述一个系统相比用状态空间表达式来描述有其不足之处。
在用状态空间法分析系统时,系统的动态特性是用由状态变量构成的一阶微分方程组来描述的,它能反映系统的全部独立变量的变化一个系统在一个特定的时刻都有其特定的状态,每个状态都可以用最小的一组独立的状态变量来描述。
比如若系统有n个变量x1,x2, (x)n,他们都是实践t的函数,控制系统的每一个状态都可以在一个由x1,x2, (x)n为轴的n维状态空间上的一点来表示,即可以用一个向量形式来表示系统的状态。
在现代控制理论中,用系统的状态方程和输出方程来描述系统的动态特性,状态方程和输出方程合起来叫做系统的状态空间表达式。
2.2 线性控制系统的能控性和能观性在现代控制理论中,能控性和能观性是两个重要的概念,它们是卡尔曼在1960年首先提出来的,也是最优控制和最优估计的设计基础。
当然系统的能控性和能观性研究一般都是基于系统的状态空间表达式的。
2.2.1 线性控制系统的能控性能控性是指外加控制作用u(t)对受控系统的状态变量x(t)和输出变量y(t)的支配能力,它回答了u(t)能否使x(t)和y(t)做任意转移的问题。
它只是考察系统在控制作用u(t)的控制下,状态矢量x(t)的转移情况,与y(t)无关,所以只需从系统的状态方程研究出发即可。
对于一个线性定常系统:x =Ax+Bu,如果存在一个分段连续的输入u(t),能在有限时间区间[t0, tf]内,使系统由某一初始状态x(t),转移到指定的任一终端状态x(tf),则称此状态时能控的。
若系统所有状态都是能控的,则称此系统为状态完全能控的,或简称系统是能控的。
对于一个线性连续时变系统:x =A(t)x+B(t)u,其能控性的定义与定常系统的定义相同,但是A(t)、B(t)是时变矩阵而非常系数矩阵,其状态矢量x(t)的转移,与初始时刻t的选取有关,所以在时变系统能控性的定义中,应强调在t时刻系统是能控的。
对于一个单输入的n阶线性定常离散系统x(k+1)=Gx(k)+Hu(k),其中u(k)是标量控制作用,它在(k,k+1)区间内是个常值,则其能控性定义为:若存在控制作用序列u(k),u(k+1),...,u(l-1)能将第k步的某个状态x(k)在第l 步上达到零状态,即x(l)=0,其中l是大于k的有限数,那么就成此状态是能控的。
若系统在第k步上的所有状态x(k)都是能控的,那么称此系统为完全能控的,即能控系统。
线性定常系统能空性的判别标准有两种形式:一种是先将系统进行状态变换,把状态方程化为约旦标准型(Aˆ,Bˆ),再根据Bˆ阵,确定系统的能控性;另一种方法是直接根据状态方程的A阵和B阵,确定其能控性。
2.2.2 线性控制系统的能观性现代控制系统大多采用反馈控制形式。
其反馈信息是由系统的状态变量组合而成,但并非所有的系统的状态变量都能够观测到,于是提出了能否通过对输出的测量获取全部状态变量的信息,这就是系统的能观测问题。
能观性针对的是系统状态空间模型中的状态的可观测性,是指系统的测量输出向量y(t)识别状态向量x(t)的测辨能力,它回答了能否通过y(t)的测量值来识别x(t)的问题。
能观性所表示的是输出y(t)反映状态矢量x(t)的能力,与控制作用没有直接关系,所以分析能观性问题时,只需从齐次状态方程和输出方程出发,即:x =Ax,x(t0)=x0y=Cx如果对任意的输入u,在有限的观测时间tf >t,使得根据[t0,tf]期间的输出y(t)能唯一地确定系统在初始时刻的状态x(t0),则称状态x(t)是能观测的,若系统的每个状态都是能观测的,则称系统是状态完全能观测的。