现代控制理论结课论文

现代控制理论结课论文
现代控制理论结课论文

现代控制理论方法综述

研电1610秦晓 1162201332

摘要:本文将控制理论方法分为现代控制理论基础,线性最优控制,非线性最优控制三大部分,查阅文献,综述了每一部分中的经典控制方法,以及每种控制方法的优缺点和在工业中的应用,最后提出了目前在现代控制理论中依旧存在的问题。

1.引言

电力系统是一个复杂的非线性动态大系统,对于这个规模庞大的系统,研究其运行的动态特性进而构建先进的安全控制系统是极富挑战性的课题。同时,各种新技术的应用,一方面增强了系统的调控能力和经济效益,另一方面也极大的增加了电网控制的复杂性,对电力系统的安全稳定运行提出了更严格的要求。因此,改善与提高我国电力系统的动态品质、安全稳定和经济性成为了电力工作者的首要任务。提高电力系统稳定性的最经济和最有效的手段之一是采用先进的控制理论和方法。在过去的时间里,电力工作者们为改进与发展电力系统控制技术进行了大量研究。本文主要梳理总结电力系统在现代控制方面的研究成果,分析了电力系统控制技术的发展趋势,并总结了目前现代控制理论还需要解决的问题。

2.现代控制的基础

现代控制理论的基础是经典控制理论,在20世纪20年代到50年代间,为了满足第二次世界大战前后军事技术和工业发展的需求,经典控制理论有了飞速的发展。经典控制理论主要研究线性时不变、单输入单输出的控制问题。在分析和设计大型反馈控制系统时,经典控制论主要采用频域法,其中以 Nyquist 判据、Bode 图和根轨迹法最为广泛[1~2]。经典控制理论的设计目标是使闭环系统特征方程的特征根全部位于左半开平面上。上述设计目标可以描述为一类无目标函数的优化问题,即约束满足问题。由于使系统稳定的控制器解并不唯一,所以根据经典控制理论设计的 PID 控制器往往带有较大的冗余性[3]。也正是由于经典控制理论设计目标及方向简单明确,计算方便,特别适合需要依赖工程经验或现场测试进行控制器设计的系统,所以至今仍在工业中广泛应用。

在上世纪70年代以前,经典控制是电力系统控制的主流。如发电机励磁控制AVR主要采用单变量反馈方式,即采用发电机端电压偏差作为反馈量的 PID 控制方式。随着发电技术的进步和电力系统自身规模的增长,人们逐渐发现这种单输入控制方式难以满足电力系统对抑制振荡和提高稳定极限方面的要求。最早报道的互联电力系统低频振荡发生于20世纪60年代,北美MAPP的西北联合系统和西南联合系统进行互联试运行时发生了低频振荡,造成联络线过流跳闸[4]。之后,随着大容量机组的不断投运,以及快速、高放大倍数励磁系统越来越广泛的使用,使得低频振荡现象在世界各国大型互联电网中时有发生,这对电网安全产生了严重威胁。为解决这个问题,文献[5]采用转速偏差作为附加反馈与AVR并联,发展出PSS+AVR的励磁控制方式。进入21世纪以来,我国电网互联程度不断提高,系统中出现了

频率在0.2 Hz左右以及更低频率的振荡[6],这就需要加宽PSS的工作频带。文献[3]认为如果通过整体提高PSS装置增益的方法来保证高频段PSS的阻尼效果,可能会使得低频段幅值过大,使发电机的无功产生波动。为改善PSS对振荡模式的选择性,国内外学者开始对具有多频段结构的PSS展开研究。其中多频段PSS的原理是使用多个分支为不同频段的低频振荡提供阻尼,然后再将各分支的输出信号叠加进而形成总的输出信号[3]。

总而言之,经典控制理论的精髓是根据实际值与控制目标的偏差来产生控制策略,只要合理选择PID增益使闭环系统稳定就能达到控制目标,这是其被广泛采用的原因。然而尽管PID控制能够保证系统稳定,但闭环系统动态品质对PID增益变化十分敏感。这导致了控制系统中“快速性”和“超调”之间产生了不可调和的矛盾[7],因此系统控制原理必须进一步发展才能更好的适应实际需求,现代控制理论应运而生。现代控制是经典控制进一步发展的成果,而经典控制则是现代控制的基础,二者是密不可分的。

3.线性最优控制

线性最优控制是现代控制理论中最优控制领域的一个重要分支。其受控系统是动态行为可用线性数学模型表征的系统。在改善电力系统小干扰稳定性及动态品质方面,线性最优控制依旧是目前诸多现代电力系统控制中应用最多,最成熟的一个分支,在远距离输电系统的发电机励磁控制、发电机组快速汽门控制、发电机组的综合控制、发电机制动电阻的最优时间控制等方面取得了一系列的研究成果[8]。其中线性多变量控制方式是一种典型的线性控制方式类型。本文主要介绍线性多变量控制方式,利用本控制方式的控制器有如下几种:前苏联提出的强力式励磁调节器、美国推出的电力系统稳定器PSS、最优励磁控制器 LOEC。

3.1前苏联提出的强力式励磁调节器

20世纪50年代末期,前苏联电力系统科学工作者提出了强力式励磁调节器。该类调节器,除采用发电机端电压偏差ΔVt的比例及1次微分外,还采用了发电机频率偏差Δf 及其 1次微分和发电机定子电流及其微分等辅助反馈量。在设计方法上, 他们一直采用“双变量 D 域划分法”[9],即在2个变量增益的直角坐标平面上,划出1个特定的区域,若这2个变量增益的坐标落在该区域内,则闭环系统是稳定的。由于变量较多,这种双变量D域需要在变量的各种组合下多次画出,然后从中找出共同稳定域D。这种设计方法相当不方便,而且在有些情况下,这种共同稳定域D很小,使参数整定发生困难,很大程度上依赖现场调试人员的经验。因而这种强力式励磁调节器的应用推广受到了限制。

3.2美国推出的电力系统稳定器PSS

美国的迪米罗和康迪亚提出了称之为PSS的励磁控制方式,PSS是电力系统稳定器英文Power System Stabilizer的缩写。该控制方式在控制规律中保留了按发电机端电压偏差ΔVt的比例—积分—微分的部分,增加了1个按发电机转速ω或频率f的二阶超前校正环节( PSS通道)。 PSS 通道由2个一阶超前环节(1+KDS)/(1+KIS) ,1个放大环节KS和1个

清除环节TS/(1+TS)以及1个±5%的限幅器所组成。由于PSS环节的存在, 在其参数KD、KI 、KS及T选取合理时,可起到改善电力系统阻尼特性和减小干扰稳定性的作用[10~11]。但PSS 控制方式仍存在以下不足:①当PSS环节中的KD、KI 、KS及T几个参数已确定时,控制器对于电力系统某一对应的较狭窄的振荡频率带能有较好的控制效果,但当系统的实际振荡频率落在上述振荡器抑制振荡频率带以外时,其控制效果就会明显减弱。②这种附加单变量的励磁控制方式,即使在小扰动条件下,其本身从理论上就不能达到最佳的控制效果,只有在设计合理的条件下才能获得较好的控制效果。

3.3 最优励磁控制器LOEC

随着现代控制理论及其实际应用的不断发展,运用现代控制理论进行电力系统运行性能的最优化控制的研究工作有了迅速的发展,对如何按最优化的方法来设计多参变量励磁控制器的研究也有了很大的进展。国际上一些专家提出了线性最优励磁控制方式,简称LOEC即英文Linear Optimal Excitation Controller 的缩写,随后,我国科学工作者对此作了进一步的研究,已经发表了不少这方面的论文,并推出了该系列的励磁调节器。

文献[8]系统地论述了最优控制理论在电力系统中的应用。对单机无穷大系统而言,如果发电机的励磁系统是自并励的,若状态向量选为X(t)=[ΔVt ,Δω ,ΔPe]T ,则最优励磁控制规律可表示为:

u =ΔUf =-(KVΔVt +KωΔω+KpΔPe)

式中: ΔVt 、Δω、ΔPe 为发电机的端电压、转速及有功功率的偏差量; KV 、Kω、Kp 为最优增益系数。线性最优励磁控制方式弥补了 PSS 控制方式的不足之处,但将线性最优控制原理用于多机电力统励磁控制器的设计时,不能得到分散的最优控制规律,只能得到分散的次优控制方案。

以LOEC为代表的线性最优控制在工业上有很多应用和改进,文献[8,12]根据线性最优控制设计了最优快速汽门控制器装置,并在东北电网成功地进行了快关现场试验,使得故障后发电机输入功率明显降低,显著提高了系统暂态稳定性。由于快速电液调速系统的发展,快速汽门控制器实现了工业实用化。文献[13]首先提出将励磁控制与汽门控制二者结合起来设计远距离输电系统的线性最优综合控制器,把最优励磁控制器、电液调速器及快速最优汽门控制三者的作用统一起来。动模实验表明,装备这一控制器的系统稳定极限提高,动态品质优良。在多机系统中,为了使不同地点的机组的综合控制器的技术目标相互配合,文献[14]利用协联控制综合配置电力系统稳定器,改善了多机系统的控制效果。另外,最优控制理论在水轮发电机制动电阻的最优时间控制方面也获得了成功的应用。文献[8]根据二阶系统时间最优控制原理,开发了微机电制动控制装置,并进行了动模实验,结果表明与固定时间电制动相比,采用该装置可提高输送功率极限2%~6%。

线性最优控制理论已在电力系统中获得了一定的应用,产生了不容忽视的经济效益。但应当指出,由于这类型的控制器是根据电力系统稳定工作点的局部线性化模型来设计的,并

没有考虑电力系统固有的强非线性,因此对大干扰的控制效果不理想。线性最优控制需要反馈所有状态变量,某些变量测量相对困难,此外机端电压并非系统状态变量,通过加权系数综合考虑多因素虽能在一定程度改善动态品质,但电压反馈增益不足,可能难以满足电压调节要求。

4.非线性控制

通常对非线性系统进行控制主要有两大类处理方法[16~24]:①先将非线性系统在某一邻域内进行反馈线性化,然后运用现代控制理论的思想进行控制的设计,如基于微分几何理论的反馈线性化法、直接反馈线性化方法和逆系统方法等。②直接应用非线性控制理论的结果,如变结构方法[25-26]、Backstepping控制[27-29]、鲁棒控制[30-33]和智能控制[34~35]等。

4.1 基于微分几何理论的反馈线性化法

基于微分几何理论的反馈线性化法通过微分同胚[9]映射实现坐标变换,根据变换后的系统设计非线性反馈,实现非线性系统的精确线性化。微分几何方法适合仿射非线性系统。对于仿射非线性SISO系统,若系统的关系度r等于系统的维数n ,则一定可以构造出微分同胚映射,通过合理地构造非线性反馈,实现系统的精确线性化;对于关系度小于r和没有明确输出的系统,通过构造一个虚拟的输出,同样有可能实现系统的精确线性化。文献[36]运用微分几何中的零动态方法进行了水门非线性控制器的设计,并应用于水轮发电机的水门控制。基于微分几何理论的反馈线性化方法具有坚实的理论基础,但其控制律的推导对于数学基础要求较高,同时非线性反馈的引入令控制器结构复杂,限制了它在工程中的运用。

4.2直接反馈线性化方法(DFL)

针对一个非线性系统,若能通过非线性反馈的引入,使得闭环系统成为具有线性表示形成的“伪”线性系统,则可以采用常规的线性系统控制方法设计系统控制。DFL方法不需要进行复杂的坐标变换和大量数学推导,具有计算简单、物理概念清晰的优点,便于工程应用。文献[37]运用DFL方法设计了新型变结构励磁和综合控制器,仿真表明该控制器提高了系统的暂态稳定性和故障后的电压调节性能。对于SISO系统,DFL方法能得到与微分几何方法类似的效果,而且推导过程简单,对于MIMO系统则不具备上述优势,因而不具备对参数和模型变化的鲁棒性。

4.3 逆系统方法

逆系统方法利用对于一个可逆过程,若输入信号先后经过逆过程和原过程,则相当于进行了一次标准的单位映射这一思想。通过求取被控过程的逆过程,将之串联在被控过程的前面,得到解耦的控制对象,然后再对该对象采用传统的线性控制方法进行控制。文献[38]将多变量的逆系统方法用于大型汽轮发电机组的综合控制,仿真结果表明所设计的控制律能有效地提高发电机的稳定性和电压精度。与DFL方法类似,在一定的条件下逆系统方法和微分几

何方法本质是等价的,可解性依赖于具体问题,对于多输入多输出系统很难保证系统的鲁棒性,并且存在着工程实现问题。

4.4 Lyapunov直接法

对于一个非线性系统,若存在一个由其状态变量和控制量构成的正定函数,通过判断其导数的负定性就可以判断整个系统的稳定性。利用这一原理,可以通过设计适当的反馈来满足上述要求,从而得到稳定的系统控制项。Lyapunov 直接法由于直接考虑了系统的非线性特性,且物理概念清晰,在电力系统暂态稳定的分析及控制器的设计中得到了广泛的应用。文献[39]基于Lyapunov直接法研究了非线性励磁控制,数字仿真和基于微机实现的控制装置验证了所提出的控制规律的有效性。采用Lyapunov 直接法设计控制律的关键是选取合适的能量函数,对于稳定的系统必然存在多种Lyapunov函数,但如何构造Lyapunov函数却不容易;同时Lyapunov直接法也不适用于高阶大型电力系统暂态稳定的研究。

4.5 无源系统理论

无源系统是一类考虑系统与外界有能量交换的动态系统,系统无源可以保持系统的内部稳定。从无源系统的角度看,Lyapunov函数的构造过程正是使系统无源化的过程,此时的Lyapunov函数正是保证系统无源性的存储函数。Lyapunov意义下的稳定是指无外部激励条件下系统广义能量的衰减特性,而无源性是指系统有外界输入时的能量衰减特性。对于存在干扰的系统来说,为了使得系统内部稳定,可依靠无源理论来构造反馈控制器,使得相应的闭环系统无源而保持内部稳定[40]。一般来说,无源性、稳定性与最优性密切相关,但是Lyapunov函数的构造还没有规律可循[41],需要经一步研究。

4.7 Backstepping控制

Backstepping方法直接在非线性系统的基础上设计控制器,基本思想是将复杂的非线性系统分解成不超过系统阶数的子系统,然后为每个子系统分别设计Lyapunov 函数和中间虚拟量,一直“后退”到整个系统,直到整个控制律的完成。对于参数不确性的系统,文献[27]用Backstepping方法来设计反馈控制器,同时还设计出自适应增益控制器进行参数估计,从而得到了自适应控制器。 Backstepping控制方法其设计过程简明且能有效处理参数不确定性及外界干扰,该方法具有很好的应用前景。

4.8 自适应控制

自适应控制的研究对象是具有一定程度不确定性的系统[42]。自适应控制器能够修正自己的特性以适应对象和扰动的动态变化。目前自适应控制系统主要有两类:Backstepping自适应控制和参数自适应控制。前者是根据对象的输入/输出特性在线的对对象参数进行递推估计,然后根据递推得到的模型实时调整控制律[43]。后者是模型参考自适应控制,以模型和对象的输出误差作为反馈信号,通过动态调整控制器的参数使得输出误差作为反馈信号[44]。

采用自适应控制技术能够有效地解决模型不精确和模型变化所带来的鲁棒性问题,但是由于它需要复杂的在线计算和递推估计,只是适合于一些渐变和实时性不高的过程。

4.9 混沌、分叉控制

混沌指一种貌似无规则的运动,一种对初值特别敏感的内在随机运动,在较长一段时间内是不可预测的,但支配它运动的规律却可用确定性的方程来描述;混沌控制指改变系统的混沌形态,使之呈现出周期性动力行为[45]。当系统模型的微小变动不影响状态空间中任意起点的运动轨迹的定性特征时,称系统是结构稳定的;当系统在某个模型参数变化到一个特定数值时,系统的定性特征随该参数的微小变化而发生变化,则该点称为分叉点。分叉的研究首先要知道什么时候存在分叉现象;然后才考虑分叉的控制。分叉的控制是指通过控制手段去改变动力系统分叉现象的各种特征。

4.10 智能控制

基于人工神经网络(ANN)、模糊控制(FC)和专家系统(ES)的智能控制由于具有处理各种非线性的能力、并行计算的能力、自适应、自学习和自组织的能力以及容许模型不精确甚至不确定等多方面优点,使之可以综合解决多机电力系统控制所面临的诸多问题。文献[34]应用ANN实现了励磁、快关汽门和电阻掣动三种不同控制器的最优综合控制。文献[46]用模糊控制与线性最优控制结合实现了非线性自适应变增益励磁控制,弥补了固定增益的线性最优励磁控制对大、小干扰或不同目标采用折中设计和无法考虑强非线性约束的不足。电力系统智能控制还有大量基础问题需要研究。

4.11 基于 ADP 的非线性控制

不论是基于变分法和极大值原理的线性最优控制,还是基于微分几何原理的非线性最优控制,其分析和设计都是建立在精确的系统模型基础之上的。由于电力系统的复杂性和不确定性等因素,用于控制的精确模型通常很难获得,此时系统的优化控制则很难实现。鲁棒控制固然在建立数学模型和设计控制规律时积极地考虑了不确定性的影响,然而,鲁棒控制的主要目标是保证在不确定条件下的稳定性,而较少关注控制性能的优化,要取得对较大范围的误差的鲁棒性可能会牺牲更精确的控制。这样鲁棒性和控制性能之间的折中就成为控制器设计的关键因素。而目前尚无一般性的解决方法。ADP 作为一种以Bellman最优化原理为基础的先进动态优化理论,和以Pontryagin极小值原理为基础的最优控制联系紧密。ADP 使用近似的方法来减小高维对计算所带来的影响,解决了动态规划(DP)面临的“维数灾”问题,从而使将其应用于大规模电力系统优化控制成为可能。ADP的原理是通过估计来获得余留代价函数,从而避免每个阶段内针对所有状态变量和控制变量进行精确计算,同时在总体代价最优的原则下进行策略更新,通过对系统响应进行评价不断提高估计精度,并逐步改进控制策略,以实现总体代价的最优[47~48]。

5.仍然存在需进一步研究的问题

随着电力系统高速发展,电力系统的高度非线性、设备间的强耦合性和不可避免的不确定性成为制约控制器发挥性能的主要因素。电力系统控制领域存在技术难题如下[49~51]:一是,PID控制以及线性最优控制均依赖特定工作点处的近似线性化数学模型,且未考虑系统中存在的各种干扰,从理论上讲控制效能对工况变化的适应性不强。如系统发生大扰动时,其控制的效果会大大削弱,甚至起到负作用;

二是,非线性鲁棒控制率的设计必须求解HJI[]不等式,而该二次偏微分不等式在数学上尚无一般解法;

三是,非线性非最小相位系统(如水轮机调速系统)控制效果不佳的问题。

四是,虽然非线性控制理论在电力系统中成功的应用虽然明显地提高了电力系统暂态稳定性。不过,由于非线性系统控制问题的复杂性,不能找到一种万能的非线性控制方法。每一种方法只适合解决一些特殊的非线性系统控制问题。

参考文献

[1]王传波,刘旸. 现代控制理论与经典控制理论的对比研究[J]. 机械管理开发,2006,(03):6-8.

[2]王国军,陈松乔. 自动控制理论发展综述[J]. 微型机与应用,2000,(06):4-7.

[3]魏韡,梅生伟,张雪敏. 先进控制理论在电力系统中的应用综述及展望[J]. 电力系统保护与控制,2013,(12):143-153.

[4]Bauer D L, Buhr W D, Cogswell S S, et al. Simulation of low frequency undamped oscillations in lager power systems [J]. IEEE Trans on Power Apparatus and Systems, 1975, 94(2): 207-213.

[5] DeMello F P, Concordia C. Concept of synchronous machine stability as affected by excitation control[J]. IEEE Trans on Power Apparatus and Systems, 1969, 88(4): 316-329.

[6] 朱方, 赵红光, 刘增煌, 等. 大区电网互联对电力系统动态稳定性的影响[J]. 中国电机工程学报, 2007, 27(1): 1-7.

[7]韩京清. 自抗扰控制技术: 估计补偿不确定因素的控制技术[M]. 北京: 国防工业出版社, 2008

[8]卢强, 王仲鸿, 韩英铎. 输电系统最优控制[M]. 北京: 科学出版社, 1982.

[9]李家坤. 同步发电机励磁控制方式发展综述[J]. 电力学报,2005,(01):26-29.

[10]徐琼璟,徐政. PSS/E中的风电机组通用模型概述[J]. 电网技术,2010,(08):176-182.

[11]韩慧云,黄梅. 电力系统低频振荡与PSS分析[J]. 华北电力技术,2005,(07):1-4.

[12]LU Qiang, WANG Zhong-hong, HAN Ying-duo. The optimal fast turbine valve control

and its experimental research on micro-alternator system[J]. Science in China: Ser A, 1980, 7: 923-938.

[13]LU Qiang, HAN Ying-duo, WANG Zhong-hong. Integrated optimal control of large turbo-generator set and tests on micro-alternator system[J]. Journal of Tsinghua University, 1981, 21(2): 63-77.

[14]林其友,陈星莺,曹智峰. 多机系统调速侧电力系统稳定器GPSS的设计[J]. 电网技术,2007,(03):54-58.

[15]栗春, 姜齐荣, 王仲鸿, 等. 静止无功补偿器的非线性控制器的设计[J]. 电网技术, 1998, 22(6): 34-38.

[16]曾正, 刘涤尘, 廖清芬, 等. Terminal 滑模变结构励磁控制设计及仿真研究[J]. 电力系统保护与控制, 2010, 38(23): 1-5.

[17]李秋文, 李啸骢, 邓裕文, 等. UPFC 新型多指标控制设计[J]. 电力系统保护与控制, 2012, 40(17): 133-138

[18]卢强, 梅生伟, 孙元章. 电力系统非线性控制 [M]. 二版. 北京: 清华大学出版社, 2008.

[19] 吴捷, 刘永强, 陈巍. 现代控制技术在电力系统控制中的应用(一)[J]. 中国电机工程学报, 1998, 18(6): 377-382.

[20]卢强, 桂小阳, 梅生伟, 等. 大型发电机组调速器的非线性最优 PSS[J]. 电力系统自动化, 2005, 29(9): 15-19.

[21]陆冬良, 张秀彬. 基于Hamilton能量整形的多机电力系统励磁控制[J]. 电力系统保护与控制, 2011, 39(5): 45-50.

[22]吴忠强, 马宝明, 孔启翔. 基于 Hamilton 系统的风力发电双PWM变流器控制研究[J]. 电力系统保护与控制, 2012, 40(17): 19-23.

[23]赵睿, 张英敏, 李兴源, 等. 提高送端多直流落点系统暂态稳定性的非线性控制策略[J]. 电力系统保护与控制, 2011, 39(15): 7-12.

[24]张先勇, 舒杰. 基于无源性理论的双馈风力发电机双PW变换器协调控制[J]. 电力系统保护与控制, 2010, 38(21): 184-195.

[25]刘旭东. 基于无速度传感器的永磁同步电机PCH控制[D].青岛大学,2011.

[26]崔芳芳,王宝华,罗玉春,张晓萍. 电力系统稳定性非线性控制方法综述[J]. 电气应用,2008,(05):14-17.

[27]廖勇,王国栋. 双馈风电场柔性高压直流接入下的网侧变换器改进Backstepping控制策略[J]. 电力自动化设备,2014,(02):35-41+47.

[28]张蕊. 考虑时滞的静止无功补偿器backstepping控制设计[D].辽宁工业大学,2012.

[29]沈艳霞,林瑾,纪志成. 感应电机Backstepping控制方法及dSPACE实时仿真研究[J].

系统仿真学报,2005,(09):2207-2210+2221.

[30]郝建红,汪筱巍,张恒. 不确定因素下永磁同步电动机系统的混沌鲁棒控制[J]. 物理学报,2014,(22):20-27.

[31]桂小阳, 梅生伟, 卢强. 多机系统水轮机调速器鲁棒非线性协调控制研究[J]. 电力系统自动化, 2006, 30(3): 29-33.

[32]蓝益鹏. 永磁直线电机伺服系统鲁棒控制的研究[D].沈阳工业大学,2007.

[33]蒋教恒. 现代鲁棒控制及其数学基础[J]. 华北电力大学学报,2000,(04):93-98.

[34]姜齐荣,闵勇,韩英铎. 基于人工神经网络的励磁调节、快控汽门和电阻掣动的协调控制[J].清华大学学报,1997,37(7)

[35]张爱国, 张建华, 韩军锋, 等. 基于 HDP 算法的 SSSC 神经控制器设计[J]. 电力系统保护与控制, 2010, 38(23): 87-92.

[36]孙元章,卢强,李国杰,等. 水轮机发电机水门非线性控制器研究[J].清华大学学报,1994,34(1):7-13.

[37] Y Wang,D J Hill,R H Middleeton.Transient stabilityenhancement and voltage regulation of power system[J].IEEETrans on Power System,1993, 8 (2):620-627.

[38] 葛友,李春文,孙政顺. 逆系统方法在电力系统综合控制中的应用[J].中国电机工程学报,2001,21(4):6-10.

[39]张传科. 时滞电力系统的小扰动稳定分析与负荷频率控制[D].中南大学,2013.

[40]李爱云. 基于无源系统理论的发电机非线性励磁控制的研究[D].广西师范大学,2009.

[41]刘锋, 梅生伟, 夏德明, 等. 基于超导储能的暂态稳定控制器设计[J]. 电力系统自动化, 2004, 28(1): 24-29.

[42] 王祥哲. 电力系统非线性反演自适应变结构控制研究[D].南京理工大学,2010.

[43] 王宝华,杨成梧,张强. 发电机的非线性自适应逆推综合控制[J].控制理论与应用,2006,23(1):60-64.

[44]卢强, 盛成玉, 陈颖. 巨型风电并网系统的协同自律控制[J]. 控制理论与应用, 2011, 28(10): 1491-1495.

[45]张文晋. 基于混沌轨道及共振参数微扰控制的微弱信号检测研究[D].吉林大学,2007.

[46]尹建华,江道灼.TCSC 的非线性控制对电力系统稳定性的影响[J].电工技术学报,1999,14(3):70-74.

[47]卢强, 孙元章, 黎雄. 全数字式非线性最优励磁控制器的原理及应用[J]. 电力自动化设备, 1999, 19(2): 1-5.

[48]刘艳红, 李春文. HVDC 系统中换流器的一般非线性控制[J]. 电力系统自动化, 2000, 24(24): 12-14.

[49]卢强, 梅生伟. 现代电力系统控制评述——清华大学电力系统国家重点实验室相关科

研工作缩影及展望[J]. 系统科学与数学, 2012, 32(10): 1207-1225

[50]梅生伟, 朱建全. 智能电网中的若干数学与控制科问题及其展望[J]. 自动化学报, 2013, 39(2): 119-131.

[51]卢强, 何光宇, 陈颖. 智能电力系统与智能电网导论[M]. 北京: 清华大学出版社.

自动控制原理论文

自动控制 摘要:综述了自动控制理论的发展情况,指出自动控制理论所经历的三个发展阶段,即经典控制理论、现代控制理论和智能控制理论。最后指出,各种控制理论的复合能够取长补短,是控制理论的发展方向。 自动控制理论是自动控制科学的核心。自动控制理论自创立至今已经过了三代的发展:第一代为20世纪初开始形成并于50年代趋于成熟的经典反馈控制理论;第二代为50、60年代在线性代数的数学基础上发展起来的现代控制理论;第三代为60年代中期即已萌芽,在发展过程中综合了人工智能、自动控制、运筹学、信息论等多学科的最新成果并在此基础上形成的智能控制理论。经典控制理论(本质上是频域方法)和现代控制理论(本质上是时域方法)都是建立在控制对象精确模型上的控制理论,而实际上的工业生产系统中的控制对象和过程大多具有非线性、时变性、变结构、不确定性、多层次、多因素等特点,难以建立精确的数学模型。因此,自动控制专家和学者希望能从要解决问题领域的知识出发,利用熟练操作者的丰富经验、思维和判断能力,来实现对上述复杂系统的控制,这就是基于知识的不依赖于精确的数学模型的智能控制。本文将对经典控制理论、现代控制理论和智能控制理论的发展情况及基本内容进行介绍。 1自动控制理论发展概述 自动控制是指使用自动化仪器仪表或自动控制装置代替人 自动地对仪器设备或工业生产过程进行控制,使之达到预期的状态或性能指标。对传统的工业生产过程采用自动控制技术,可以有效提高产品的质量和企业的经济效益。对一些恶劣环境下的控制操作,自动控制显得尤其重要。 自动控制理论是和人类社会发展密切联系的一门学科,是自动控制科学的核心。自从19世纪M ax we ll对具有调速器的蒸汽发动机系统进行线性常微分方程描述及稳定性分析以来,经过20世纪初Ny qu i s t,B od e,Ha rr is,Ev ans,W ie nn er,Ni cho l s等人的杰出贡献,终于形成了经典反馈控制理论基础,并于50年代趋于成熟。经典控制理论的特点是以传递函数为数学工具,采用频域方法,主要研究“单输入—单输出”线性定常控制系统的分析和设计,但它存在着一定的局限性,即对“多输入—多输出”系统不宜用经典控制理论解决,特别是对非线性、时变系统更

智能控制课程论文

一、引言 (3) 二、轧机液压AGC数学模型 (3) 三、基于BP神经网络的轧机AGC过程控制 (5) (一)人工神经网络基本思想及其发展 (6) (二)人工神经网络的工作原理 (7) (三)人工神经网络的主要功能特点 (8) 四、神经网络辨识 (9) (一)扩展BP神经算法 (9) (二)基于时间序列的动态模型辨识 (11) 五、辨识结果 (12) (一)轧制力辨识 (12) (二)液压AGC参数辨识 (13) 六、结果检验 (14) (一)模型检验 (14) (二)辨识结果对比 (14) 七、结论 (15) 八、参考文献: (15)

先进过程控制技术在轧机液压领域的应用 摘要:轧机液压AGC控制过程的力控精度直接影响带钢的组织性能和力学性能,是保证板带质量和板形良好的关键因素。所以对轧机液压AGC的力控制,成为热轧生产中的重要环节,对其过程进行分析和研究具有深远的现实意义。本文以国内某热轧厂轧机液压AGC控制为背景,对如何提高轧机液压AGC控制的力控精度从控制方法上入手进行了较深入系统的研究。在分析液压AGC的组成元件及其动态特性的基础上, 利用神经网络具有逼近任何非线性函数且具有自学习和自适应的能力, 建立基于时间序列的前馈动态模型辨识结构, 应用扩展BP算法对轧机液压AGC力控制系统进行非线性预测, 将预测结果应用最小二乘辨识方法进行线性系统的特征参数辨识, 仿真及实测结果表明此方法行之有效, 为轧机液压AGC的控制提供了新途径。 关键词:自适应辨识;板带轧机;液压AGC;神经网络

Advanced process control technology in the field of rolling mill hydraulic applications Abstr act: In the process of rolling mill hydraulic AGC control force control precision directly affects the organization performance and mechanics performance of the steel strip, is guarantee the quality of strip and plate shape of the key factors. So the force control of rolling mill hydraulic AGC, become the important link between the hot rolling production, analyzes its process and research has far-reaching practical significance. This paper, taking a warmwalzwerk domestic mill hydraulic AGC control as the background, on how to improve the force control precision of the rolling mill hydraulic AGC control from the control methods of conducted in-depth study of the system. Based on the analysis of dynamic characteristics of hydraulic AGC components and, on the basis of using the neural network has any nonlinear function approximation, and has the ability of self learning and adaptive feedforward dynamic model identification based on time series structure, extend the BP algorithm was applied to rolling mill hydraulic AGC force control system for nonlinear prediction, and the predicted results using least squares identification method for characteristic parameters of a linear system identification, simulation and experimental results show that this method is effective, for rolling mill hydraulic AGC control provides a new way. Key wor ds: adaptive identification; stripe mill; hydraulic AGC; neural network

仪器分析心得体会

仪器分析心得体会 篇一:仪器分析的感想 对仪器分析课程的认识和感想 仪器分析是高等学校等有关专业开设的一门基础课,其目的是使学生在大学学习期间掌握有关仪器分析中一些常用方法的基本原理、特点和应用,对于将来参加科学研究或具体实际工作都是很有益的。 仪器分析法是以物理和化学及其信号强度为基础建立起来的一种分析方法,使用比较复杂和特殊的仪器。仪器分析的基本原理源于分析化学。分析仪器的发展与分析化学的发展紧密相关,分析化学经历过三次重大变革,使得仪器分析也逐步升级,从仪器化、电子化、计算机化到智能化、信息化以至仿生化。 常用的仪器分析方法主要包括几类:光学分析法、电化学分析法、色谱分析法、质谱法。这些方法依据的原理不同,具有的性能指标如精密度、灵敏度、检出限、测定下限、线性范围、准确度等,在选择方法时,还要有一些考虑,如对样品结果准确度的要求,还有费用(包括仪器的购置费、运转费)、样品量、分析速度等。使用仪器分析法检测样品,具有效率高、速度快、方便、实用的特点。 仪器分析的应用范围十分广泛。仪器分析与科学四大理论(天体、地球、生命、人类起源和深化)及人类社会面临

的五大危机(资源、粮食、能源、人口、环境)问题的解决密切相关,也与工农业生产及人们日常衣食住行用的质量保证等领域密切相关,仪器分析的发展包括仪器和方法两方面的发展,仪器分析的发展趋势表现在建立原位、在体、实时、在线的动态分析检测方法建立无损以及多参数同时检测方法。现在以实现各种分析法的联用;分析仪器的智能化、自动化和微型化等几个方面。 通过对仪器分析这一课程的学习,对常用仪器的基本原理、特点、使用方法和应用都有了大致的认识和掌握。这门学科的实用性强,应用广泛。它的方法和基本思想如逻辑思维,对以后的科研和日常的工作有巨大的帮助。如果能对仪器分析这门课程有深刻认识,对以后仪器的创新和发展也能尽到一份力。 篇二:《仪器分析》问题学习法总结 《仪器分析》问题学习法心得体会 虽然只有短短的八周学习时间,但在张玲老师的指导学习下,使我对仪器分析这门学科了解颇多。通过学习是我知道仪器分析是我们学化学的必学的一门课程,是化学分析中不可缺少的方法。而且随着科技的发展,仪器分析变得越来越重要,在化学分析中的应用也越来越广泛。因此,我们必须学好仪器分析。就像张玲老师说的那样,大学毕业后我们什么书都可以卖掉,但《仪器分析》这本书一定要留下来。

现代控制理论课程设计心得【模版】

宁波理工学院现代控制理论课程设计报告 题目打印机皮带驱动系统能控能观和稳定性分析项目成员史旭东童振梁沈晓楠 专业班级自动化112 指导教师何小其 分院信息分院 完成日期 2014-5-28

目录 1. 课程设计目的 (4) 2.课程设计题目描述和要求 (4) 3.课程设计报告内容 (4) 3.1 原理图 (4) 3.2 系统参数取值情况 (5) 3.3 打印机皮带驱动系统的状态空间方程 (5) 4. 系统分析 (8) 4.1 能控性分析 (8) 4.2 能观性分析 (8) 4.3 稳定性分析 (9) 5. 总结 (11)

项目组成员具体分工

打印机皮带驱动系统能控能观和稳定性 分析 课程设计的内容如下: 1.课程设计目的 综合运用自控现代理论分析皮带驱动系统的能控性、能观性以及稳定性,融会贯通并扩展有关方面的知识。加强大家对专业理论知识的理解和实际运用。培养学生熟练运用有关的仿真软件及分析,解决实际问题的能力,学会应用标准、手册、查阅有关技术资料。加强了大家的自学能力,为大家以后做毕业设计做很好的铺垫。 2.课程设计题目描述和要求 (1)环节项目名称:能控能观判据及稳定性判据 (2)环节目的: ①利用MATLAB分析线性定常系统的可控性和客观性。 ②利用MATLAB进行线性定常系统的李雅普诺夫稳定性判据。 (3)环节形式:课后上机仿真 (4)环节考核方式: 根据提交的仿真结果及分析报告确定成绩。 (5)环节内容、方法: ①给定系统状态空间方程,对系统进行可控性、可观性分析。 ②已知系统状态空间方程,判断其稳定性,并绘制出时间响应曲线验 证上述判断。 3.课程设计报告内容 3.1 原理图 在计算机外围设备中,常用的低价位喷墨式或针式打印机都配有皮带驱动器。它用于驱动打印头沿打印页面横向移动。图1给出了一个装有直流电机的皮

现代控制理论论文

湖北民族学院 姓名 XX 班级 XX 学号 XXXXXXXX

摘要 最优控制,又称无穷维最优化或动态最优化,是现代控制理论的最基本,最核心的部分。它所研究的中心问题是:如何根据受控系统的动态特性,去选择控制规律,才能使得系统按照一定的技术要求进行运转,并使得描述系统性能或品质的某个“指标”在一定的意义下达到最优值。最优控制问题有四个关键点:受控对象为动态系统;初始与终端条件(时间和状态);性能指标以及容许控制。 一个典型的最优控制问题描述如下:被控系统的状态方程和初始条件给定,同时给定目标函数。然后寻找一个可行的控制方法使系统从输出状态过渡到目标状态,并达到最优的性能指标。系统最优性能指标和品质在特定条件下的最优值是以泛函极值的形式来表示。因此求解最优控制问题归结为求具有约束条件的泛函极值问题,属于变分学范畴。变分法、最大值原理(最小值原理)和动态规划是最优控制理论的基本内容和常用方法。庞特里亚金极大值原理、贝尔曼动态规划以及卡尔曼线性二次型最优控制是在约束条件下获得最优解的三个强有力的工具,应用于大部分最优控制问题。尤其是线性二次型最优控制,因为其在数学上和工程上实现简单,故其有很大的工程实用价值。 关键词:最优控制;控制规律;最优性能指标;线性二次型

Abstract The optimal control, also called dynamic optimization or infinite dimension, optimization of modern control theory, the most basic part of the core. It is the center of the research question: how to control system based on the dynamic characteristics, to choose, can control system according to certain technical requirements, and makes the operation performance of the system or the quality of describing a "index" in certain significance to achieve optimal value. The optimal control problem has four points for dynamic systems, controlled, The initial and terminal conditions (state) and, Performance index and allow control. A typical of optimal control problem is described as follows: the state equation and initial conditions are given, and given the objective function. Then a feasible method for the control system of the output state transition to the target state and optimum performance. The optimal performance index and quality in the specific conditions of the optimal value is functional form. Therefore solution of optimal control problem is due to the constraint condition of functional, belongs to the category of variational learning. The variational method, the maximum principle (minimum principle) and dynamic planning is the optimal control theory, the basic contents and methods. The Pontryagin maximum principle, Behrman dynamic programming and Kaman linear quadratic optimal control is obtained in the constraint condition of the optimal solution of the three powerful tools, used in the most optimal control problem. Especially the linear quadratic optimal control, because its in mathematics and engineering implementation is simple, so it has great practical value. Key words: The optimal control, Control rule, optimal performance indicators, The linear quadratic

智能控制理论结课论文

用模糊控制实现恒压供水 参考文献: 文献一:基于模糊控制的恒压供水研究 中图分类号: TU991 文献标识码: A 文章编号: 1672- 9900(2007)04- 0028- 03 总结: 由于供水系统的管网和水泵存在着非线性、多变量等特性, 而且相间有交叉耦合, 很难建立精确的数学模型。如果采用常规的PID 算控制,往往难以得到较理想的静动态特性。采用模糊逻辑控制的方法对水压进行控制, 可以达到良好的控制性能。模糊控制器结构如图1示。采用双输入单输出的形式, 以水压给定值SP 和实际水压测量值PV 的误差e( e=SP- PV) 及误差变化率ec( ec=de/dt) 作为糊控制器的输入量, 经模糊化后分别得到模糊量 E 和EC, 并分别用模糊语言加以描述, 建立输入和输出之间的模糊控制规则。如果用PLC 进行在线模糊推理,将花费大量运算时间,从而影响系统工作。根据控制规则采用离线方式计算出模糊控制表, 存于可编程控制器PLC 内存中, 在实时控制时将复杂的推理运算过程简化为查表运算, 极大地提高了恒压供水系统的响应速度。

系统将自调整模糊控制技术应用到基于PLC 控制的变频调速恒压供水系统中,能够很好地克服供水系统数学模型难以确定、使用传统PID控制方式调节器参数调整困难的缺点, 较好地消除了系统非线性、时变等因素的干扰影响。系统经过调试和实际运行, 其压力始终稳定在设定的范围内, 具有节约能源、操作方便、自动化控制程度高等优点, 系统可广泛应用于住宅小区、高楼供水系统。 文献二:恒压供水系统的模糊控制 (1·温州大学工业工程学院,浙江温州325000;2·浙江大学工业控制技术国家重点实验室,浙江杭州310000) 总结: 恒压供水是指用户段不管用水量大小,总保持管网水压基本恒定,这样,既可满足各部位的用户对水的需求,又不使电动机空转,造成电能的浪费。为实现上述目标,利用PLC根据给定压力信号和反馈 压力信号,通过模糊推理运算,控制变频器调节水泵转速,从而达到控制管网水压的目的。变频恒压供水系统如图3—1所示。根据供水压力要求,采用一用一备变频恒压供水系统。

《现代仪器分析》教学大纲

《现代仪器分析》教学大纲 课程编号: 课程名称:现代分析/ Modern Instrumental Analysis 学时/学分:40 /2.5 先修课程:无机及分析化学、有机化学 适用专业:化学工程与工艺 开课学院(部)、系(教研室):化学工程学院制药工程系 一、课程的性质与任务 仪器分析与光谱解析是制药工程专业的学科基础必修课。 本课程要求学生掌握各种仪器分析方法的基本原理、基本方法和基本操作。熟悉各种典型光谱的解析及色谱法的分离条件的选择。了解各种仪器的工作原理,以及各种仪器分析方法在药学中的应用。 二、课程的教学内容、基本要求及学时分配 (一)教学内容 1.电位法及永停滴定法 电化学分析法的基本原理(分类、基本原理);直接电位法、电位滴定法和永停滴定法的测定方法、应用及示例。 2.气相色谱法 气相色谱法的基本原理(基本概念、塔板理论、Van Deemter方程式简介),色谱柱(固定液、载体、气-液色谱填充柱的制备),气-固色谱填充柱、毛细管色谱柱简介,检测器(热导、氢焰)分离条件的选择,定性、定量分析方法,应用与示例等。 3.高效液相色谱法 高效液相色谱法的基本原理(Van Deemter); 方程式在HPLC与GC中表现形式、Giddings方程式简介),各类高效液相色谱法:液-固吸附色谱法、液-液分配色谱法、化学键合相色谱法(反相键合相色谱法、正相键合相色谱法、离子抑制色谱法、离子对色谱法),离子交换色谱法与离子色谱法、空间排斥色谱法,其他色谱法简介(胶束色谱法、手性色谱法、亲合色谱法),高效液相色谱固定相,流动相、仪器装置、定性与定量分析方法及毛细电泳法简介。 4.紫外—可见光度法 紫外—可见光谱的跃迁机理;Lambert-beer定律;精细结构;溶剂效应;wood-word吸收定则及应用。 5.红外光谱法 红外光谱的跃迁机理;判别定则;拉曼光谱;Fourier变换红外光谱;试样的制备和仪器等。 6.核磁共振 核自旋能级跃迁的基本原理;Zeeman能级;Boltzman分布;核的进动与弛豫;化学位移及其影响因素;13C—1H自旋—自旋偶合;偶合常数及其影响因素;NMR光谱的改进;奥氏核效应;二维谱。 7.质谱

在线作业答案西交《现代仪器分析》在线作业15秋100分答案

西交《现代仪器分析》在线作业15秋100分答案 一、单选题(共 25 道试题,共 50 分。) 1. 气相色谱中,相对校正因子与()无关。、 A. 载气种类 B. 检测器结构 C. 标准物 D. 检测器类型 正确答案: B 2. 某有色物质溶液,每100mL中含该物质0.2mg。今用1cm比色杯在某波长下测得透光率为10%,这该物质的E1%1cm= ( )、 现代仪器分析论文 A. 1.0 × 102 B. 1.0× 103 C. 5.0 × 102 D. 5.0× 103 正确答案: D 3. 3,3-二甲基戊烷:受到电子流轰击后, 最容易断裂的键位是: ( ) 、 A. 1和4 B. 2和3 C. 5和6 D. 2和3 正确答案: B 4. 对于异丙叉丙酮CH3COCH=C(CH3)2的溶剂效应,以下说法正确的是()。、 A. 在极性溶剂中测定n→π*跃迁吸收带,λmax发生短移 B. 在极性溶剂中测定n→π*跃迁吸收带,λmax发生长移 C. 在极性溶剂中测定π→π*跃迁吸收带,λmax发生短移 D. n→π*和π→π*跃迁吸收带波长与溶剂极性无关。 正确答案: A 5. 某稀溶液浓度为C, 测得透光率为T,若该溶液浓度变为0.5C,2C,3C,则其透光率将分别为()。、 A. 0.5T,2T,3T B. T1/2,T2,T3 C. T×lg0.5,T×lg2,T×lg3 D. T/0.5, T/2, T/3 正确答案: B 6. 下列哪种因素将使组分的保留时间变短?( )。、 A. 降低流动相的流速 B. 增加色谱柱柱长 C. 正相色谱环己烷-二氯甲烷流动相系统增大环己烷比例 D. 反相色谱乙腈-水流动相系统增加乙腈比例 正确答案: D 7. Van Deemter方程中,影响A项的因素有()、 A. 载气分子量

现代控制理论概述及实际应用意义

13/2012 59 现代控制理论概述及实际应用意义 王 凡 王思文 郑卫刚 武汉理工大学能源与动力工程学院 【摘 要】控制理论作为一门科学技术,已经广泛地运用于我们社会生活的方方面面。本文介绍了现代控制理论的产生、发展、内容、研究 方法和应用以及经典控制理论与现代控制理论的差异,并介绍现代控制理论的应用。提出了学习现代控制理论的重要意义。【关键词】现代控制理论;差异;应用;意义 1.引言 控制理论作为一门科学技术,已经广泛地运用于我们社会生活的方方面面。例如,我们的教学也使用了控制理论的方法。老师在课堂上讲课,大家在课堂上听,本身可看作一个开环函数;而同学们课下做作业,再通过老师的批改,进而改进和提高老师的授课内容和方法,这就形成了一个闭环控制。像这样的例子很多,都是控制理论在生活中的应用。现代控制理论如此广泛,因此学好现代控制理论至关重要。 2.现代控制理论的产生与发展现代控制理论的产生和发展经过了很长的时期。从现代控制理论的发展历程可以看出,它的发展过程反映了人类由机械化时代进入电气化时代,并走向自动化、信息化、智能化时代。其产生和发展要分为以下几个阶段的发展。 2.1 现代控制理论的产生在二十世纪五十年代末开始,随着计算机的飞速发展,推动了核能技术、空间技术的发展,从而对出现的多输入多输出系统、非线性系统和时变系统的分析与设计问题的解决。 科学技术的发展不仅需要迅速 地发展控制理论,而且也给现代控制理论的发展准备了两个重要的条件—现代数学和数字计算机。现代数学,例如泛函分析、现代代数等,为现代控制理论提供了多种多样的分析工具;而数字计算机为现代控制理论发展提供了应用的平台。 2.2 现代控制理论的发展五十年代后期,贝尔曼(Bellman)等人提出了状态分析法;在1957年提出了动态规则;1959年卡尔曼(Kalman)和布西创建了卡尔曼滤波理论;1960年在控制系统的研究中成功地应用了状态空间法,并提出了可控性和可观测性的新概念;1961年庞特里亚金(俄国人)提出了极小(大)值原理;罗森布洛克(H.H.Rosenbrock)、麦克法轮(G.J.MacFarlane)和欧文斯(D.H.Owens)研究了使用于计算机辅助控制系统设计的现代频域法理论,将经典控制理论传递函数的概念推广到多变量系统,并探讨了传递函数矩阵与状态方程之间的等价转换关系,为进一步建立统一的线性系统理论奠定了基础。 20世纪70年代奥斯特隆姆(瑞典)和朗道(法国,https://www.360docs.net/doc/347748946.html,ndau)在自适应控制理论和应用方面作出了贡献。 与此同时,关于系统辨识、最优控制、离散时间系统和自适应控制的发展大大丰富了现代控制理论的内容。 3.现代控制理论的内容及研究方法 现代控制理论的内容主要有为系统辨识;最优控制问题;自适应控制问题;线性系统基本理论;最佳滤波或称最佳估计。 (1)系统辨识 系统辨识是建立系统动态模型的方法。根据系统的输入输出的试验数据,从一类给定的模型中确定一个被研究系统本质特征等价的模型,并确定其模型的结构和参数。 (2)最优控制问题 在给定约束条件和性能指标下,寻找使系统性能指标最佳的控制规律。主要方法有变分法、极大值原理、动态规划等极大值原理。现代控制理论的核心即:使系统的性能指标达到最优(最小或最大)某一性能指标最优:如时间最短或燃料消耗最小等。 (3)自适应控制问题 在控制系统中,控制器能自动适应内外部参数、外部环境变化,自动调整控制作用,使系统达到一定意义下的最优。模型参考自适应控制

现代控制理论----综述论文-2015

2015级硕士期末论文《现代控制理论综述》 课程现代控制理论姓名 学号 专业 2016 年1 月 4 日

经典控制理论与现代控制理论的差异 现代控制理论是建立在状态空间法基础上的一种控制理论,是自动控制理论的一个主要组成部分。在现代控制理论中,对控制系统的分析和设计主要是通过对系统的状态变量的描述来进行的,基本的方法是时间域方法。现代控制理论比经典控制理论所能处理的控制问题要广泛得多,包括线性系统和非线性系统,定常系统和时变系统,单变量系统和多变量系统。它所采用的方法和算法也更适合于在数字计算机上进行。现代控制理论还为设计和构造具有指定的性能指标的最优控制系统提供了可能性。现代控制理论的名称是在1960年以后开始出现的,用以区别当时已经相当成熟并在后来被称为经典控制理论的那些方法。现代控制理论已在航空航天技术、军事技术、通信系统、生产过程等方面得到广泛的应用。现代控制理论的某些概念和方法,还被应用于人口控制、交通管理、生态系统、经济系统等的研究中。 现代控制理论是在20世纪50年代中期迅速兴起的空间技术的推动下发展起来的。空间技术的发展迫切要求建立新的控制原理,以解决诸如把宇宙火箭和人造卫星用最少燃料或最短时间准确地发射到预定轨道一类的控制问题。这类控

制问题十分复杂,采用经典控制理论难以解决。1958年,苏联科学家Л.С.庞特里亚金提出了名为极大值原理的综合控制系统的新方法。在这之前,美国学者R.贝尔曼于1954年创立了动态规划,并在1956年应用于控制过程。他们的研究成果解决了空间技术中出现的复杂控制问题,并开拓了控制理论中最优控制理论这一新的领域。1960~1961年,美国学者R.E.卡尔曼和R.S.布什建立了卡尔曼-布什滤波理论,因而有可能有效地考虑控制问题中所存在的随机噪声的影响,把控制理论的研究范围扩大,包括了更为复杂的控制问题。几乎在同一时期内,贝尔曼、卡尔曼等人把状态空间法系统地引入控制理论中。状态空间法对揭示和认识控制系统的许多重要特性具有关键的作用。其中能控性和能观测性尤为重要,成为控制理论两个最基本的概念。到60年代初,一套以状态空间法、极大值原理、动态规划、卡尔曼-布什滤波为基础的分析和设计控制系统的新的原理和方法已经确立,这标志着现代控制理论的形成。 现代控制理论所包含的学科内容十分广泛,主要的方面有:线性系统理论、非线性系统理论、最优控制理论、随机控制理论和适应控制理论。 线性系统理论是现代控制理论中最为基本和比较成熟的一个分支,着重于研究线性系统中状态的控制和观测问题,其基本的分析和综合方法是状态空间法。按所采用的数学工具,线性系统理论通常分成为三个学派:基于几何概念和方法的几何理论,代表人物是W.M.旺纳姆;基于抽象代数方法的代数理论,代表人物是R.E.卡尔曼;基于复变量方法的频域理论,代表人物是H.H.罗森布罗克。 非线性系统理论的分析和综合理论尚不完善。研究领域主要还限于系统的运动稳定性、双线性系统的控制和观测问题、非线性反馈问题等。更一般的非线性系统理论还有待建立。从70年代中期以来,由微分几何理论得出的某些方法对

现代控制理论的论文

第一章经典控制理论和现代控制理论 本学期学习了现代控制理论课程的主要内容,现代控制理论建立在状态空间法基础上的一种控制理论,是自动控制理论的一个主要组成部分。在现代控制理论中,对控制系统的分析和设计主要是通过对系统的状态变量的描述来进行的,基本的方法是时间域方法。现代控制理论比经典控制理论所能处理的控制问题要广泛得多,包括线性系统和非线性系统,定常系统和时变系统,单变量系统和多变量系统。它所采用的方法和算法也更适合于在数字计算机上进行。现代控制理论还为设计和构造具有指定的性能指标的最优控制系统提供了可能性。现代控制理论的名称是在1960年以后开始出现的,用以区别当时已经相当成熟并在后来被称为经典控制理论的那些方法。现代控制理论已在航空航天技术、军事技术、通信系统、生产过程等方面得到广泛的应用。现代控制理论的某些概念和方法,还被应用于人口控制、交通管理、生态系统、经济系统等的研究中。 以下是经典控制理论和现代控制理论的比较: 1、经典控制理论: (1)理论基础:Evens的根轨迹,Nyquist稳定判据。 (2)研究对象:线性定常SISO系统分析与设计。 (3)分析问题:稳、准、快 (4)采用方法:是以频率域中传递函数为基础的外部描述方法。 (5)数学描述:高阶微分方程、传递函数、频率特性;方块图、信号流图、频率特性曲线。 (6)研究方法:时域法、根轨迹法、频率法。 2、现代控制理论: (1)理论基础:李雅普诺夫稳定性理论,Bellman动态规划,Понтрягин极值原理,Kalman 滤波。 (2)研究对象:MIMO系统分析与设计(复杂系统:多变量、时变、非线性) (3)分析问题:稳、准、快 (4)设计(综合)问题: 1)采用方法:是以时域中(状态变量)描述系统内部特征的状态空间方法为基础的内部描述方法。 2)数学描述:状态方程及输出方程、传递函数阵、频率特性;状态图、信号流图、频率特性曲线。 3)研究方法:状态空间法(时域法)、频率法。多采用计算机软硬件教学辅助设计——MATLAB软件 (5)特点: 1)系统:MIMO、非线性、时变。 2)方法将矩阵理论和方法应用到控制理论中,不仅能描述系统的输入与输出之间的关系,而且在任何初始条件下,都能揭示系统内部的行为。 3)一个复杂系统可能有多个输入和多个输出,并且以某种方式相互关联或耦合。为了分析这样的系统,必须简化其数学表达式,转而借助于计算机来进行各种大量而乏味的分析与计算。从这个观点来看,状态空间法对于系统分析是最适宜的。

(完整版)现代仪器分析试卷

武汉工程大学 2010—2011学年度第二学期期末试卷 考试课程:现代仪器分析考核类型:考试A卷 考试形式:闭卷出卷教师:徐兰英 考试专业:环境工程考试班级:研究生 一、名词解释(5×4) 1、离子色谱 2、参比电极 3、生色团 4、摩尔吸光系 5、酸差 二、选择题(从下列各题备选答案中选出一个正确答案,并将其代号写在答题纸上。多选 或少选均不给分。每小题2分,共30分。) 1、符合吸收定律的溶液稀释时,其最大吸收峰波长位置。 A、向长波移动 B、向短波移动 C、不移动 D、不移动,吸收峰值降低 2、分子的紫外-可见吸收光谱呈带状光谱,其原因是什么?。 A、分子中价电子运动的离域性质; B、分子中价电子能级的相互作用; C、分子振动能级的跃迁伴随着转动能级的跃迁; D、分子电子能级的跃迁伴随着振动、转动能级的跃迁。 3、下列因素中,对色谱分离效率最有影响的是。 A、柱温 B、载气的种类 C、柱压 D、固定液膜厚度 4、用NaOH直接滴定法测定H3BO3含量能准确测定的方法是。 A、电位滴定法 B、酸碱中和法 C、电导滴定法 D、库伦分析法 5、总离子强度调节缓冲剂的最根本的作用是。 A、调节pH值 B、稳定离子强度 C、消除干扰离子 D、稳定选择性系数 6、已知在c(HCl)=1mol/L的HCl溶液中:ΦCr2O72-/Cr3+=1.00V, ΦFe3+/Fe2+=0.68V。若以K2CrO7滴定Fe2+ 时,选择下列指示剂中的哪一种最适合。 A、二苯胺(Φ=0.76V); B、二甲基邻二氮菲—Fe3+(Φ=0.97V); C、次甲基蓝(Φ=0.53V); D、中性红(Φ=0.24V); 7、进行电解分析时,要使电解能持续进行,外加电压应。 A、保持不变 B、大于分解电压 C、小于分解电压 D、等于分解电压 A卷【第页共页】

现代仪器分析综述

现代仪器分析综述 (1309011025 韩武) 现代仪器分析为现代分析化学奠定了雄厚的学科理论基础——信息理论, 使现代仪器分析已经成为分析化学极其重要的组成部分,现代仪器分析所采用的分析仪器是化学、光学、电学、磁学、机械及计算机科学等现代科学综合发展的产物,仪器本身就是科学技术水平的标志。若能充分利用现代仪器分析方法和技术, 就能更加全面、准确地认识物质世界, 进一步促进科学技术向纵深发展。 1、现代分析仪器的发展及发展趋向 现代仪器分析是在化学分析的基础上逐步发展起来的一类分析方法,现代分析仪器对科技领域的发展起着关键作用,一方面科技领域对分析仪器不断提出更高的要求,另一方面随着科学技术的飞速发展,新材料、新器件不断涌现又大大推动了分析仪器的快速更新,同时为仪器分析中老方法的不断更新、新方法的不断建立提供了物质和技术基础,大大地促进了现代仪器分析的快速发展。现代分析仪器的发展趋向主要有以下特点:向多功能化、自动化和智能化方向发展,向专用型和微型化方向发展,向多维分析仪器方向发展,向联用分析仪器方向发展。仪器分析的最主要的功能是人类五官感触的延伸,人类智慧利用了光、电和磁的物理特性通过物理和化学手段将微小的物理量放大,而获得感知小型化集成化(芯片)、多功能化(联用技术)和高稳定、高灵敏度检测是仪器分析发展的最高境界。20 世纪 70 年代中期首先出现了二维气相色谱技术,70 年代后期迅速发展了二维质谱技术和二维核磁共振波谱技术。二维气相色谱技术可使 用一种流动相在两根串联的色谱柱上对组成复杂的样品实现完全分离:二维质谱技术可同时提供强的碎片离子峰和强的分子离子峰,从而获得完整的结构信息;二维核磁共振波谱技术可提供固体物质、生物大分子的三维结构,显示原子核在样品中分布的立体图像。由上述分析仪器的发展和发展趋向 ,可知现代分析仪器是一种高科技产品,它综合采用了各种技术的最新成果,在不断创新与自身发展的同时,又为各个科技领域的研究和发展提供有力的手段和重要的信息。 2、现代仪器分析的内容和分类 现代仪器分析方法内容丰富,种类繁多,每种方法都有相对独立的物理及物理化学原理,现已有三四十种,新的方法还在不断地出现。为了便于学习和掌握,根据测量原理和信号特点,大致分为电化学分析法、色谱分析法、质谱分析法,

控制科学发展前沿课程论文报告

研究生课程论文封面 课程名称控制科学发展前沿讲座教师姓名 研究生姓名 研究生学号 研究生专业 所在院系自动化学院 类别: 硕士 日期:

对智能控制技术的认识 1 引言 随着计算机、材料、能源等现代科学技术的迅速发展和生产系统规模不断扩大,形成了复杂的控制系统,导致了控制对象、控制器、控制任务等更加复杂。与此同时,对自动化程度的要求也更加广泛,面对来自柔性控制系统(FMS)、智能机器人系统(IRS)、数控系统(CNS)、计算机集成制造系统(CIMS)等复杂系统的挑战,经典的与现代的控制理论和技术已不适应复杂系统的控制。智能控制是在控制论、信息论、人工智能、仿生学、神经生理学及计算机科学发展的基础上逐渐形成的一类高级信息与控制技术。智能控制是自动控制发展的高级阶段。 2 背景和意义 现代科学技术的迅速发展,生产系统的规模越来越大,形成了复杂的大系统,导致了控制对象、控制器以及控制任务和目的的日益复杂化。别一方面,人类对自动化的要求也更加广泛,面对来自旬电力系统、工业生产过程控制系统、智能机器人系统、计算机集成制造系统(CIMS)、核电站安全运行控制、航空航天及军事指挥系统等复杂性系统的挑战,传统的自动控制理论和方法显得已不适应于复杂系统的控制。能否建立新一代的控制理论方法来解决复杂系统的控制问题,已成为各国控制学术界所共同关心的热门研究课题。 近年来人们开始认识到,在许多系统中,复杂性不仅仅表现在高维性上,更多则表现在:(1)被控对象模型的不确定必;(2)系统信息的模糊性,信息模式;(3)高度非线性;(4)输入(传感器)信息的多样化;(5)多层次、多目标的控制要求;(6)计算复杂性和庞大的数据处理以及严格性能指标。自然,对于复杂系统需要在传统的控制理论基础上结合其它学科的知识,建立一种更有力的控制理论和方法,以解决上述提到的问题。智能控制就是在这种背景下提出和形成的。 人类对智能机器及其控制的幻想与追求已有三千多年的历史,然而,真正的智能机器只有在计算机技术和人工智能技术发展的基础上才能成为可能。人工智

人工智能结课论文解读

小论知识与知识表示方法 摘要: 知识是人们在生产生活中经常使用的词汇,知识表示的过程是用一些约定的符号把知识编码成计算机可以接受的数据形式。知识的表示方法例如一阶谓词逻辑表示法,产生式表示法,语义网络表示法,框架表示法和过程规则表示法等等。目前,产生式表示法已经成了人工智能中应用最多的一种知识表示模式,尤其是在专家系统方面,产生式的基本形式P→Q 或者 IF P THEN QP是产生式的前提,也称为前件,它给出了该产生式可否使用的先决条件,由事实的逻辑组合来构成;Q是一组结论或操作,也称为产生式的后件,它指出当前题P 满足时,应该推出的结论或应该执行的动作。 关键字:知识;知识表示;产生式表示法 引言: 知识和知识表示方法是人们生活中必不可少的一部分,知识表示能力是指知识表示方法能否正确、有效地将推理所需要的各种知识表示出来,这是对知识表示方法的最为重要的要求。因为产生式表示方法的自然性,有效性,一致性获得了所有人的肯定,成为构造专家系统的第一选择的知识表示方法。

正文: 1、知识 1.1知识的定义 知识是经过筛选和整理的信息,是对事物运动变化规律的表述,是人类对客观世界一种较为准确、全面的认识和理解。 1.2知识的特性 1)真假性及其相对性 2)不确定性 3)矛盾性或相容性 4)可表示性与可利用性 1.3知识的分类 1)叙述型知识,有关系统状态、环境、条件和问题的概念、定义和事实的知识。 2)过程型知识,有关系统变化、问题求解过程的操作、演算和运动的知识。 3)控制型知识,有关如何选择相应的操作、演算和行动的比较、判断、管理和决策的知识。 2、知识表示方法——产生式表示方法 “产生式”由美国数学家波斯特(E.POST)在1943年首先提出,它根据串代替规则提出了一种称为波斯特机的计算模型,模型中的每条规则称为产生式。 2.1产生式规则

现代控制理论课程设计

现代控制理论 学院:电气工程学院 班级:09级自动化3班姓名:赵明 学号: 任课教师:刁晨 单倒置摆控制系统的状态空间设计

一.设计题目 1.介绍 单倒置摆系统的原理图,如图1所示。设摆的长度为L、质量为m,用铰链安装在质量为M的小车上。小车有一台直流电动机拖动,在水平方向对小车施加控制力u,相对参考系产生位移z。若不给小车施加控制力,则倒置摆会向左或向右倾倒,因此,它是一个不稳定系统。控制的目的是,当倒置摆无论出现向左或向右倾倒时,通过控制直流电动机,使小车在水平方向运动,将倒置摆保持在垂直位置上。 2.用途 倒立摆系统以其自身的不稳定性为系统的平衡提出了难题,也因此成为自动控制实验中验证控制算法优劣的极好的实验装置。单倒立摆的系统结构、数学模型以及系统的稳定性和可控性,对倒立摆进行了成功的控制,并在MATLAB 中获得了良好的仿真效果。倒立摆控制理论将在半导体及精密仪器加工、机器人技术、伺服控制领域、导弹拦截控制系统、航空器对接技术等方面具有广阔的开发利用前景。 3.意义 倒立摆是一种典型的快速、多变量、非线性、绝对不稳定系统. 人们试图寻找同的控制方法以实现对倒立摆的控制,以便检验或说明该方法对严重非线性和绝对不稳定系统的控制能力。同时,由于摩擦力的存在,该系统具有一定的不确定性。对这样一个复杂系统的研究在理论上将涉及系统控制中的许多关键问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等都可以以它为例进行研究。 二.被控对象的模型 为简化问题,工程上往往忽略一些次要因素。这里,忽略摆杆质量、执行电动机惯性以及摆轴、轮轴、轮与接触面之间的摩擦及风力。设小车瞬时位置为z,倒置摆出现的偏角为θ,则摆心瞬时位置为(z+lsinθ)。在控制力u的作用下,小车及摆均产生加速运动,根据

现代控制理论综述论文

论文题目:现代控制理论综述 摘要 本文是对现代控制理论课程的完整综述,现代控制理论的主要内容包括控制系统的状态空间表达式及其解,线性控制系统的能控性和能观性,稳定性与李雅普诺夫方法,线性定常系统的综合以及最优控制理论等部分。本文通过对控制理论各部分的阐述,构出了现代控制理论的主要框架及各部门的基本内容。 关键词:现代控制;状态方程;稳定性;最优控制;

Abstract This article is a complete review of modern control theory course, the main contents of the modern control theory, including the control system of the state space expression and its solution, the controllability of linear control systems and can view, stability and Lyapunov method, the synthesis of linear time-invariant system and optimal control theory. This article through to all parts of the control theory, compose the main framework of modern control theory and the basic content of each department. Keywords: Modern control; State equation;Stability;Optimal control

相关文档
最新文档