矩阵论练习题2
矩阵论简明教程习题答案

1 p1 = 4 , 0
1 p 2 = 0 4
=-1 所对应的方程组 (I+A)x=0 有解向量 1 p 3 = 0 0
令
7.
3 0 1 1 1 0 1 1 P=(p 1 , p 2, p 3 )= 4 0 0 , 则 P = 4 1 4 . 于是有 12 0 4 1 16 4 4 2100 4 2100 2100 1 2100 1 1 2100 0 3 2100 0 A 100 =P P 1 = . 3 100 100 100 1 2 1 4 2 1 4 4 2 2 (1) I A = ( 1) =D 3 ( ), I-A 有 2 阶子式
1 3 2 3 2 T ) . 3
2 1 2 2 1 2 4 ~ 0 0 0 2 4 2 4 4 0 0 0
当 =1 时, 对应的齐次线性方程组 (I-A)x=0 的系数矩阵
由此求出特征向量 p 2 =(-2, 1, 0) T , p 3 =(2, 0, 1) T . 单位化后得
是
d1 1, d 2 1,
d 3 ( 1)( 2)
1 A~J= 1 2
因为 A 可对角化,可分别求出特征值-1,2 所对应的三个线性无关 的特征向量: 当 =-1 时,解方程组 ( I A) x 0, 求得两个线性无关的特征向量
矩阵论第二版 杨明

习题一1.判断下列集合对指定的运算是否构成R 上的线性空间 (1)11{()|0}nij n n iii V A a a⨯====∑,对矩阵加法和数乘运算;(2)2{|,}n n T V A A R A A ⨯=∈=-,对矩阵加法和数乘运算;(3)33V R =;对3R 中向量加法和如下定义的数乘向量:3,,0R k R k αα∀∈∈=; (4)4{()|()0}V f x f x =≥,通常的函数加法与数乘运算。
解: (1)、(2)为R 上线性空间(3)不是,由线性空间定义,对0α∀≠有1α=α,而题(3)中10α= (4)不是,若k<0,则()0kf x ≤,数乘不满足封闭性。
2.求线性空间{|}n nT V A R A A ⨯=∈=的维数和一组基。
解:一组基10001010101010000000100..................0010010⎧⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎬⎪⎪⎪⎪⎪⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪⎪⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎩⎪⎪⎪⎪⎭dim W =n (n +1)/23.如果U 1和U 2都是线性空间V 的子空间,若dim U 1=dim U 2,而且12U U ⊆,证明:U 1=U 2。
证明:因为dim U 1=dim U 2,故设{}12,,,r ααα为空间U 1的一组基,{}12,,,r βββ为空间U 2的一组基2U γ∀∈,有()12r X γγβββ=而 ()()1212r r C αααβββ=,C 为过渡矩阵,且可逆于是()()()11212121r r r X C X Y U γγγγβββαααααα-===∈由此,得21U U ⊆又由题设12U U ⊆,证得U 1=U 2。
研究生矩阵论试题及答案

09级-研-矩阵论试题及参考答案一(15分)设实数域上的多项式321()223p x x x x =+++,322()23p x x x x =+++ 323()45p x x x x =-+--,324()367p x x x x =-++(1)求线性空间()1234span ,,,W p p p p =的一组基和维数; (2)求多项式32()41p x x x =++在你所求基下的坐标。
解:(1)111110021130101224600123357000r A -⎛⎫⎛⎫⎪⎪-- ⎪ ⎪=−−→⎪ ⎪-- ⎪⎪-⎝⎭⎝⎭123,,p p p 是W 的一组基,dim 3W =;(2)123()()()()p x p x p x p x =++,p 的坐标为(1,1,1)T x =。
或:x^3+1 , x^2 , x+1.这三个基形式是最简单的。
坐标为(1,4,0)。
二(15分)(1)设2T ()tr()Ff X XX X ==,其中()m n ij m n X x R ⨯⨯=∈是矩阵变量,求dfdX ; (2)设()m nij m n A a R ⨯⨯=∈,12(,,,)T n n x x x x R =∈ 是向量变量,()F x Ax =,求T dF dx.解 (1)211()m nij i j f X x ===∑∑,2ij ijfx x ∂=∂, ()22ij m n ijm ndf f x X dX x ⨯⨯⎛⎫∂=== ⎪ ⎪∂⎝⎭;(2) 111()n k k k n mk k k a x F x Ax a x ==⎛⎫⎪ ⎪==⎪ ⎪ ⎪⎪⎝⎭∑∑ ,1,1,2,,i i mi a F i n x a ⎛⎫∂ ⎪== ⎪∂ ⎪⎝⎭ , 11111(,,)n T nm mn a a dF F F A dx x x a a ⎛⎫∂∂ ⎪=== ⎪∂∂ ⎪⎝⎭。
三(15分)已知微分方程组0d d (0)xAx t x x ⎧=⎪⎪⎨⎪⎪=⎩,200031011A ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦,0111x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦, (1)求矩阵A 的Jordan 标准形J 和可逆矩阵P 使1P AP J -= (2)求矩阵A 的的最小多项式)(λA m (3)计算矩阵函数Ate ; (4)求该微分方程组的解。
《矩阵论》习题答案,清华大学出版社,研究生教材习题 2.2

= k1 1 ( 1 , ) k 2 2 ( 2 , ) = k1 H 1 k 2 H 2 故 是线性变换.又因为
( H , H ) ( ( , ) , ( , ) ) ( , ) ( , ) 2 ( 2 2 )
, (i 1, , n 2) .如此
又因为各行与第 n 1 行正交,故 ai ,n1 0 由下往上逐行递推,即得结果.
8
17. 证:因为
( A S )( A S ) ( A S ) ( A S ) ( A S )
1 T 1 T T
5. 证:由 ( ( ( 得
cos , ( , )
( ), ( ), (β),
(β))= ( , β) ( ))=( , ) (β))= (β, β)
. ( ), (β))/| ( ), (β)> ( ) || (β)) |
= (
= cos<
1
1
,使
1
( 1 ) 1 . 令
1
( j ) j ( j 2,3, , n) ,如果 j j , j 2,3, , n ,则
2
=
,结论
成立.否则可设 2 2 ,再作镜面反射
2
:
2 2 2 2
( ) 2( , ) ,
于是
2
( 2 ) 2 ,且可验算有
2
(1 ) 1 .
如此继续下去,设经 s 次正交变换
1 , 2 , n , 1 , 2 , , n
1 , 2 , 3, , n 1 , 2 , , n
矩阵论试题及答案

一.(10分)已知n n C ⨯中的两种范数a ⋅和b ⋅,对于n n C A ⨯∈,证明b a A A A +=是n n C ⨯中的范数. 解:⑴非负性:由于b a ⋅⋅,是两种范数,故当A=0时,0,0==b a A A ,所以000=+=+=b a A A A ; 当A ≠0时,0,0>>b a A A ,所以0>+=b a A A A⑵齐性:()A A A A A A A A b a b a b a ααααααα=+=+=+= ⑶三角不等式:B A B A B A B A B A B A b b a a b a +=+++≤+++=+二.(每小题10分,共20分)已知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=101121103A ,()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=002t e t b , 1. 求At e2. 用矩阵函数方法求微分方程()()()()()⎪⎩⎪⎨⎧-=+=T x t b t Ax t x dt d1,0,10的解.解:1. ()1112113det ----=-λλλλA I ()()3211132-=----=λλλλ显然, )det(A I -λ的一阶子式的公因子为1, 容易知道)det(A I -λ 的二阶子式的公因子为2-λ,所以A的最小多项式为()()()23222-=--=λλλλm ,即()()022=-=I A A m ,设()()()b a g m e f t ++==λλλλλ,则()a te f t =='λλ 对于特征值2=λ有()()⎩⎨⎧=='+==a te f b a e f t t 22222,()⎩⎨⎧+-==ttet b te a 2212 所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----+=+=t t t t t t e bI aA e t At1010122. ()()()⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡+=⎰⎰--ds e s s s ss s e e ds s b e x e t x s t s At t As At 001010110102020 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=t t e t e t At 1001012三.(15分)用Givens 变换求⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=2100421132403100A 的QR 分解. 解:()T01001=β,构造()s c T ,13=,1101sin ,0100cos 22232132223211=+=+===+=+==xx x s x x x c θθ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=210031002340421121421132403100100000010010010013A T⎥⎦⎤⎢⎣⎡--=21312A , 构造),(12s c T , ()21sin ,21111cos 222122222211=+==-=+--=+==x x x s x x x c θθ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡---=1052212131111121212A T⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=2/1002/12/1002/10010010013122T T I T ,⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-==2/12/100000100102/12/100TT Q ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=2/12/522344211R四.(10分)用Gerschgorin 定理证明⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=8110260110410100A 至少有两个实特征值. 解:A 的4个盖尔圆为:{}1|1≤=z z G ,{}2114|2=+≤-=z z G , {}3216|3=+≤-=z z G , {}2118|4=+≤-=z z G ,它们构成的两个连通部分为11G S =,4322G G G S =.易见,1S ,2S 都关于实轴对称且各含有1个和3个特征值,因为实矩阵的复特征值必成对出现, 故1S ,2S 必各含有一个实特征值,从而A 至少含有2个实特征值.五.(20分)已知⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------=221221*********A ,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=44111b 1. 求A 的满秩分解.2. 求+A3. 用广义逆矩阵的方法判别方程组b Ax =是否相容.4. 求方程组b Ax =的极小范数解或极小范数最小二乘解并指出所求解的类型.解 1。
11级-矩阵论试题与答案

参考答案一(20分) V 表示实数域上次数不超过2的多项式构成的线性空间。
对2()f x ax bx c V ∀=++∈,在V 上定义变换:2[()]3(223)(4)T f x ax a b c x a b c =++++++(1)验证T 是V 上的线性变换;(2)求V 的基2,,1x x 到基2(1),1,1x x --的过渡矩阵P ; (3)求T 在基2,,1x x 下的表示矩阵A ; (4)在V 中定义内积1(,)()()f g f t g t dt =⎰,求基2,,1x x 的度量矩阵G 。
解:(1)设22111222(),()f x a x b x c g x a x b x c =++=++2121212()()()f g a a x b b x c c +=+++++[]212121212()3()2()2()3()T f g a a x a a b b c c x +=+++++++[]121212()()4()a a b b c c ++++++()()2111111132234a x a b c x a b c =++++++()()2222222232234a x a b c x a b c +++++++()()T f T g =+类似可验证: ()()T kf kT f =或把T 写成:2300[()][,,1]223114a T f x x x b c ⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(1)再来验证就更方便了。
(2)由22100(1),1,1,,1210111x x x x ⎡⎤⎢⎥⎡⎤⎡⎤--=-⎣⎦⎣⎦⎢⎥⎢⎥-⎣⎦得基2,,1x x 到基2(1),1,1x x --的过渡矩阵为100210111P ⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦(3) 由22()321T x x x =++,()21T x x =+,(1)34T x =+得T 在基1,,2x x 下的表示矩阵为:300223114A ⎛⎫ ⎪= ⎪ ⎪⎝⎭(4) 11431112210011,54g x dx g g x dx =====⎰⎰ 11221331220011,33g x dx g g x dx =====⎰⎰11233233001,12g g xdx g dx =====⎰⎰ 故度量矩阵11154311143211132G ⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪ ⎪⎝⎭二(20分) 设311121210A -⎛⎫ ⎪=- ⎪ ⎪⎝⎭(1)求A 的行列式因子、不变因子、初等因子; (2)求A 的Jordan 标准形J ; (3)求可逆矩阵P 使1P AP J -=;(4)计算Ate 并求解微分方程组。
矩阵论的习题集

其中 aij = a ji = 1, (1 ≤ i ≤ n,1 ≤ j ≤ i ) ,其它元素为 0。 ′, ε 2 ′ ,ε3 ′,ε 4 ′ ] = [ε 1 , ε 2 , ε 3 , ε 4 ] A ,可得 6、[解]由 [ε 1 1 0 −1 ′, ε 2 ′ ,ε 3 ′ ,ε 4 ′] = A = [ε 1 , ε 2 , ε 3 , ε 4 ] [ε 1 0 0 1 0 0 0 1 0 2 = 0 0 1 0 0 0 0 3 0 4 0 1 1 2 2 1 0 3 2 1 2 0 4 1 3 2 2 = 3 1 4 1 1 0 3 1 0 2 0 0 1 1 0 2 0 0 1 0 0 0 0 2
2
3、对于 ∀B, C ∈ V 和 ∀λ ∈ F ,满足 BA = AB , CA = AC ,并且 A( B + C ) = AB + AC = BA + CA = ( B + C ) A , A( µB) = µAB = µBA = (µB ) A , 即 B + C ∈ V , µB ∈ V ,从而由第 1.2 节定理 1 可知,V 是 F n×n 的子空间。 满足 trB = 0 , 并且 tr ( B + C ) = trB + trC = 0 , 4、 对于 ∀B, C ∈ V 和 ∀λ ∈ R , trC = 0 , tr (λB) = λ tr ( B) = 0 ,从而由第 1.2 节定理 1 可知,V 是 R 2×2 的子空间。 1 0 0 1 0 0 dim V = 3 ,并且 V 的一组基为 , 0 − 1 和 。 0 0 1 0 5 、 对 于 ∀B, C ∈ V 和 ∀λ ∈ R , 满 足 B = B T , C = C T , 并 且 ( B + C ) T = B T + C T = B + C , (λB) T = λB T = λB ,从而由第 1.2 节定理 1 可知, V 是 R n×n 的子空间。 dim V = n(n + 1) ,并且 V 的一组基为 Vij = (a ij ) n×n , 2
矩阵论练习题

练习一一﹑选择题1、对于()212,x x R ∀∈,下列变换是2R 上的线性变换的是 ( D ).(A) ()()21212,,T x x x x =; (B) ()()21212,,T x x x x =;(C) ()()1212,,0T x x x x =; (D) ()()1212,,T x x x x =-. 2、设()(),A B λλ为两个n 阶λ-矩阵,则 ( D ).(A) 若()A λ满秩,则()A λ必可逆; (B) ()A λ可逆当且仅当()0A λ≠;(C) 若()A λ与()B λ秩相等,则()A λ与()B λ等价;(D) 若()A λ与()B λ等价,则()A λ与()B λ具有相同的不变因子. 3、设()n n ij A a C ⨯=∈,则下列不能构成矩阵范数的是( A ).(A) ,max ij i ja ; (B) ,max ij i jn a ⋅; (C) 1max nij ij a =∑; (D) 1max nij j i a =∑.4、设n n A C ⨯∈,H A 为A 的共轭转置矩阵,()A ρ为A 的谱半径,A 为A 的范数,则下列说法不正确的是( C ).(A)()[]()kk A A ρρ=; (B) ()()H H A A AA ρρ=;(C) 若()1A ρ<,必有E A -可逆; (D) 若A 为收敛矩阵,必有()1A ρ<. 5、设V 为酉空间,C λ∈,,V αβ∈且(),αβ为α与β的內积,则下列说法不正确的是( B ).(A) ()(),,λαβλαβ=; (B) ()(),,αλβλαβ=; (C) ()()(),,,αβγαβαγ+=+; (D) ()()(),,,βγαβαγα+=+.二﹑填空题1、已知100231120012233002A -⎛⎫⎛⎫ ⎪⎪=- ⎪⎪ ⎪⎪⎝⎭⎝⎭,则A 的LDU 分解为 .2、设sin ()2cost t t te A t t ⎛⎫= ⎪⎝⎭,则0()x A t dt ⎰=21cos 1sin x x x xe e xx ⎛⎫--+ ⎪⎝⎭.3、设矩阵2242t tt At tt t e te te e te e te ⎡⎤-=⎢⎥-+⎣⎦ ,则矩阵A =1143-⎛⎫⎪-⎝⎭.4、矩阵100110111A ⎛⎫⎪= ⎪ ⎪⎝⎭ 相对于矩阵范数∞ 的条件数为 6 .5、设11122122⎛⎫=⎪⎝⎭x x X x x ,(),A a b =,则()d AX dX =0000a a b b ⎛⎫⎪⎝⎭. 6、已知101112003A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则543258884A A A A A E -+-+- =001102002⎛⎫⎪⎪ ⎪⎝⎭.7、已知⎪⎪⎪⎭⎫⎝⎛=987654321A ,则A 的正奇异值的个数为 2 .三、计算题已知 1(1,3,2,1)T α=-,2(1,0,0,2)T α=,1(0,1,1,3)T β=,2(3,2,1,6)T β=--, 且112{,}V span αα=,212{,}V span ββ=,求12V V +与12V V 的基和维数. 解:因为1212{,}V V span αα+=+12{,}span ββ=1212{,,,}span ααββ而12121103100130120102(,,,)2011001112360000ααββ--⎛⎫⎛⎫⎪ ⎪-⎪ ⎪= ⎪ ⎪- ⎪ ⎪-⎝⎭⎝⎭初等行变换 由于121,,ααβ是向量组1212,,,ααββ的一个极大线性无关组,所以和空间的维数是3,基为121,,ααβ且21212βααβ=--. 由行最简形知12dim()2,dim()2,V V ==又121212dim()dim dim dim()V V V V V V +=+- 故12dim()1V V =311100222110201236001212A ⎛⎫⎛⎫- ⎪ ⎪⎛⎫ ⎪ ⎪ ⎪=--⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭⎝⎭由21212βααβ=--得()12121223,3,2,3TV V ξααββ=-=+=--∈所以()3,3,2,3T--为12V V 的一组基。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.了解坐标变换和基变换,熟悉过度矩阵的概念,会求过度矩阵以及一个向量在不同基下的坐标。
例1 三维空间的一组基为I :(1,0,0)、(1,1,0)、(1,1,1),另一组基为II :(1,0,1)、(1,2,1)、(3,1,4),求由I 到II 的过度矩阵,并求向量(2,2,3)在这两组基下的坐标。
并用过度矩阵检验你计算的正确性。
112113114A -⎛⎫ ⎪=-- ⎪ ⎪⎝⎭
(2,2,3)= 0(1,0,0)-1(1,1,0)+3(1,1,1)
(2,2,3)=-1.5(1,0,1)+0.5(1,2,1)+(3,1,4) 例2 在4维线性空间22R ⨯中,向量组,
123401101111,,,11110110εεεε⎡⎤⎡⎤⎡⎤⎡⎤
====⎢⎥⎢⎥⎢⎥⎢⎥
⎣⎦⎣⎦⎣⎦⎣⎦
与向量组
123410111111,,,00001011μμμμ⎡⎤⎡⎤⎡⎤⎡⎤
====⎢
⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦
为其两组基,求从基 1234,,,εεεε 到基1234,,,μμμμ 的过渡矩阵,并求向
量 1234A ⎡⎤
=⎢⎥
⎣⎦
在这两组基下的坐标。
2.熟悉子空间的和与交,会用子空间的基本概念来证明子空间的性质。
例1. 子空间的和与交都是子空间. 设1V 和2V 是数域P 上线性空间V 的任
意两个子空间,试证明 (1){}1212,V V x x V x V =∈∈
(2){}12121122:,V V x x x x x V x V +==+∈∈ 都是线性空间V 的子空间。
例2.向量组12,,,s ααα 和12,,,r βββ 都是线性空间V 中的向量,试证明
12121212(,,,)(,,,)(,,,,,,,)s r s L L L αααβββαααβββ+= 例3.判断矩阵
311201112A -⎛⎫ ⎪= ⎪ ⎪-⎝⎭
是否可以对角化?
例4.试将λ-矩阵
22221()1A λλλλλ
λλλλλ⎛⎫
- ⎪
=- ⎪ ⎪+-⎝⎭
化成Smith 标准形。
例5.求
22221()1A λλλλλ
λλλλλ⎛⎫
- ⎪
=- ⎪ ⎪+-⎝
⎭
的各阶行列式因子。
例6.如果56⨯阶λ-矩阵()A λ的秩为4,其初等因子为
22333,,,1,(1),(1),(),()i i λλλλλλλλ---+-
试求()A λSmith 标准形。
例7.求下述λ-矩阵的行列式 因子与不变因子
712100
10()00001n n a a A a a λλλλλ-⎛⎫ ⎪-
⎪ ⎪= ⎪ ⎪ ⎪-+⎝⎭
例8.求矩阵的Jordan 标准形:
112336224A -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭
例9.求方阵的Jordan 标准形及其相似变换矩阵。
126103114A --⎛⎫ ⎪=- ⎪ ⎪--⎝⎭
并求10A 。
例10.试用矩阵对角化理论求解常系数线性微分方程组
1
13
2
1233
13
383825dx x x dt dx x x x dt dx x x dt ⎧=+⎪⎪⎪=-+⎨⎪⎪=--⎪⎩
3.试给出矩阵范数12,,F A A A A ∞及的定义,若101012125A ⎛⎫ ⎪
= ⎪ ⎪⎝⎭
,试求矩阵
范数12,A A A ∞及。
4. 求矩阵A 的Jordan 标准型,其中
⎥⎥
⎥⎦
⎤
⎢⎢⎢⎣⎡---=7137341024A
5.求矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=120111200321A 的满秩分解,求矩阵⎥⎥
⎥⎦
⎤
⎢⎢⎢⎣⎡=513252321A 的LU 分解。
例 分别求下面三个矩阵的满秩分解
(1)1
210121221332431454
862
810A ⎛⎫
⎪ ⎪= ⎪ ⎪⎝⎭
(2)0012300246A ⎛⎫
= ⎪⎝⎭
(3)010110201103022A -⎛⎫ ⎪
=- ⎪ ⎪-⎝⎭
6. 设n m C A ⨯∈,试叙述A 的奇异分解指的是什么?如何分解?并试求
(1)⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡=111001A (2)120000A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦(3)0110021
0A ⎛⎫
⎪- ⎪= ⎪ ⎪⎝⎭
的奇异值分解式。
例 求正规矩阵0111101111011110A -⎛⎫ ⎪-
⎪= ⎪- ⎪-⎝⎭
的谱分解。
7. 求矩阵031041112A ⎛⎫ ⎪
=- ⎪ ⎪⎝⎭
的QR 分解。
8.试写出Moore-Penrose 广义逆矩阵的定义,给出Moore-Penrose 广义逆矩阵的存在性及唯一性的证明。
9.设,m n n m A R B R ⨯⨯∈∈,试证明det()det()m n I AB I BA -=-,并利用此结论证明对Householder 矩阵2T n H I uu =-(其中单位列向量n u R ∈)有det 1H =-。
10. 设210420101A -⎛⎫ ⎪
=- ⎪ ⎪⎝⎭
,试求At e 和sin()At )(R t ∈。
11. 设n x x x ,,,21 是欧氏空间m V 中的一组向量,而
⎥
⎥
⎥⎥⎦
⎤⎢
⎢⎢⎢⎣⎡=),(),(),(),()
,(),(),(),(),(2122
21
212111m n m m m m x x x x x x x x x x x x x x x x x x A 证明0)det(≠B 的充要条件为m x x x ,,,21 线性无关。
12. 设
⎥
⎦
⎤
⎢⎣⎡=3112A ⎥⎦⎤⎢⎣⎡=∆02.05.00A 试估计下述值
∞
-∞
--∆+-1
1
1)(A
A A A
13(A )证明下列向量范数的等价性(其中n x R ∈为任意向量):
(1
)2x
x ∞
∞≤≤(2)1x x n x ∞∞≤≤(3
)212x x x ≤≤
(B )证明下列矩阵范数的等价性(其中n n A R ⨯∈为任意矩阵):
22A n A A F ≤≤
例1.已知矩阵
308316205A ⎛⎫
⎪=- ⎪ ⎪--⎝⎭
试求酉矩阵U ,使得H U AU 为上三角矩阵。
例2. 设A 是一个反H-阵, 证明: 1()()W A I A I -=+-是U-阵.
例3.设A 是一个n 阶正规矩阵,且存在自然数k 使得0k A =,证明: 0A =. 例4 .设A 是一个半正定的H-阵且0A ≠,B 是一个正定的H-阵, 证明:
det()det A B B +>。