隧道大变形专项施工方案

隧道大变形专项施工方案
隧道大变形专项施工方案

目录

一、编制依据 (3)

二、适用范围 (3)

三、工程概况 (3)

四、隧道变形段总体施工方案 (4)

1、总体施工方案 (4)

2、支护参数 (5)

五、施工方法 (6)

1、施工顺序 (6)

2、施工工艺流程图 (7)

3、施工方法 (7)

六、监控量测、超前地质预报实施方案 (12)

1、监控量测 (12)

2、超前地质预报 (15)

七、资源配臵 (15)

1、劳动力配臵 (15)

2、设备配臵 (16)

八、质量保证措施 (16)

1、确保施工质量保证措施 (16)

九、安全保证措施 (17)

十、应急预案 (18)

1、编制目的 (18)

2、适用范围 (18)

3、应急工作原则 (18)

4、组织机构 (19)

5、各项风险预防措施 (25)

6、信息上报程序 (28)

7、应急物资储备 (28)

长坪隧道斜井工区正洞大变形试验段专项方案

一、编制依据

1、《丽香铁路黄山哨隧道进口岩堆体段处理方案及软弱围岩隧道变形控制方案研讨会专家意见》。

2、《新建铁路丽江至香格里拉线隧道大变形试验段设计方案》。

3、《新建铁路丽江至香格里拉线施工变更设计大变形Ⅱ型衬砌(H<2500m)》施工图。

4、《铁路隧道监控量测技术规程》(Q/CR9218-2015)。

5、《铁路隧道施工规范》(TB10204-2002)。

6、《铁路隧道超前地质预报技术规程》(Q/CR 9217-2015)。

二、适用范围

该方案实施选在长坪隧道斜井工区正洞往大、小里程方向,里程为DK61+362~DK59+275、DK61+464~DK61+706。

三、工程概况

长坪隧道斜井工区属高中山构造剥蚀地貌,地表覆盖坡残积层粉质黏土、角砾土,厚0~8米不等,局部较厚,下伏基岩为三叠系片理化玄武岩,局部夹有凝灰岩,测区地质构造复杂,新构造运动强烈,地表不发育,主要为坡面沟槽水,地下水较发育,主要为基岩裂隙水,预计隧道一般涌水量1.74×104(m3/d),最大涌水量2.09×104(m3/d)。水质一般对混凝土结构无侵蚀;不良地质有岩堆、危岩,无特殊岩土。隧道通过物探异常带,岩体破碎,易坍塌、掉块和突水突泥。隧道埋深较大处片理化玄武岩中有发生岩爆的可能性。根据5月26日业主、设计单位下发《新建铁路丽江至香格里拉线施工变更设计大变形Ⅱ型衬砌(H<2500m)》施工图,我

项目部计划长坪隧道DK61+362~DK59+275、DK61+464~DK61+706段参照大变形Ⅱ型衬砌施工。

四、隧道变形段总体施工方案

1、总体施工方案

采用“大变形Ⅱ型衬砌断面图”,隧道内轮廓不变,预留变形量40cm,开挖轮廓线边墙曲率加大。全环采用I20b钢架,间距0.5m/榀,钢架间纵向连接钢筋采用φ25钢筋,"Z"形布臵,设于钢架内侧(靠二衬侧),钢筋纵向接头应相互错开,锁脚采用φ42锁脚锚管,4m每根,与钢架焊接牢固;同时加强各台阶底部钢架纵向垫槽钢的施工工艺,确保钢架系统整体稳定性;拱部设φ42超前小导管,每根长3.5m,环向间距0.4m,纵向间距2m,系统锚杆采用药包锚杆,长度4.0m,非对称性施工。施工采用三台阶法,下台阶与仰拱一次开挖成形并及时封闭成环,从上台阶开挖到仰拱初支封闭成环时间控制在12天左右。大变形Ⅱ型衬砌断面图及支护图如下图:

图4-1 大变形Ⅱ型衬砌断面图

2、支护参数

①超前小导管支护:拱部设φ42超前小导管,每根长3.5m,环向间距0.4m,每环31根,纵向间距2m,注水泥浆,注浆压力0.5~1.0MPa。

②I20b钢架支护:钢架架纵向间距50cm/榀。钢架间纵向连接钢筋采用φ25钢筋,"Z"形布臵,设于钢架内侧(靠二衬侧),钢筋纵向接头应相互错开;同时,台阶底部钢架纵向垫设槽钢,确保钢架系统整体稳定性。锁脚锚管采用Φ42钢管,钻孔直径不小于60mm,注水泥浆,注浆压力0.5~1.0MPa,拱脚和边墙脚两侧各2根,单根长4m,具体部位及角度见附件设计图。

③钢筋网:拱墙采用φ8钢筋网,网格间距20×20cm。

④边墙系统锚杆:采用Φ22药包锚杆,不能成孔时可考虑采用自进式锚杆。锚杆长4.0m,间距纵向1.0m×横向1.0m。

⑤喷射混凝土:采用C25喷射混凝土,拱墙及仰拱厚度均为27cm。

五、施工方法

采用三台阶施工方法,台阶高度确定为上台阶高度 2.5m,中台阶高度4m,下台阶带仰拱高度4.02m。上台阶长度3~5m,中台阶长度5m。开挖方法选择挖掘机带破碎头开挖,在确需爆破段采用弱爆破的方式。开挖进尺控制在1榀拱架间距之内(即50cm)。

1、施工顺序

第一步:开挖上台阶后,用挖机将上台阶渣扒到中台阶,扒渣后立即初喷4cm厚C25砼封闭开挖面。(已

施工钢架等初支未示)第二步:上台阶立拱架、打锚杆、超前支护等;同时进

行中台阶出渣、开挖。

中台阶喷射混凝土;喷射混凝土完成后进行下台阶带仰拱开挖、出渣。第四步:下台阶、仰拱立拱、喷混凝土,仰拱钢架滞后下台阶钢架4榀。

图5-1 三台阶法施工示意图

2、施工工艺流程图

测量放样

上台阶开挖

上台阶扒渣

中台阶开挖、出渣上台阶立拱架等支护

中台阶立拱、锚杆

上、中台阶喷射砼

下台阶带仰拱开挖

下台阶带仰拱初支

下一循环

图5-1 三台阶法施工工艺流程图

3、施工方法

(1)超前小导管支护施工

采用风钻钻孔,用锤击或钻机将小导管顶入,注浆泵注浆。

图5-2 超前小导管施工工艺图

小导管的纵向搭接长度不小于设计,外插角满足规范要求(10°~15°),与线路中线方向大致平行。孔位钻设偏差不超过5cm,孔眼长大于小导管长,钢管顶入长度不小于管长设计长度,用高压风将管内砂石吹出。

(2)I20b钢架施工

①制作:钢架按设计尺寸在钢构件加工厂下料分节焊接制作,制作时严格按设计图纸进行,保证每节的弧度与尺寸均符合设计要求,每节两端均焊连接板,节点间通过连接板用螺栓连接牢靠,加工后必须进行试拼检查,严禁不合格品进场。

②安装:钢架按设计要求安装,安装尺寸允许偏差:横向和高程为±

5cm,垂直度±2°。钢架的下端设在稳固的地层上,拱脚高度低于上部开挖底线以下15~20cm。拱脚及边墙脚加设槽钢垫块。

图5-3 拱架施工工艺框图

(3)钢筋网铺设

钢筋须经试验合格,使用前必须除锈,在钢构件加工厂分片制作,安装时搭接长度不小于一个网格。人工铺设贴近岩面,与锚杆和钢架绑扎连接(或点焊焊接)牢固。钢筋网和钢架绑扎时,应绑在靠近岩面一侧,确保整体结构受力平衡。喷混凝土时,减小喷头至受喷面距离和控制风压,以减少钢筋网振动,降低回弹。

(4)锚杆施工

锚杆采用风钻钻锚杆孔,锚杆钻孔利用台架施钻,按照设计间排距,尽可能垂直结构面打入,高压风吹孔。孔内锚固剂填塞必须饱满,再用风

枪将锚杆送入孔内,并杆体位于孔位中央然后安装垫板,垫板必须用螺帽紧固在岩面上,增强锚杆与喷砼的综合支护作用。锚杆尾端尽量焊接在拱架上,以便共同受力。锚杆施工工艺框图见图5-4。

(5)喷射混凝土

喷射砼采用湿喷工艺。工艺流程见图5-5。

①喷射前处理危石,检查开挖断面净空尺寸,当受喷面有涌水、淋水、集中出水点时,先进行引排水处理。

②用高压风水冲洗受喷面,设臵控制喷砼厚度的标志。喷射作业分段、分片、分层,由下而上进行,有较大凹洼处,先喷射填平。

③喷嘴垂直于岩面,距受喷面0.8~1.2m,呈螺旋移动,风压0.5~

0.7MPa。液态速凝剂由自动计量在喷嘴处掺入。

④喷射混凝土时按照施工工艺段、分片,由下而上依次进行。一次喷射混凝土的最大厚度,拱部不得超过10cm,边墙不得超过15cm。分层喷射混凝土时,后一层喷射应在前一层混凝土终凝后进行。

⑤喷混凝土料由洞外自动计量拌和站生产。混凝土搅拌车运输混凝土,卸入湿喷机,机械手配合湿喷机喷混凝土。

图5-4 砂浆锚杆施工工艺流程图

图5-5 湿喷混凝土工艺框图

六、监控量测、超前地质预报实施方案

1、监控量测

(1)监控量测的项目和方法

监测项目以收敛变形监测为主,以便掌握施工中结构的内力情况,并结合变形监测结果综合判断结构的稳定性及可靠性,检验和修正采用的设计与施工方法。根据本工程特点,主要监测项目见表7-1。

(2)隧道围岩收敛变形

监测目的:隧道开挖后,周边点的位移是围岩和支护力学形态变化的最直接、最明显的反映,净空的变化(收缩和扩张)是围岩变形最明显的体现。

监测仪器:全站仪。隧道周边收敛监测点布臵见图7-1。

图7-1 台阶法开挖隧道位移监测点布臵图

全站仪测试方法:

①测点埋设:

测点由基座和反射膜片组成,基座由5cm*5cm钢板及φ16mm的钢筋焊接而成,待掌子面开挖完毕后,将基座固定在初支上或锚固在岩壁上,然后把反射膜片粘贴到基座上面。

②数据采集:

数据采集和拱顶一起采用全站仪自由设站的方式进行测量,在能看到测点的地方自由架设全站仪,对中整平,量测收敛水平线两端点的相对坐标为(Xa、Ya、Za)和(Xb、Yb、Zb)。

(3)隧道拱顶下沉监测

监测目的:拱顶下沉量测值是反映隧道安全和稳定的重要数据,是围岩和支护系统力学形态变化的最直接、最明显的反映,易于实现量测信息的反馈。

监测仪器:全站仪

1)测点埋设:测点由基座和反射膜片组成,基座由5cm钢板及φ<22mm 的钢筋焊接而成,待掌子面开挖完毕后,将基座固定在初支上或锚固在岩壁上,然后把反射膜片粘贴到基座上面。

2)数据采集:测点埋设完毕后,采用全站仪自由设站的方式进行测量,每次测量时,将全站仪架设于后视点与量测断面的中间位臵,对中整平,后视基点1,(基点高程H1已知,随着隧道向前开挖,基点一直向前变化),得到相对高程Z1,再前视量测断面拱顶反射片,得到相对高程Z0,则量测断面拱顶反射片中心的高程:H=H1+Z0-Z1

(4)监控量测断面布臵

拱顶沉降、围岩收敛变形量测断面布臵在同一个断面上,布臵见表7-2。

(5)监控量测频率

(1)围岩收敛变形量测、拱顶下沉量测采用相同的量测频率。量测频率见表7-3,实际量测频率应根据变形速度和距开挖面距离选择。

对于大变形地段,加强监测,加大监测频率,必要时进行实时监控。

(6)信息反馈

监控量测信息反馈应根据监控量测数据分析结果,对工程安全性进行评价,并提出相应工程对策与建议。现场对施工负责人交底并签认。

2、超前地质预报

长坪隧道属Ⅱ级高风险隧道,由湖南科技大学检测中心负责进行超前地质预报,长坪隧道斜井工区采用方法为: (1)综合地质法;(2)物探法(3)超钻探法。

现场施工人员必须如实做好地质素描,并形成记录。架子队技术负责人认真核对实际里程,当需进行其它超前预报时,及时联系超前地质预报单位进行超前地质预报。

七、资源配臵

1、劳动力配臵

劳动力配臵见表8-1:

表8-1 长坪隧道斜井工区单个掌子面劳动力配臵表

2、设备配臵

单个掌子面主要设备配臵见表8-2

表8-2 单个掌子面主要设备配臵表

八、质量保证措施

1、确保施工质量保证措施

①喷混凝土采用湿喷工艺,外加剂掺量及喷混凝土抗渗等级符合设计要求。

②做钢架支护时,确保拱架间距符合设计及规范要求。钢架与岩面不得紧贴,钢架背后混凝土保护层不得小于3cm,钢架外层混凝土保护层不得小于4cm,才能有效的保证钢筋与喷混凝土较好的连接在一起。加工好的钢架由质检工程师进行检测,合格的钢架方可运进洞内进行使用,洞内钢架施工时做到间距、倾斜度和垂直度符合要求。钢架的底脚不得悬空,

在悬空时必须用块石填实,且及时喷混凝土进行回填密实;钢加及时跟紧,尽早封闭成环。钢架连接时,接头板必须密贴,连接螺栓上齐且连接紧固。

③钢筋网片采用加工厂加工,洞内进行安装,安装时网片连接采用焊接连接,搭接长度为1-2个网格,网片必须平顺,且与钢架也进行绑扎连接。

④喷射混凝土运输时间不超过规定。喷射前清理岩面,用高压风将岩面灰尘吹干净。厚度较大时分层喷射。严格掌握风压和控制喷射距离,做到厚度符合设计和安全要求,表面平顺。为了有效的控制喷混凝土平整度,每个喷浆班组配臵2m铝合金方尺,及时检查喷混凝土平整度。

⑤锚杆的间距和深度符合设计,施工系统锚杆时做到灌浆充填饱满。

九、安全保证措施

由于二衬厚度比正常衬砌增厚不少,边墙厚0.8m,核查衬砌台车承受能力,若强度不够,通过增设斜撑等措施予以加固,避免台车变形侵限,甚至爆模。

1、隧道开挖后必须及时进行支护。支护质量必须达到设计规定标准。

2、施工期间,现场值班负责人员每天应同安全质检人员对开挖面地质以及各部支护情况进行一次检查。不良地质地段每班检查一次,当发现支护变形或损坏时立即加固处理并作出详细记录。

3、量测人员发现量测数据有突变或异变时,应于量测后及时向技术负责人或现场负责人汇报,并立即采取应急措施或通知施工人员暂时撤离危险地段。

4、钢拱架架立时不得臵于虚碴或活动石上,软弱围岩地段基底夯实加设垫板或加设木楔楔紧。锚杆支护,孔深、间距、方位必须达到设计要求,注浆要饱满,钢筋网初喷混凝土必须达到设计厚度。

5、洞内支护,坚持“随挖随支护”的原则,支护紧跟开挖面,尽量缩小支护工作面。

6、喷射支护前,清除危石及松动石块,喷射手配戴防护用品;机械各部完好正常,压力保持在0.4MPa左右,喷浆管喷嘴严禁对人放臵。

7、随着隧道各部开挖工作的推进,及时进行衬砌或压浆。

8、机械转动部分设臵防护罩,电动机必须有接地装臵,移动或修理机器及管线路时,先停电,并切断电源、风源。

9、加强洞内通风、照明管理,确保达到符合国家相关标准的工作环境。

十、应急预案

1、编制目的

为规范施工生产安全事故的应急管理与应急响应程序,提高项目经理部的应急处臵能力,做到快速、有序、高效地实施应急救援工作,最大限度地避免或减少人员伤亡和财产损失。

2、适用范围

长坪隧道斜井工区正洞

3、应急工作原则

(1)以人为本,安全第一。把保障人民群众的生命安全和身体健康、最大程度地预防和减少生产事故造成的人员伤亡作为首要任务,切实加强应急救援人员的安全防护,充分发挥人的主观能动作用,充分发挥专业救援力量的骨干作用和职工的基础作用。

(2)统一领导,协调行动。突发安全事件的处臵工作要在项目部应急救援领导指挥部统一领导、统一指挥下进行,事发单位积极配合,其他有关部门分工协作。

(3)自救互救,安全抢救。事故发生初期,应积极组织抢救,并迅速组织遇险人员沿避灾线路撤离,防止事故扩大。在事故抢救过程中,应采取措施,确保救护人员的安全,严防抢救过程中发生事故。

(4)依靠科学,规范有序。采用先进技术,充分发挥专家作用,实行科学民主决策。

(5)预防为主、平战结合,贯彻落实“安全第一、预防为主、综合治理”的方针。

(6)坚持事故应急与预防工作相结合,做好预防、预测、预报和预警工作,将日常管理和应急救援工作结合起来,做好常态下的风险评估、物资准备、队伍建设、完善装备、预案演练等工作。充分利用现有专业力量,努力实现一队多能,培养兼职应急力量,并发挥作用。

4、组织机构

成立试验段应急救援指挥机构(即应急救援领导小组),应急救援领导小组组长由项目经理担任,副组长由书记、总工、安全总监、副经理、担任,成员由项目各部门负责人及各工区主要管理人员担任。应急救援领导小组下设九个专业应急救援小组:技术支持组、抢险救援组、医疗救护组、现场警戒组、后勤保障组、善后处理组、事故调查组、信息发布组、调度联络组。

(1)应急救援组织机构及成员构成

项目部建立应急救援领导小组:

组长:方水保

副组长:刘庆国彭泽波刘赶平牛耀田熊高生

小组成员:苌海涛、徐平甲、李彬、李金和、马磊磊、王佳、马磊磊文宇陈仁文

应急救援领导小组设应急救援办公室,设在项目部安质部。

应急救援办公室电话:188******** (2)应急救援组织机构图

隧道大变形专项施工方案

目录 一、编制依据 (3) 二、适用范围 (3) 三、工程概况 (3) 四、隧道变形段总体施工方案 (4) 1、总体施工方案 (4) 2、支护参数 (5) 五、施工方法 (6) 1、施工顺序 (6) 2、施工工艺流程图 (7) 3、施工方法 (7) 六、监控量测、超前地质预报实施方案 (12) 1、监控量测 (12) 2、超前地质预报 (15) 七、资源配臵 (15) 1、劳动力配臵 (15) 2、设备配臵 (16) 八、质量保证措施 (16) 1、确保施工质量保证措施 (16) 九、安全保证措施 (17)

十、应急预案 (18) 1、编制目的 (18) 2、适用范围 (18) 3、应急工作原则 (18) 4、组织机构 (19) 5、各项风险预防措施 (25) 6、信息上报程序 (28) 7、应急物资储备 (28)

长坪隧道斜井工区正洞大变形试验段专项方案 一、编制依据 1、《丽香铁路黄山哨隧道进口岩堆体段处理方案及软弱围岩隧道变形控制方案研讨会专家意见》。 2、《新建铁路丽江至香格里拉线隧道大变形试验段设计方案》。 3、《新建铁路丽江至香格里拉线施工变更设计大变形Ⅱ型衬砌(H<2500m)》施工图。 4、《铁路隧道监控量测技术规程》(Q/CR9218-2015)。 5、《铁路隧道施工规范》(TB10204-2002)。 6、《铁路隧道超前地质预报技术规程》(Q/CR 9217-2015)。 二、适用范围 该方案实施选在长坪隧道斜井工区正洞往大、小里程方向,里程为DK61+362~DK59+275、DK61+464~DK61+706。 三、工程概况 长坪隧道斜井工区属高中山构造剥蚀地貌,地表覆盖坡残积层粉质黏土、角砾土,厚0~8米不等,局部较厚,下伏基岩为三叠系片理化玄武岩,局部夹有凝灰岩,测区地质构造复杂,新构造运动强烈,地表不发育,主要为坡面沟槽水,地下水较发育,主要为基岩裂隙水,预计隧道一般涌水量1.74×104(m3/d),最大涌水量2.09×104(m3/d)。水质一般对混凝土结构无侵蚀;不良地质有岩堆、危岩,无特殊岩土。隧道通过物探异常带,岩体破碎,易坍塌、掉块和突水突泥。隧道埋深较大处片理化玄武岩中有发生岩爆的可能性。根据5月26日业主、设计单位下发《新建铁路丽江至香格里拉线施工变更设计大变形Ⅱ型衬砌(H<2500m)》施工图,我

隧道大变形专项施工方案

目录 一、编制依据 (2) 二、适用范围 (2) 三、工程概况 (2) 四、隧道变形段总体施工方案 (3) 1、总体施工方案 (3) 2、支护参数 (4) 五、施工方法 (5) 1、施工顺序 (5) 2、施工工艺流程图 (6) 3、施工方法 (6) 六、监控量测、超前地质预报实施方案 (11) 1、监控量测 (11) 2、超前地质预报 (14) 七、资源配置 (14) 1、劳动力配置 (14) 2、设备配置 (15) 八、质量保证措施 (15) 1、确保施工质量保证措施 (15) 九、安全保证措施 (16)

十、应急预案 (17) 1、编制目的 (17) 2、适用范围 (17) 3、应急工作原则 (17) 4、组织机构 (18) 5、各项风险预防措施 (24) 6、信息上报程序 (27) 7、应急物资储备 (27)

长坪隧道斜井工区正洞大变形试验段专项方案 一、编制依据 1、《丽香铁路黄山哨隧道进口岩堆体段处理方案及软弱围岩隧道变形控制方案研讨会专家意见》。 2、《新建铁路丽江至香格里拉线隧道大变形试验段设计方案》。 3、《新建铁路丽江至香格里拉线施工变更设计大变形Ⅱ型衬砌(H<2500m)》施工图。 4、《铁路隧道监控量测技术规程》(Q/CR9218-2015)。 5、《铁路隧道施工规范》(TB10204-2002)。 6、《铁路隧道超前地质预报技术规程》(Q/CR 9217-2015)。 二、适用范围 该方案实施选在长坪隧道斜井工区正洞往大、小里程方向,里程为DK61+362~DK59+275、DK61+464~DK61+706。 三、工程概况 长坪隧道斜井工区属高中山构造剥蚀地貌,地表覆盖坡残积层粉质黏土、角砾土,厚0~8米不等,局部较厚,下伏基岩为三叠系片理化玄武岩,局部夹有凝灰岩,测区地质构造复杂,新构造运动强烈,地表不发育,主要为坡面沟槽水,地下水较发育,主要为基岩裂隙水,预计隧道一般涌水量1.74×104(m3/d),最大涌水量2.09×104(m3/d)。水质一般对混凝土结构无侵蚀;不良地质有岩堆、危岩,无特殊岩土。隧道通过物探异常带,岩体破碎,易坍塌、掉块和突水突泥。隧道埋深较大处片理化玄武岩中有发生岩爆的可能性。根据5月26日业主、设计单位下发《新建铁路丽江至香格里拉线施工变更设计大变形Ⅱ型衬砌(H<2500m)》施工图,我

暗挖区间隧道大变形处理方案.

太平村站~虹桥村站暗挖区间隧道 进口斜井大变形处理方案 1.编制原则 1、昆明市轨道交通3号线项目施工图,有关技术要求、文件组成及内容,铁二院《岩土工程勘察报告(祥勘察)》。 2、国家、云南省现行技术标准、规程和规范,相关法规、政策,特别是安全生产、文明施工、环保方面的法律法规和政策。 3、 《关于太平村站~虹桥村站区间隧道进口斜井洞身大变形建议处理方案的报告》; 4、《铁路混凝土工程施工技术指南》; 5、《轨道交通隧道工程施工质量验收标准》; 6、《铁路隧道喷锚构筑法技术规范》; 7、《高速铁路隧道工程施工质量验收标准》(TB10753-2010); 8、《铁路混凝工程施工质量验收标准》(TB10424); 9、《铁路混凝土工程施工质量验收补充标准》(铁建设(2005)160号); 10、xxxx类似工程的施工经验。 2工程简介 2.1原设计概况 太平村站~虹桥村站区间隧道进口斜井位于沟谷地带,地形呈左高右低现状,地形起伏较大。该斜井设计平长140m,开挖范围上部岩层为粉质粘土,下部为强-全风化页岩夹砂岩,围岩分级为V级。设计水文情况:地下水为上层滞水、基岩风化裂隙水及构造裂隙水。隧道净空断面尺寸为4.7(宽)×5.75(高)m,开挖断面尺寸为5.82(宽)m×7.62(高)m。 2.2变更设计情况 结合现场实际情况,依据有关会议精神,XK0+140~+115段初期支护钢架由Ⅰ14变更为Ⅰ18,间距50cm,系统锚杆Φ22砂浆锚杆变更为Φ42注浆锚管,锁脚砂浆锚杆变更为锁脚注浆锚管。 2.3变形情况 2011年10月26日斜井施工至掌子面里程XK0+113时,通过观察发现

铁路软弱围岩大变形隧道施工控制技术

铁路软弱围岩大变形隧道施工控制技术 发表时间:2019-02-21T09:37:41.443Z 来源:《防护工程》2018年第32期作者:李永巍 [导读] 近年来,我国的铁路工程建设越来越多,其施工技术也越来越受到重视。 中铁三局集团第三工程有限公司山西省太原市 030006 摘要:近年来,我国的铁路工程建设越来越多,其施工技术也越来越受到重视。本文对铁路软弱围岩大变形隧道施工技术方案进行分析,对施工难点进行讨论,并对软弱围岩大变形隧道变形控制技术进行研究,由此得出具有可行性的方案。实践证明,该方案提高了围岩支撑力,保证了施工安全,实现了动态管理大变形隧道的目标。 关键词:铁路;软弱围岩大变形隧道;综合施工技术 引言 铁路隧道技术在我国地势复杂的铁路施工区域经常应用。但某些地区铁路隧道建设由于其围岩支撑力度较低,极易在施工过程与铁路运输过程中出现安全事故。因此,本文对铁路软弱围岩大变形隧道综合施工技术进行详细研究,通过详细的案例分析,对铁路隧道施工技术进行研究与探讨。 1软弱围岩的定义 软弱围岩可以定义为:主要以粘土矿物或粘粒组成,以碎屑结构以及泥状结构为主,强度低、变形模量小以及亲水易软化的软岩及土体。 2铁路软弱围岩大变形隧道施工技术方案 2.1整体方案 以某隧道为例,由于隧道中的围岩压力较大,且分布不规则的地质环境特点造成隧道开挖出现变形增大(最大达123cm)、围岩变形持续时间增长,初期支护也出现极易变形失稳的情况以及施工人员具有较安全高风险的问题。故而本文提出对隧道断面结构形式及初期支护参数进行优化调整的主体方思路,进而期望达到对隧道变形进行有效控制的目标。在围岩大变形的隧道施工中:(1)应在保证施工安全的前提下进行围岩变化信息的收集与调查,并对初期支护的变化动态信息进行查验与记录,进而完成对围岩大变形的隧道调查;(2)应对施工过程的监测进行研究,研究中应该主要对隧道围岩的应力、内部位移、沉降和变形收敛监测技术进行着重分析;(3)应对隧道初期支护的变形进行研究,尤其是对初支钢架所受的应力进行着重检测与分析。 2.2断面结构优化方案 在获取并分析围岩变形参数之后,便可以此为基础展开技术优化。数据仅仅是理论基础,还需要通过大量的实验才能得出最优方案。在进行大量实验后,最终确定了“圆形断面”这一方案。方案不同,对断面变化速率影响也不同。相比其他方案,“圆形断面”具有更强的抗干扰能力,即完成支护后,随着时间的流逝,隧道的变形会更小。所以该方案被广泛运用在初期支护工作中,它可以减小断面连接处的受力,控制隧道的变形范围,为隧道其他环节的施工提供基础的空间支持。 2.3软弱围岩大变形段隧道初期支护思路 依据围岩特性不断调整的现象为基础,对隧道初期支护进行加强措施,最终在多种实施方案中确定初支钢架增加预应力锚索和采用长锁脚锚杆为主的支护形式,以此有效控制初支变形。同时该种方式还能够克服单线隧道施工空间狭窄有限与锚索施工过程持续时间较长等问题,不仅实现在单线隧道内完成锚索钻孔、锚索安装、注浆、张拉和封锚等工作,而且对隧道施工速度与进度进行提升。通过在初期支护钢架上增设预应力锚索,边墙起拱、台阶接头应力集中部位的变形明显减小,有效控制初支的变形。 3软弱围岩隧道施工方法的选择需考虑的因素 软弱围岩隧道的稳定与否和施工方法的选择密切相关,采用不同的软弱围岩隧道施工方法,对隧道工程的施工进度、施工成本以及施工的质量安全等有很大影响,不同的施工方法对隧道的开挖都有会不同程度的破坏原有的初始应力场,从而导致应力重分布,当应力重分布超过了软弱围岩的强度就会使围岩发生变形,变形过大就容易发生失稳破坏。对于软弱围岩隧道施工方法的选择,我们应需考虑以下四个方面的因素。①软弱围岩隧道段的围岩级别。不同的隧道施工方法适用于不同级别的围岩,同级围岩下采用不同的施工方法,产生的围岩位移可能会区别很大。②软弱围岩隧洞的几何形状。椭圆形或者圆形的隧道的围岩应力主要是以压应力为主,有利于围岩的稳定性。③软弱围岩隧道的工程地质条件。地下工程施工具有复杂的工程地质条件,比如:地下水渗流的影响,当工程地下水含量丰富时,会产生渗透水压力,对地表的变形和围岩变形的影响不可忽视。④工程的进度和工程造价等综合因素。采用不同的软弱围岩隧道工法,由于施工工序、技术条件等不同,对工程的进度和工程造价会有不同的影响,在保证隧道稳定的前提下,采取施工工艺简单,进度快的施工方法有利于加快工程的建设以及节约工程成本。但在大断面隧道中,对地表及围岩变形要求过高,即使造价高,进度慢的施工方法也是需要结合工程实际情况考量选择。 5软弱围岩大变形隧道变形控制技术研究 (1)强化锚杆,强调锚杆施工效率及锚固力发挥的及时性:①合理选择锚杆类型。对于锚杆钻孔后一定时间内围岩能够自稳、不会立刻发生塌孔缩孔的,选用普通中空锚杆;对于锚杆钻孔后孔壁易发生塌孔、无法在钻杆拔出后送入杆体的,选用自钻式中空锚杆。中空锚杆从锚固端部返浆,注浆质量容易控制。②配置专用机械设备。人工机具打设锚杆,角度受限,施工进度慢,质量不易保证,大变形地段应配置高效率的专业锚杆钻机或凿岩台车,可以实现全角度锚杆施工,8~10m长的锚杆施作时间可控制在10~20min。③优化锚杆参数。采用地质雷达、声波测试法等方法探明松动区,明确不同等级、不同断面的隧道围岩松动圈,为确定锚杆参数提供依据。④长短锚杆结合,形成群锚效应。短锚杆施作便捷快速,用于初期变形控制,限制浅部围岩松弛的发展,为长锚杆创造施作时机;长锚杆锚入弹性区,将组合拱支护结构悬吊于深部稳定岩体,使浅部围岩和深部围岩共同作用,协调变形。长短锚杆合理组合,形成群锚效应,可以有效限制隧道围岩的塑性区发展,约束围岩变形速率,保证隧道施工安全。(2)优化工法,尽量少分步,实现大断面开挖,尽早封闭仰拱成环:①掌子面自稳性差时,采用微台阶施工,初期支护尽快封闭成环。②掌子面自稳性较好时,采用台阶法施工,尽量少分台阶,尽可能减少钢架接头等工序衔

隧道大变形段专项施工方案

隧道大变形段 专 项 施 工 方 案

目录 一、编制依据 (1) 二、适用范围 (1) 三、工程概况 (1) 四、隧道变形段总体施工方案 (2) 五、施工方法 (5) 六、监控量测、超前地质预报实施方案 (11) 七、资源配置 (14) 八、质量保证措施 (15) 九、安全保证措施 (16) 十、应急预案 (17)

一、编制依据 1.编制依据 1.1、合同段两阶段施工图设计文件。 1.2、施工总承包合同文件。 1.3、《公路隧道施工技术规范》 1.4、《公路工程施工安全技术规程》 1.5、《公路隧道工程施工技术指南》 1.6、《公路工程施工安全技术规程》 二、适用范围 根据构造断裂带位置,现场围岩地质条件和隧道埋深情况对大变形段落进行预测,右线K74+930~K75+600段、左线ZK74+980~ZK75+660段可能出现大变形。 三、工程概况 隧道端左线5.935km,隧道端右线5.976km,隧道端斜井2.272km,隧道端横洞0.475km,改扩建斜井施工便道1.524km,新建斜井施工便道2.043km。主要工程内容为隧道工程,隧址区呈北东向展布,南东坡向沟谷发育大体多呈V型,沟壁陡直,谷底狭窄,谷坡陡峻,一般坡度为35°,洞身地形中部高,地形起伏大,进、出口地段地形较低,海拔高程657.6~3000m,相对高差约2500m,为构造剥蚀高中山地貌。Ⅲ级围岩以流云岩、白云岩为主,以块状整体结构为主,地下水较发育~发育局部可能出现大股状,岩质硬,埋深400~1900m,可能存在岩爆;Ⅳ级围岩以板岩、变

质砂岩、流云岩、白云岩主为主,岩体呈楔形破碎镶嵌结构,受构造作用强烈,裂隙较发育,岩体较破碎~较完整,隧道开挖易发生掉块或小至中塌方现象,深埋段可能发生强岩爆,地下水不发育以潮湿~滴水状为主;Ⅴ级围岩覆盖层、强风化基岩、断裂破碎带等,岩体以破碎结构为主,洞口风化及构造裂隙发育,岩质软~硬,岩体破碎~较破碎,断裂带,岩体极破碎,呈碎裂结构或碎粒状。受构造作用强烈,褶曲及次级断层发育,围岩可发生岩体大变形,拱部易产生大的坍塌现象,地下水不发育,呈潮湿~滴水状。断裂带可能有股状水流,雨季有产生突泥、涌水的可能。根据构造断裂带位置,现场围岩地质条件和隧道埋深情况对大变形段落进行预测,右线K74+930~K75+600段、左线ZK74+980~ZK75+660段可能出现大变形。 四、隧道大变形段总体施工方案 加强超前地质预报,施工过程中,按三台阶七步法施工,加强监控量测。严格控制开挖进尺,严禁冒进,仰拱及时封闭成环,二衬及时跟进。支护参数及注意事项如下: ①、Da段分外层和内层共双层初期支护,在开挖完成后及时施做外层支护即采用I20b工字钢50cm/榀,辅以φ8钢筋网20×20cm、φ32自进式锚杆长800cm、φ42注浆小导管长400cm环向间距120cm、纵向间距50cm,锚杆与小导管按梅花型相间布设,喷射C25砼26cm,加强监控量测,如围岩变形达到设计预留变形量20cm,且变形没有收敛趋势,立即施做内层支护,否则不施做内层支护,内层支护采用I18工字钢50cm/榀,喷射C25砼20cm。Db段采用I20b工字钢50cm/榀,辅以φ8钢筋网20×

高地应力软岩大变形隧道施工技术

高地应力软岩大变形隧道施工技术 中铁十四局集团第四工程有限公司石贞峰 摘要:堡镇隧道为宜万铁路第二长隧、七大控制工程之一,也是全线施工难度最大的隧道之一。堡镇隧道围岩属于高地应力软岩,在施工中发生高地应力软岩大变形。结合 软岩的岩性分析情况,采用科研引导、稳扎稳打的方针,制定了详细的施工方案,在施工过程中探索、研究出了控制软岩大变形的施工技术。 关键词:堡镇隧道高地应力软岩大变形施工技术 1 工程概况 堡镇隧道左线全长11565m,右线全长11599m,线间距30m, 右线初期设计为平导,作为左线辅助施工通道,后期再将平导扩挖形成右线隧道。是宜万铁路第二长隧、七大控制工程之一,也是全线唯一的高地应力软岩长隧。十四局承担左线进口段5641m、右线进口段5622m的施工任务。 隧道穿越岩层主要为粉砂质页岩、泥质页岩,呈灰黑色,多软弱泥质夹层带,白色云母夹层,强度极低。大部分页岩呈薄层状,层厚3~10cm,分层清晰,产状扭曲,挤压现象明显,岩体破碎,强度很低,手捏呈粉末状,遇水膨胀;顺层发育,有光滑顺层面,层间多夹软泥质夹层,节理、层理发育、切割严重,围岩整体性很差,隧道左边拱存在顺层软弱面,右侧边墙有楔形掉块,爆破后滑坍、掉块严重。根据国标《工程岩体分级标准》,该区属高应力区,产生大的位移和变形。洞内初期支护局部开裂,顺层坍塌,节理发育,软岩变形等,凡专家预测的复杂地质均已出现。在施工中发生多次高地应力作用下较大变形中,仅8#横通道处拱顶沉降最大就达15cm,收敛32.5cm,超过预留变形量,并侵入二次衬砌。 2 施工方案 针对高地应力软岩大变形的特点,我们制定了“超前支护、初支加强、合理变形、先放后抗、先柔后刚、刚柔并济、及时封闭、底部加强、改善结构、地质预报”的整治原则和总体方案,配合平导超前等辅助方案较好的解决了此项难题。 2.1 总体方案介绍 (1)采用超前小导管支护,开挖后及时封闭围岩;加强初期支护的刚度,采用型钢拱架封闭成环;为达到稳固围岩的目的,系统锚杆采用中空注浆锚杆加固地层,锚杆长度应稍大于塑性区的厚度。 (2)加大预留变形量。为了防止喷层变形后侵入二次衬砌的净空,开挖时即加大预留变形量,另外采取了不均衡预留变形量技术。 (3)施工支护采用“先柔后刚,先放后抗、刚柔并济”原则,使初期支护能适应大变形的特点。 (4)及时封闭仰拱、特别是仰拱初支,是减小变形、提高围岩稳定性的措施之一;另外加大仰拱厚度,增大仰拱曲率,也有利于改善受力状况。 (5)改善隧道结构形状,加大边墙曲率,根据围岩实际和监控量测数据,采用受力结构最为合理的“鸭蛋”型断面;改善结构另一措施是提高二次衬砌的刚度,即加大二次衬砌厚

软岩大变形隧道初期支护钢拱架纵向锁定工法

软岩大变形隧道初期支护钢拱架纵向锁定工法 1 前言 兴源隧道位于黑龙江省穆棱市兴源镇境内,起讫里程DK409+090~DK412+517,全长3427m,为双线隧道。隧道所处地质条件十分复杂,有断层、软岩破碎带等不良地质体存在,在隧道施工过程中,由于地质条件的影响,工程的掘进速度受到一定的影响;能否通过厚度较大的软岩断层破碎带,对于初期支护结构的变形控制提出了很高的要求。由中铁二十二局、兰州交通大学等合作单位针对该项目难点成立专门的课题研讨组,形成了一种新型的初期支护中钢拱架纵向连接结构,改变以往连接筋的受力偏弱的状态,提高钢拱架的抗扭性能,从而增强初期支护对围岩变形的约束能力的研究成果。经过鉴定达到了国内领先水平,形成了一系列关键施工技术,申请了一项实用型专利(软岩隧道大变形控制初期支护中钢拱架纵向连接结构),并结合施工工艺、组织管理等,编写了《软岩大变形隧道初期支护钢拱架纵向锁定工法》。 2 工法特点 2.0.1采用这种新型的软岩隧道大变形控制初期支护中钢拱架纵向连接结构,增大了纵向连接构件与钢拱架腹板焊接的有效面积,提高了相邻两榀钢拱架之间的纵向连接能力,增加了钢拱架体系的抗扭能力和整体稳定性,使隧道初期支护对围岩变形的约束能力有了较大的提高。 2.0.2 能有效地控制围岩变形,与围岩形成一个整体,充分发挥围岩的自承能力。 2.0.3能应用量测监控等信息化管理方法指导施工,使整个施工过程均处于受控状态。 2.0.4 施工作业简便,不需用特殊的施工机械和设备。 2.0.5 适用于各种不同的软弱围岩地层,适用范围广。 3 适用范围 本工法适用于各类在初期支护中配置钢拱架的软弱破碎围岩隧道施工,也适用于其它类似的地下工程。 4 工艺原理 通过采用14a号槽钢代替Φ22或Φ25螺纹钢筋进行初期支护中钢拱架的纵向连接,增加了焊接有效面积,加强了钢拱架的纵向连接,提高了初期支护中钢拱架的整体抗扭能力,增加了钢拱架的整体稳定性,提高了隧道初期支护对围岩变形的约束能力,有效的抑制了围岩的变形。 5 施工工艺流程及操作要点 5.1 施工工艺 参见图5.1.1-1和图5.1.1-2,本实用新型是软岩隧道大变形控制初期支护中钢拱架纵向连接结构,包括钢拱架(1)、钢拱架(2)、纵向连接槽钢(3),其特征在于:采用槽钢(3)将钢拱架(1)和钢拱架(2)沿着环向相隔一定距离在纵向连接在一起,纵向连接槽钢(3)的两端分别焊接在钢拱架(1)和钢拱架(2)

高地应力软岩大变形隧道施工技术 刘国平

高地应力软岩大变形隧道施工技术刘国平 发表时间:2018-02-26T10:12:45.293Z 来源:《建筑学研究前沿》2017年第28期作者:刘国平[导读] 不断加强高地应力软岩大变形隧道施工技术,从而最大限度降低软岩大变形对隧道施工产生的影响。中铁隧道局集团二处有限公司河北燕郊 065201 摘要:我国幅员辽阔、地形复杂多样。在进行铁路建设时,受到各种地形的影响,隧道施工也会受到影响,尤其是高地应力软岩的大变形,会导致初期支护的开裂,甚至发生塌方,更严重的会造成永久性支护破坏。本论文以高地应力软岩大变形为基本出发点,详细论述了高地应力软岩变形的主要特征,并在此基础上提出了隧道施工的控制措施,为业内人士提供了一定的参考。 关键词:高地应力;软岩;隧道施工; 近年,随着社会经济的发展,对于铁路、公路的需求也在不断提高,这就要求我国的铁路、隧道建设中,不断要提高其建设质量,还要增加建设数量。然而在隧道工程的进程中,会不可避免地受到地质条件的影响。其中,高地应力软岩大变形就是隧道工程施工中,最大的障碍,只有提升隧道施工技术,才能从根本上保证隧道工程的工程质量。 一、软岩概况 软岩,是一种在特定环境下形成的,具有显著塑性变形的复杂的岩石力学介质。通常,软岩可分为地质软岩与工程软岩两大类。 其中,地质软岩,包括泥岩、粉砂岩、泥质矿岩和页岩这四大类,主要是在大自然的作用下,而天然形成的复杂地质。这类地质软岩具有强度低、空隙大、胶结程度差、受构造面切割及风化影响显著等特点;而工程软岩,则强调了软岩所承受的工程力,主要是在工程力的作用下,而使得岩石发生了显著性的变化。 软岩,由于其特性不同,以及产生显著的塑性变形的机理不同,可将其分为膨胀性软岩、节理化软岩、复合型软岩和高应力软岩四大类。 其中,高应力软岩根据高应力的类型,又可细分为自重应力软岩和构造应力软岩;而根据高应力的水平,又可分为三个等级,即高应力软岩、超高应力软岩和极高应力软岩。(如表1) 表1:高应力软岩分级 级别应力水平/MPa 高应力软岩 25-50 超高应力软岩 50-75 极高应力软岩 >75 二、软岩变形以及破坏特性 (一)软岩变形特征 在隧道工程的作用下,软岩承受了一定的工程力,从而使得岩石发生变形,产生巨大的变化。在隧道施工工程中,软岩变形是评价软岩稳定性的一项重要指标,也是工程设计人员在进行隧道工程设计时,而遵循的基本准则之一。 通常,当隧道工程开始施工之后,其周围的软岩会发生一些重要的改变,大致要经历三个阶段:1、弹性应变阶段,2、弹性变形和塑性变形两个阶段共同的阶段,3、蠕变为主,蠕变、塑性变形共存阶段。 在隧道施工过程中,软岩所经历的三个变化阶段中,具有以下三种显著的特点:第一,变形量大 主要是指在隧道工程开始施工之后,就会产生显著的塑性应变,这是软岩在隧道施工中最主要的特征。据相关的检测数据表明,在隧道施工的作用下,软岩的洞壁可出现数百、乃至一千毫米的位移。在软岩塑性应变的作用下,在隧道施工中就会表现出初期支护严重破裂,如混凝土开裂脱落、钢架扭曲等。 第二,变形速度快 在隧道施工开始之后,原本坚硬的围岩会迅速发生变形,在发生一系列的变形之后,又会迅速走向稳定的状态,其变形速率非常小;而软若的围岩在隧道施工开始之后,其变形速率又会迅速增加,特别是在初期变形速率会增大。 第三,变形时间长 软岩不仅初期的变形速率快,而且持续的时间比较长,具有明显的入变形特征。 第四,围岩变形具有明显的阶段性 在隧道施工过程中,围岩的变形具有明显的阶段性。据某隧道工程施工检测的数据分析,在施工中,随着施工阶段的不同,围岩的变形也各有不同。当上台阶开挖时,拱顶出现下沉,且下沉量约占总下沉量的45%左右,而引起的水平收敛约为50%;当中台阶开挖时,拱顶下沉总量约为总下沉总量的35%;而引起的水平收敛约为40%。从数据中可以看出,在隧道施工过程中,围岩的变形有明显的阶段性。同时,可看出,在施工过程中,加强对隧道开挖的上、中台阶时,加强对其控制十分有必要。 (二)软岩破坏特征 在隧道施工过程中,随着爆破、中台阶和下台阶的落地、以及仰拱开挖时会导致岩体大变形,同时,在岩体大变形的情况下,也会对隧道工程带来严重的影响。 岩体大变形,就会导致隧道工程施工出现初期支护的开裂的现象。在这种情况下,如果初期支护变形侵限的问题处理不当,就会给围岩造成更大的影响,从而产生失稳、甚至坍塌的现象。 三、高地应力软岩大变形隧道施工技术 就目前而言,我国高地应力软岩隧道施工案例非常多,例如:中缅油气管道的博南山隧道、兰渝铁道的木寨岭隧道等。可以说,在所有的高地应力软岩的隧道施工过程中,面临的最大难题就是软岩大变形,以及随之而产生的初期支护开裂现象,甚至塌方。这就要求相关技术人员在施工过程中,必须不断提高高地应力软岩大变形的隧道施工技术。

高黎贡山隧道进口软岩大变形专项施工方案

表A.0.1 施工组织设计(方案)报审表 监理合同段:DRBRJL-1 施工合同段:DRBRTJ-1 编号:

新建大理至瑞丽铁路保瑞段怒江至龙陵段站前工程土建1标 高黎贡山隧道 软质岩大变形施工方案 编制: 审核: 审批: 中铁十八局集团有限公司 大瑞铁路怒江至龙陵段项目经理部 二〇一四年十月

目录 1.编制依据 (1) 1.1编制依据 (1) 1.2编制范围 (1) 2.工程概况 (1) 3.设计中软质岩大变形段以及相关设计参数 (2) 3.1软质岩大变形段 (2) 3.2.软质岩大变形段衬砌类型及支护措施 (3) 4.综合分析 (3) 5.施工方法及处理方案 (4) 5.1施工方案 (4) 5.2超前地质预报 (6) 5.3开挖施工 (7) 5.4支护结构确定 (8) 5.5仰拱施工 (9) 5.6二次衬砌 (9) 5.7软质岩大变形风险控制 (9) 6施工领导小组的分工及领导干部带班制度 (10) 6.1成立领导小组 (10) 6.2领导小组成员分工 (12) 6.3施工期间领导干部带班制度 (12) 6.4项目部分部巡查制度 (13) 6.5险情上报制度 (13) 7.隧道工程软质岩大变形应急预案 (13) 7.1应急物资与装备保障 (13) 7.2应急预案 (14)

7.3应急逃生预案 (14)

高黎贡山隧道进口软质岩大变形专项施工方案1.编制依据 1.1 编制依据 1.国家法律、法规和原铁道部规章制度; 2.国家对本项目的批复文件; 3.本项目采用的标准、规范、规程等; 4.科学研究及试验成果; 5.云桂公司编制的指导性施工组织设计、招标文件以及本单位的投标文件等。 6.怒江至龙陵段DRBRTJ-1标实施性组织设计,高黎贡山隧道实施性施工组织设计; 7.高黎贡山隧道施工图及相关参考标准图; 8.云桂公司隧道风险管理相关文件; 9.新建大瑞铁路怒江至龙岭段DRBRTJ-1标段风险管理实施细则; 10.我单位实地核对资料、施工能力、类似工程施工工法及为完成本工程拟投入的管理、专业技术人员、机械设备等资源。 1.2 编制范围 编制范围为高黎贡山隧道进口正洞、平导,正洞起止里程D1K192+302~D1K198+193,平导PDK192+245~PDK197+840。软质岩大变形高风险施工段。 2.工程概况 高黎贡山隧道全长34586.468米,其中进口正洞全长5891m,全隧道均位于直线上。D1K192+302~D1K198+337为三线隧道,D1K192+337~D1K192+800

隧道初支变形处理方案全解

中铁二十五局集团沪昆客专长昆湖南段项目经理部 目录1.编制依据、编制范围及设计概 况 (2) 1.1编制依 据 (2) 1.2编制范 围 (2) 2.工程概 况 ................................................................. 2 2.工程简 (2) 2.2地质情况描 (3) 2.设计基本参 (3)

.施工概 (4) 3.现场施工情 (4) 3.2山体开裂及初支变形情 况 (4) 4.处理方 案 ................................................................. 5 (6) (6) (7) (8) 1 标官家山隧道进口初支变形处理方案1-CKTJ沪昆客专长昆湖南段 中铁二十五局集团沪昆客专长昆湖南段项目经理部 1.编制依据、编制范围及设计概况 1.1编制依据 国家的法律、法规和铁道部、湖南省的相关管理制度规定;

本项目采用的标准、指南、验标、工法、定型图、通用图、标准图等;沪昆铁路客运专线湖南有限责任公司下发的指导性施工组织设计; 沪昆铁路客运专线湖南有限责任公司关于项目建设管理的规章制度;新建长沙至昆明铁路客运专线湖南段站前CKTJ-1标段施工承包合同;客专用材料、机械设备、机具等相关规程、标准、质量文件; 《新建铁路长沙至昆明铁路客运专线(长沙至玉屏段)施工图官家山隧道设计图》,图号:《长昆客专施(长玉段)隧004A-01~06》、《长 昆客专施(长玉段)隧004A-07~08》、《长昆客专施(长玉段)隧变004-1-01~02》; 2012年4月7日由娄底建设指挥部组织设计、监理及施工单位的“官家山隧道DK44+065~+150段初支变形及地表开裂处理方案会议纪要”; 现场踏勘调查的相关资料。 1.2编制范围 新建铁路长沙至昆明铁路客运专线官家山隧道(DK44+065~DK44+150)工程。 2.工程概况 2.1工程简介 沪昆客专长昆湖南段官家山隧道进口里程为DK44+065,出口里程为DK44+542,隧道全长477m,其中暗洞长为428m,明挖段长为49米(进口段DK44+065~+072为明挖段)。全隧位于直线上,全隧为3.8‰的单面下坡。本隧围岩级别为IV、V级软弱围岩,进口段为浅埋偏压,

高地应力软岩大变形隧道施工技术阐述

高地应力软岩大变形隧道施工技术阐述 发表时间:2019-06-18T10:19:19.603Z 来源:《中国建筑知识仓库》2019年01期作者:卫永强[导读] 摘要:岷县隧道线路施工过程中,在高地应力软岩地质的影响下,在进行初期支护的过程中,多处地区出现大的变形,并且破坏极为严重。所以,为了保证施工的顺利和安全,采取了先柔后刚、先放后抗、多重支护、提高二次衬砌刚度和超短台阶开挖等有效措施,不仅有效的控制了围岩大变形的情况,而且保证了项目运行的安全性和有效性。借此,本文就岷县隧道线路的工程概况及大变形问题进行了 解,并且采取必要的措施进行大变形的控制。引言 在近些年发展的过程中,我国道路建设实现了高速式的发展,并且对于道路建设标准越来越高,尤其是对于一些地形地貌相对复杂的地区,如隧道区域的长度、隧道深埋度、地质条件复杂度等等。所以,本文就穿越高地应力区且地质复杂的软弱围岩的岷县隧道线路软岩大变形问题及采取的有效施工技术进行研究和分析,希望能够为后续隧道施工提供理论方面的意见或建议。 一、工程概述 1.1隧道概况 岷县隧道线路近南北走向下穿岷山,整个隧道建设采用了分离式的设计,洞身最大埋深约286.9m,其中,左线是ZK234+610~ZK237+400,全长2790m;右线是K234+570~K237+418,全长2848m。在进口段区域,采用了削竹式洞门,在出口段区域,采用了端墙式洞门,隧道整体是全射流风机纵向通风,并且隧道内设置了完善的照明、消防和监控系统。在本次调研的标段中,主要是对岷县隧道线路的隧道出口段进行研究,该标段位于洮河北岸谷坡上,洞线与坡面基本垂直,围岩主要由强风化炭质板岩、中风化炭质板岩组成,遇水变形大,采用环形开挖留核心土进洞。其中,左洞是ZK236+600~ZK237+400(800m),其中明洞20m,右洞是K236+600~K237+418(818m),其中明洞6m。 1.2技术标准 岷县隧道线路为一级公路,隧道设计是以80km/h速度为准;隧道主洞建筑以净宽10.25m,净高5.0m为限界;紧急停车带建筑以净宽13.0m,净高5.0m为限界;隧道车行横洞建筑以净宽4.5m,净高5.0m为限界;隧道行人横洞建筑以净宽2.0m,净高2.5m为限界;公路I级的荷载能力;隧道二衬抗渗等级≥P8;右线纵坡为-0.7%,左线纵坡为-0.704%。 1.3设计情况 1.3.1洞门设计。隧道出口端,左右线均采用钢筋混凝土洞门,形式为端墙式洞门,出口端明暗交界设计里程为ZK237+380,明洞长度20m;YK237+412,明洞长度6m。 1.3.2边坡、仰坡设计。洞口边坡、仰坡开挖坡率分别为1:0.5、1:0.75。洞口边坡、仰坡防护采取锚网喷支护形式,其中锚杆采用Φ22砂浆锚杆,L=3.5m,间距120cm×120cm,梅花型布置;混凝土采用C25喷射混凝土,厚度10cm;钢筋网采用Φ8钢筋网,网格间距20×20cm。 1.3.3截排水系统设计。在距隧道洞口边坡、仰坡开挖线外不小于5m处施作洞口截水沟,以防止雨水对洞口边坡、仰坡坡面和洞口绿化的冲刷而造成洞口失稳。根据地形条件,截水沟流水方向向两侧,与自然沟形成排水系统。 1.3.4进洞辅助措施设计。左右线洞口均采用32m长管棚进行超前支护,钢管采用热轧无缝钢管及钢花管,直径89mm,壁厚6mm,环向间距35cm,每环43根。二、岷县隧道线路施工中存在的问题岷县隧道线路中,隧道出口段的斜坡坡度是40度,斜坡为强风化炭质板岩、中风化炭质板岩。强风化炭质板岩的板理判断,主要是因为裂隙发育,岩体易破碎,并且局部存在坍塌掉块的现象,就施工条件而言,斜坡的整体稳定性是极为差的。另外,在隧道出口段的西侧区域,冲积现象较为显著,对于多雨地区的岷县而言,旱季干涸,雨季时,不仅有大量的降水,而且降水流出的过程中,带有泥石流流出。所以,隧道施工期间,不仅要做好截排水,而且还要做好出口西侧坡脚的防护措施。 三、岷县隧道线路控制变形施工技术针对岷县隧道线路高地应力软岩大变形的情况,在前期准备工作中了解到,该地域多为强风化炭质板岩、中风化炭质板岩的地质条件,在隧道施工环节中,需要遵循先柔后刚、先放后抗、多重支护、提高二次衬砌刚度和超短台阶开挖等先柔后刚、先放后抗、多重支护、提高二次衬砌刚度和超短台阶开挖等原则,并且就不同的区域采取不同的施工办法。 3.1改善隧道形状,直墙变曲墙岷县隧道线路施工环节中,根据设计需要开挖断面为直边墙,在高地应力的影响下,大多数变形主要是以水平收敛变形结构为主,并且具备了变形快、变形量大的特性。另外,在软岩变形区域出现的喷混凝土开裂情况,初期主要是混凝土表面出现环形,或者是纵向的裂缝,并且支护出现内鼓,拱架开裂、扭曲等,严重影响到了施工的安全性和顺畅性。所以,就结构受力情况而言,采取斜井开挖断面的方式,在一定程度上,不仅可以保障受力的均匀性,而且还能尽可能降低应力集中导致的一系列负面影响。因此,钢架支护采用圆曲形的同时,增加仰拱的支撑力,进而形成闭合环的形式,进而保障支护的稳定性。 3.2先柔后刚、先放后抗“先柔后刚”实际上指的就是支护结构为柔性支护,主要是由钢筋网喷混凝土、钢架、锚杆等组成。二次衬砌是刚性的浇筑混凝土,主要承担残余的地层荷载力。“先放后抗”实际上指的就是在初期支护作业完成之后,在一定程度上,允许一定的变形,保证变形在变形预留量之内,可以进行第二次的混凝土浇筑,即混凝土衬砌。 3.3多次支护控制变形在前期多次的斜井施工过程中,在充分考虑到考变形快这个特征的前提下,岷县隧道线路的初期支护可以采取双层钢架网喷混凝土加强得方式,首先,在第一层支护中,采用刚性较大的工字钢架,在一定程度上,可以及时有效地抵抗岩层变形情况。其次,第二层支护的作用就是限制变形情况扩大。 3.4底部加强,抑制隆起

某隧道大变形施工预案

某隧道大变形施工预案 一.工程概况 某隧道进口里程为DK251+273,出口里程为DK259+152,全长7879m。全隧道除出口约20m位于R-3000m曲线上外,其余均位于直线上,全隧道位于15.3‰的上坡段上。线路左侧30m设集施工中地质探洞、通风、排风,增加工作面及运营期间排水等功能贯通平行导坑一座。 本标段位于鄂西北长江与清江分水岭的高山半坡地区,地形极其困难,地质极其复杂。岩溶、顺层、滑坡、断层破碎带和崩塌等主要不良地质现象广泛。某隧道围岩级别为Ⅲ—Ⅴ级,隧道内水量丰富,并且发育五个暗河系统。在下统栖霞组及下统吴家坪组均含炭质页岩夹煤层,属煤系地层。 二.组织机构 为了预防隧道施工过程中出现大变形,以及对发生大变形及时提出正确的处理措施,项目部决定成立专门的大变形处理小组。小组成员名单如下: 组长: 副组长: 成员: 对于已发生的严重大变形,项目小组应及时与专家组联系,专家

组实地考察研究,提出合理的处理意见和处理措施,项目部根据专家组的处理方案进行处理。 每个掘进施工队必须成立大变形处理小组,组长由各施工队长担任。当大变形发生时,应根据项目部小组及专家组提出的处理方案,及时正确地对事故进行处理,以保证隧道施工正常进行。 三、大便形预防措施 1.预防原则 (1)不能被动地让衬砌承受围岩挤压力,而是主动加固围岩,从提高围岩力学性能着手,从源头上减小挤压力,主要措施是锚杆和注浆,使隧道周边形成加固圈,由加固圈承受一部分荷载。 (2)加长锚杆或锚索(其端部应伸出塑性区,进入弹性区不小于2m,将支护的荷载通过锚杆传至深部稳定岩体,让深部围岩帮助受力。 (3)初期支护应是柔形的,应能允许洞壁发生较大变形(位移),从而消耗围岩中储存的能量。挤压性围岩的巷道稳定主要靠长锚杆,喷射混凝土的作用是改善岩面,防止局部失稳。 (4)预留变形量必须留够(宁多勿少),防止初期支护变形侵入模注混凝土净空。由于预留变形不足而进行扩挖是非常危险的作业,而且在工期和工程成本上很不划算。 (5)由于围岩的徐变,初期支护收敛时间很长,一般需提前浇

隧道初支变形处理方案全解

目录 1.编制依据、编制范围及设计概况 (2) 1.1编制依据 (2) 1.2编制范围 (2) 2.工程概况 (2) 2.1工程简介 (2) 2.2.地质情况描述 (3) 2.3设计基本参数 (3) 3.施工概况 (4) 3.1现场施工情况 (4) 3.2山体开裂及初支变形情况 (4) 4.处理方案 (5) (6) (6) (7) (8)

1.编制依据、编制范围及设计概况 1.1编制依据 国家的法律、法规和铁道部、湖南省的相关管理制度规定; 本项目采用的标准、指南、验标、工法、定型图、通用图、标准图等; 沪昆铁路客运专线湖南有限责任公司下发的指导性施工组织设计; 沪昆铁路客运专线湖南有限责任公司关于项目建设管理的规章制度; 新建长沙至昆明铁路客运专线湖南段站前CKTJ-1标段施工承包合同; 客专用材料、机械设备、机具等相关规程、标准、质量文件; 《新建铁路长沙至昆明铁路客运专线(长沙至玉屏段)施工图官家山隧道设计图》,图号:《长昆客专施(长玉段)隧004A-01~06》、《长昆客专施(长玉段)隧004A-07~08》、《长昆客专施(长玉段)隧变004-1-01~02》; 2012年4月7日由娄底建设指挥部组织设计、监理及施工单位的“官家山隧道DK44+065~+150段初支变形及地表开裂处理方案会议纪要”; 现场踏勘调查的相关资料。 1.2编制范围 新建铁路长沙至昆明铁路客运专线官家山隧道(DK44+065~DK44+150)工程。 2.工程概况 2.1工程简介 沪昆客专长昆湖南段官家山隧道进口里程为DK44+065,出口里程为DK44+542,隧道全长477m,其中暗洞长为428m,明挖段长为49米(进口段DK44+065~+072为明挖段)。全隧位于直线上,全隧为3.8‰的单面下坡。本隧围岩级别为IV、V级软弱围岩,进口段为浅埋偏压,裂隙发育且不能确定,岩体较破碎,地下裂隙水较发育,存在微弱发育岩溶。隧道总体风险等级为

隧道软弱围岩大变形的施工控制技术

隧道软弱围岩大变形的施工控制技术 摘要:通过对正在施工的兰渝铁路木寨岭隧道遇到的围岩大变形问题的分析研究,对围岩大变形进行定义的基础上,进行了施工工艺和改善和支护参数的优化,为我国今后长大深在对埋隧道工程大变形地质灾害的预测和防治具有重要意义。 关键词:软弱围岩大变形支护参数工序化注浆 0、引言 交通隧道、水工隧道及其它地下工程穿越高地应力区以及遇到软弱围岩体,常导致软岩大变形等相关地质灾害。根据大量文献检索结果显示,隧道工程围岩大变形已困扰地下工程界的一个重大问题。 随着我国隧道工程以及地下工程的迅猛发展,其长大、深埋的特点日趋明显,而在一定的围岩地质和环境地质条件下等则往往易于发生围岩大变形等地质灾害。围岩大变形是一类危害程度大、整治费用高的地质灾害。目前正在施工的兰渝铁路木寨岭隧道也因围岩大变形不得不加强初期支护,增加工程的投入。 1、隧道软弱围岩大变形的概述 1.1软弱围岩大变形的定义 关于围岩大变形,目前还没有形成一致的和明确的定义。有的学者提出根据围岩变形是否超出初期支护的预留变形量来定义大变形,即在隧道施工时,如果初期支护发生了大于25cm(单线隧道)和 50cm(双线隧道)的位移,则认为发生了大变形。然而也有的学者认为,不能从变形量的绝对值大小来定义大变形问题,具有显著的变形值是大变形问题的外在表现,其本质是由剪应力产生的岩体的剪切变形发生错动、断裂分离破坏,岩体将向地下空洞方向产生压挤推变形来定义大变形。 1.2预防和控制软弱围岩大变形的施工措施 要预防和控制隧道施工中软弱围岩的大变形,首先做好超前地质预报,选择相应的安全合理的施工方法和措施。在施工中始终遵循“先治水,管超前,短进尺,弱爆破,强支护,早封闭,勤量测”的21字方针。严格执行施工规范,强化施工工序标准化,依据超前地质预报,指导现场施工,严格支护措施。 2、隧道软弱围岩大变形的施工控制技术 本文以兰渝铁路木寨岭隧道为例,对隧道软弱围岩变形的形成及控制施工变形技术进行一些探讨。 2.1工程概况 木寨岭隧道位于甘肃省岷县进内,进出口高程为2549.88m和2390.94m木寨岭隧道为单线双洞隧道,全长19110米。木寨岭隧道地质条件极为复杂,洞身穿越木寨岭高山区,特殊不良地质有湿陷性黄土、滑坡、泥石流、岩堆、炭质板岩及断层。基岩节理、裂隙发育,有11条断层破碎带、3个背斜及2个向斜构造,属高地应力区。为极高风险隧道,是本标段控制性重点工程。 气候属于高原性大陆气候,年平均日照时数2214.9小时,年平均气候4.9℃--7.0℃,年平均相对湿度68%,年平均无霜90-120天,年平均降水量596.5毫米,最热7月份平均气温16℃,最冷1月份平均气温-6.9℃。 2.2隧道软弱围岩大变形的施工控制技术 木寨岭隧道变形控制以支护结构的调整为主,在变形较为典型的7#斜井和正洞开展以拱架调整为主的分阶段支护参数现场试验以及应力释放等试验,并将优化后的支护参数应用于其它斜井施工中。同时,斜井变形段支护参数的优化结果也为正洞支护参数的选择提供了

相关文档
最新文档