随机信号分析基础第五章习题王永德-答案.
随机信号分析课后习题答案

1第一次作业:练习一之1、2、3题1.1 离散随机变量X 由0,1,2,3四个样本组成,相当于四元通信中的四个电平,四个样本的取值概率顺序为1/2,1/4,1/8,和1/8。
求随机变量的数学期望和方差。
解:875.087813812411210)(][41==⨯+⨯+⨯+⨯===∑=i i i x X P x X E81)873(81)872(41)871(21)870(])[(][2224122⨯-+⨯-+⨯-+⨯-=-=∑=i i i P X E x X D109.16471==1.2 设连续随机变量X 的概率分布函数为⎪⎩⎪⎨⎧≥<≤-+<=21201)](2πΑsin[0.500)(x x x x x F求(1)系数A ;(2)X 取值在(0.5,1)内的概率)15.0(<<x P 。
解:⎪⎩⎪⎨⎧<≤-π==其他0201)](2π[cos 2)()(x x A dx x dF x f 由1)(=⎰∞∞-dx x f得 2A 021)](2πAsin[1)]d (2π[cos 2=-=-π⎰∞∞-x x x A21A =35.042)]15.0(2[sin 21)]11(2[sin 21)5.0(F )1(F )15.0(==-π--π=-=<<x P1.3 试确定下列各式是否为连续随机变量的概率分布函数,如果是概率分布函数,求其概率密度。
(1)⎪⎩⎪⎨⎧<≥-=-000e 1)(2x x x F x (2)⎪⎩⎪⎨⎧≥<≤<=1110Α00)(2x x x x x F (3)0)]()([)(>--=a a x u x u a xx F (4)0)()()(>---=a a x u axa x u a x x F2解:(1)⎪⎩⎪⎨⎧<≥-=-000e 1)(2x x x F x 当0≥x 时,对于12x x ≥,有)()(12x F x F ≥,)(x F 是单调非减函数; 1)(0≤≤x F 成立;)()(x F x F =+也成立。
随机信号与系统第五章习题部分答案

第五章 习题5-1 设某信号为1000||()t x t e -=(1)试求x (t )的傅里叶变换X (j ω),并绘制X (j ω)曲线;(2)假设分别以采样频率为f s =5000Hz 和f s =1000Hz 对该信号进行采样,得到一组采样序列x k ,说明采样频率对序列x k 频率特性X (e j Ω)的影响。
解:(1)1000||622000()()10j t t j t X j x t e dt e e dt ωωωω∞∞----∞-∞===+⎰⎰. X (j ω)的曲线如下图所示:(2)设采样周期为T ,则采样输出为()()()()k k k x x t t kT x kT t kT δδ∞∞=-∞=-∞=-=-∑∑.由时域相乘等于频域卷积,有1122()()*[()]()*[()]22j k k X e X j t kT X j kT Tππδδππ∞∞Ω=-∞=-∞=Ω-=ΩΩ-∑∑F 121212()()()2k k X j k d X j jk T T T T Tπππωδωωπ∞∞∞-∞=-∞=-∞=⋅=Ω--=Ω-∑∑⎰. 即序列x k 频率特性X (e j Ω)是原信号频谱X (j ω)以2Tπ为周期进行延拓而成的,而采样频率1122s f T Tππ==⋅,所以采样频率越高,序列x k 频率特性的各周期越分散,越不容易发生频谱混叠。
5-2 假设平稳随机过程x (t )和y (t )满足下列离散差分方程11;k k k k k k k x ax e y ay x v ---=-=+式中,|a|<1;e k ,v k ~N (0,σ 2)分布,且二者互不相关。
试求随机序列y k 的功率谱。
解:对1k k k x ax e --=进行离散时间傅里叶变换(DTFT ),且记DTFT(x k )=X (e j Ω),DTFT(e k )=E (e j Ω),则有j j j ()(1)()X e ae E e ΩΩΩ--=式中,Ω=ωT s ,称为数字频率(rad ),ω为实际频率(rad/s ),T s 为采样周期(s )。
第5章习题参考答案.doc

第5章习题参考答案1.请在括号内填入适当答案。
在CPU中:(1)保存当前正在执行的指令的寄存器是(IR );(2)保存当前正在执行的指令地址的寄存器是(AR )(3)算术逻辑运算结果通常放在(DR )和(通用寄存器)。
2.参见图5.15的数据通路。
画出存数指令“STO Rl,(R2)”的指令周期流程图,其含义是将寄存器Rl的内容传送至(R2)为地址的主存单元中。
标出各微操作信号序列。
解:STO R1, (R2)的指令流程图及为操作信号序列如下:STO R1, (R2)R/W=RDR O, G, IR iR2O, G, AR iR1O, G, DR iR/W=W3.参见图5.15的数据通路,画出取数指令“LAD (R3),R0”的指令周期流程图,其含义是将(R3)为地址主存单元的内容取至寄存器R2中,标出各微操作控制信号序列。
解:LAD R3, (R0)的指令流程图及为操作信号序列如下:PC O , G, AR i R/W=R DR O , G, IR iR 3O , G, AR i DR O , G, R 0iR/W=R LAD (R3), R04.假设主脉冲源频率为10MHz ,要求产生5个等间隔的节拍脉冲,试画出时序产生器的逻辑图。
解:5.如果在一个CPU 周期中要产生3个节拍脉冲;T l =200ns ,T 2=400ns ,T 3=200ns ,试画出时序产生器逻辑图。
解:取节拍脉冲T l 、T 2、T 3的宽度为时钟周期或者是时钟周期的倍数即可。
所以取时钟源提供的时钟周期为200ns ,即,其频率为5MHz.;由于要输出3个节拍脉冲信号,而T 3的宽度为2个时钟周期,也就是一个节拍电位的时间是4个时钟周期,所以除了C 4外,还需要3个触发器——C l 、C 2、C 3;并令211C C T *=;321C C T *=;313C C T =,由此可画出逻辑电路图如下:6.假设某机器有80条指令,平均每条指令由4条微指令组成,其中有一条取指微指令是所有指令公用的。
随机信号分析基础第五章习题王永德答案

GZ (? ) ? F [RW (k)]
2
?? RZ (k)e? j? k k? 2
? 2 ? 4 (e? j? ? e j? ) ? 1 (e? j2? ? e j2? )
3
3
? 2 (3 ? 4cos ? ? cos 2? )
3
(3)解:
Yn
?
?
1 2
Yn ? 1
?
Xn
这是一个一阶AR过程,输出的自相关函数可
滑动平均 (MA)模型
q
? Yn ? bm Xn? m m? 0
自回归滑动平均 (ARMA)模型
p
q
? ? Yn ? alYn? l ? bm Xn? m
l?1
m? 0
5.30 (1)解:
Wn ? Xn ? Xn?1
显然这是一个一阶MA过程,该过程输出的自 相关函数满足下列方程
? RW (k)
?
? ? ?
H (z) ?
j?0 p
? ai z?i
i?0
不失一般性令 a0=1,则其差分方程为:
p
q
y(n) ? ? ai y(n ? i) ? ? bj x(n ? j)
i?1
j?0
差分方程为:Y(n) ? 0.8Y(n ? 1) ? X(n)
?
4 (? 9
1)k 2
5.31 解:要求差分方程
由题可知 GY (? ) ? G X (? ) H (? ) 2
得到:
H (? ) 2 ?
1
1.64 ? 1.6cos ?? NhomakorabeaH
(Z)
2
?
1.64
?
1 0.8 Z
?
随机信号分析习题答案(部分)

1-9 已知随机变量X 的分布函数为20,0(),011,1X x F x kx x x <⎧⎪=≤≤⎨⎪>⎩求:①系数k ; ②X 落在区间(0.3,0.7)内的概率; ③随机变量X 的概率密度。
解:第①问 利用()X F x 右连续的性质 k =1第②问{}{}{}()()0.30.70.30.70.70.30.7P X P X F P X F =<<=<≤-=-第③问 201()()0X X xx d F x f x elsedx ≤<⎧==⎨⎩1-10已知随机变量X 的概率密度为()()xX f x kex -=-∞<<+∞(拉普拉斯分布),求:①系数k ②X 落在区间(0,1)内的概率 ③随机变量X 的分布函数 解: 第①问 ()112f xd x k ∞-∞==⎰ 第②问{}()()()211221x x P x X x F x F xfx d x<≤=-=⎰ 随机变量X 落在区间12(,]x x 的概率12{}P x X x <≤就是曲线()y f x =下的曲边梯形的面积。
{}{}()()1010101112P X P X f x dxe -<<=<≤==-⎰第③问()102102xx e x f x e x -⎧≤⎪⎪=⎨⎪>⎪⎩()00()110022111010222xx xxx x x x F x f x dxe dx x ex e dx e dxx e x -∞-∞---∞=⎧⎧≤≤⎪⎪⎪⎪==⎨⎨⎪⎪+>->⎪⎪⎩⎩⎰⎰⎰⎰1-11 某繁忙的汽车站,每天有大量的汽车进出。
设每辆汽车在一天内出事故的概率为0.0001,若每天有1000辆汽车进出汽车站,问汽车站出事故的次数不小于2的概率是多少?,(01)p q λ→∞→→∞→−−−−−−−−→−−−−−−−−→−−−−−−−−→n=1n ,p 0,np=n 成立,0不成立-分布二项分布泊松分布高斯分布汽车站出事故的次数不小于2的概率()()P(2)101k P k P k ≥=-=-= 答案0.1P(2)1 1.1k e -≥=-100.1n p ≥≤实际计算中,只需满足,二项分布就趋近于泊松分布()np!k e P X k k λλλ-===1-12 已知随机变量(,)X Y 的概率密度为(34)0,0(,)0x y XY kex y f x y -+⎧>>⎪=⎨⎪⎩,,其它求:①系数k ?②(,)X Y 的分布函数?③{01,02}P X X <≤<≤?第③问 方法一:联合分布函数(,)XY F x y 性质:若任意四个实数1212,,,a a b b ,满足1212,a a b b ≤≤,则121222111221{,}(,)(,)(,)(,)XY XY XY XY P a X a b Y b F a b F a b F a b F a b <≤<≤=+--{01,02}(1,2)(0,0)(1,0)(0,2)XY XY XY XY P X Y F F F F ⇒<≤<≤=+--方法二:利用(){(,)},XY DP x y D f u v dudv∈∈⎰⎰)(210{01,02},XY P X Y f x y dxdy <≤<≤=⎰⎰1-13 已知随机变量(,)X Y 的概率密度为101,(,)0x y xf x y ⎧<<<=⎨⎩,,其它 ①求条件概率密度(|)X f x y 和(|)Y f y x ?②判断X 和Y 是否独立?给出理由。
随机信号习题及答案

3.
⎧0 ⎪ 已知随机变量 X 的分布函数为: FX ( x) = ⎨kx 2 ⎪1 ⎩
x<0 0 ≤ x < 1 ,求:①系数 k;②X 落在区间 x >1
0 < x < +∞,0 < y < +∞ 其它
(0.3,0.7)内的概率;③随机变量 X 的概率密度函数。
4.
⎧e − ( x + y ) 设二维随机变量(X,Y)的概率密度为: f ( x, y ) = ⎨ ⎩0
求:①
分布函数 FXY ( x, y ) ;②(X,Y)落在如图所示的三角形区域内的概率。
y x+y=1
0
x
5. (续上题)求③边缘分布函数 FX ( x) 和 FY ( y ) ;④求边缘概率 f X ( x) 和 fY ( y ) 。 6. ( 续 上 题 ) ⑤ 求 条 件 分 布 函 数 FX ( x y ) 和 FY ( y x) ; ⑥ 求 条 件 概 率 密 度 f X ( x
103
9 若两个随机过程 X (t ) = A(t )cos t 和 Y (t ) = B(t )sin t 都是非平稳过程,其中 A(t ) 和 B (t ) 为相互独立,且 各自平稳的随机过程,它们的均值为 0 ,自相关函数 R A (τ ) = RB (τ ) = R (τ ) 。试证这两个过程之和
和 Y 的相关性及独立性。
11. 已知随机变量 X 的均值 m X = 3 ,方差 σ 2 X = 2 ,且另一随机变量 Y = −6 X + 22 。讨论 X 和 Y 的相关性和正交性。 12. 设随机变量 Y 和 X 之间为线性关系 Y = aX + b ,a、b 为常数,且 a ≠ 0 。已知随机变量 X 为正态分布,即:
随机信号分析(第3版)第五章习题及答案

5.1 求题图5.1中三个电路的传输函数(不考虑输出负载)。
RRC1C 2C 1C 2C 1R 2R题图5.1解根据电路分析、信号与系统的知识, 第一个图中系统的传输函数 1/1()1/1j C H j R j C j RCωωωω==++ 第二个图中系统地传输函数 ()21112211/1()/11/1/j C j RC H j R j C j R C C j C R j C ωωωωωωω+==++++ 第三个图中系统地传输函数()2222212111221212121122/1/()//1/1/R j C R j C R j R R C H j R j C R j C R R j R R C C R j C R j C ωωωωωωωωω++==++++++5.2若平稳随机信号)(t X 的自相关函数||2)(ττ-+=BeA R X ,其中,A 和B 都是正常数。
又若某系统冲击响应为()()wth t u t te -=。
当)(t X 输入时,求该系统输出的均值。
解: 因为[]()22X EX R A =∞=所以[]E X A A =±=±。
()()()()()20wt A E Y t E h X t d E X t h d A te dt wξξξξξ∞∞∞--∞-∞±⎡⎤=-==±=⎡⎤⎡⎤⎣⎦⎣⎦⎢⎥⎣⎦⎰⎰⎰ 5.35.4 若输入信号00()cos()X t X t ω=++Φ作用于正文图5.2所示RC 电路,其中0X 为[0,1]上均匀分布的随机变量,Φ为[0,2π]上均匀分布的随机变量,并且0X 与Φ彼此独立。
求输出信号Y(t)的功率谱与相关函数。
解:首先我们求系统的频率响应()H j ω。
根据电路分析、信号与系统的知识,/1/11()()()1/1t RCj C H j h t e u t R j C j RCRCωωωω-==↔=++ 然后,计算)(t X 的均值与自相关函数,[]()1/2X m E X t ==[]{}(){}{}0000(,)cos cos X R t t EXt X t τωωτ+=++Φ+++Φ=⎡⎤⎣⎦()01/31/2cos ωτ+可见)(t X 是广义平稳的。
(完整word版)随机信号分析习题.(DOC)

随机信号分析习题一1. 设函数⎩⎨⎧≤>-=-0 ,0 ,1)(x x e x F x ,试证明)(x F 是某个随机变量ξ的分布函数.并求下列概率:)1(<ξP ,)21(≤≤ξP 。
2. 设),(Y X 的联合密度函数为(), 0, 0(,)0 , otherx y XY e x y f x y -+⎧≥≥=⎨⎩, 求{}10,10<<<<Y X P 。
3. 设二维随机变量),(Y X 的联合密度函数为⎥⎦⎤⎢⎣⎡++-=)52(21exp 1),(22y xy x y x f XY π 求:(1)边沿密度)(x f X ,)(y f Y(2)条件概率密度|(|)Y X f y x ,|(|)X Y f x y4. 设离散型随机变量X 的可能取值为{}2,1,0,1-,取每个值的概率都为4/1,又设随机变量3()Y g X X X ==-。
(1)求Y 的可能取值 (2)确定Y 的分布. (3)求][Y E 。
5. 设两个离散随机变量X ,Y 的联合概率密度为:)()(31)1()3(31)1()2(31),(A y A x y x y x y x f XY --+--+--=δδδδδδ试求:(1)X 与Y 不相关时的所有A 值。
(2)X 与Y 统计独立时所有A 值。
6. 二维随机变量(X ,Y )满足:ϕϕsin cos ==Y Xϕ为在[0,2π]上均匀分布的随机变量,讨论X ,Y 的独立性与相关性。
7. 已知随机变量X 的概率密度为)(x f ,求2bX Y =的概率密度)(y f .8. 两个随机变量1X ,2X ,已知其联合概率密度为12(,)f x x ,求12X X +的概率密度?9. 设X 是零均值,单位方差的高斯随机变量,()y g x =如图,求()y g x =的概率密度()Y f y\10. 设随机变量W 和Z 是另两个随机变量X 和Y 的函数222W X Y Z X⎧=+⎨=⎩ 设X ,Y 是相互独立的高斯变量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四川大学电子信息学院
5.8 解:由题可知,要求系统输出过程的均 值:
5.2.1.2(1)系统输出的均值
设X(t)是有界的平稳过程,其均值为mX,则
E[Y
(t)]
E
h( )X
(t
)d
h( )E[X (t )]d
mX
h( )d
(5.2.3)
显然,mY
E[Y (t)] mX
h( )d 是与时间无关的常数。
首先计算系统输入过程均值
已知有关系式: RX ( ) a2 be
lim
RX
(
)
mX2
a2
mX
a
E[Y (t)] mX
式中H(ω)是系统的传输函数,其模(绝对值)的平 方∣H(ω)∣2称之为系统的功率传输函数。
5.11 解:先求出输入电压的自相关函数
RX ( ) E[ X (t) X (t )]
E[(X0 cos(2t ))( X0 cos(2 (t ) )]
1 3
h( )d
a e d 0
a
mY
(t)
5.11 要求的是输出的自相关函数
系统所示的传函为:
h(t) (t)
1
t
e RC , H ()
j RC
RC
1 j RC
为求得输出的自相关函数,分别从时域和频 域可得两种方法。
RY ( ) RX ( ) h( ) * h( ) GY ( ) H ( ) 2 GX ( )
1 2
cos
2
记忆cos0的傅里叶逆变换结果{
(-0
)+
(+0
)}
RX ( ) FT GX ( )
所以输入的功率谱密度:
GX
பைடு நூலகம்
()
2
3
()
2
[
(
2
)
(
2
)]
(t)
1
cos 0t
sin(t / 2)
GY ( )d
1
2
sin2 T
2 N0
2 d 2
NT 0
4
5.18 解:要求互功率谱密度
5.2.2.2. 系统输入与输出之间的互谱密度
GXY () GX ()H ()
GYX () GX ()H ()
若输入随机信号为白噪声过程,其Gx(ω)=N0/2,则有
2
)]
RY
(
)
F
[GY
( )]
2 2R2C2 1 4 2R2C2
cos
2
5.16 解:要求传输函数和输出Z(t)的均方 值,由系统图可知:
Z t [X (t) X (t T)]*U(t)
X (t)*[ (t) (t T )]*U (t)
X (t)*[U (t) U (t T )]
5.11 从频域角度
5.2.2.1.系统输出的功率谱密度
若输入随机过程X(t)为平稳过程,则输出的自相关 函数为:
RY ( ) RX ( )*h( )*h( )
利用傅立叶变换,可得输出的功率谱密度
GY () H ()H ()GX () H () 2 GX ()
5.26 解:要求系统稳定
5.1.3 系统的稳定性与物理可实现的问题
对于物理可实现系统,当t<0时,有h(t)=0,所以有:
5.11 从时域角度
5.2.1.2(2)系统输出的自相关函数
RY (t,t ) RX ( 1 2 )h(1 )h( 2 )d1d 2 RY ( )
RY ( ) RX ( ) h( ) h( )
若随机输入过程X(t)是宽平稳的,那么线性时不变 系统的输出过程Y(t)也是宽平稳的随机过程。实际上, 对于严平稳随机过程结论同样也成立。若输入是各态 经历过程,输出也将是各态经历过程。
2 t / 2
ea
ea cos 0
1 , 1
0, else
1
2 ( )
( 0 ) ( 0 ) rect( )
2a
a2 2
a
a
a2 ( 0 )2 a2 ( 0 )2
sin2 ( )
GXY ( )
N0 2
H ()
GYX
( )
N0 2
H ()
因此当系统性能未知时:若能设法得到互谱密度,就可 由式(5.2.42)确定线性系统的的传输函数。
已知微分器传递函数为
H() j
所以: GXY () GX ()H () jGX ()
GY () H () 2 GX () 2GX ()
()
5.26 解:由题可知,所求的系统为一白化滤 波器,有:
把已知的有色噪声通过某系统后变为白噪声,这 个系统称为白化滤波器。
GY () H () 2 GX () 1
H ( ) 2
2 2
8 3
( (
8 j)( 3 j)(
8 j) 3 j)
所以传函为:
h(t) U (t) U (t T )
H ( )
F[h(t )]
T
sin(T
/
2)
exp(
jT
)
T / 2
2
(2)解:
GY ( )
H ( ) 2 GX ( )
N0 2
T
2
sin2 (T / 2) (T / 2)2
E[Z 2(t)] 1
2
5.23 解:要求自相关函数和功率谱密度
由图可知: Z(t) X (t)Y (t)
RZ ( ) E[Z(t)Z(t )] E[X (t)Y(t)X (t )Y(t )] RX ( )RY ( )
由维纳辛钦定理可得:
GZ
( )
F[RZ
(
)]
1
2
GX
( ) * GY
2
(
)2
2
从计算复杂度考虑,我们从频域的角度来计 算输出的自相关函数
GY () H () 2 GX ()
1
2R2C2 2 R2C
2
[
2
3
(
)
2
(
2
)
2
(
2
)]
1 2
4 2R2C2 1 4 2R2C2
[
(
2
)
(