随机信号分析基础第三章习题

合集下载

随机信号分析(第3版)课后习题解答

随机信号分析(第3版)课后习题解答

随机信号分析(第3版)课后习题解答《随机信号分析》课程(32学时)—— 2007年教学内容建议1 概率论基础 1.12 随机信号2.1 两条样本函数为:0)(0=t X 、wt t X cos 21)(1=;1)0,(=x f X 、2)4,(=w x f X π;)(0-)2,(x wx f X δπ= 2.2 3103532)2,(=++=X E 、)()()(5-313-312-31)2,(x x x x F X εεε++= 2.3 )()(1-2121)21,(x x x F X εε+=、)()(2-21121)1,(x x x F X εε++=;)()()()(2-,1411,1412-,411,41)1,21,,(21x x x x x x x x x x F X -++-+++=εεεε2.4 略2.5 )()(1-1.09.0)5,(x x x F X εε+=;)()(y x y x y x F ,11.0,9.0)0025.0,0,,(-+=εε;0因为其概率为0.9;1的概率为1(样本函数),它是可预测的,就是样本函数。

2.6 略 2.7 略 2.8 )()(121121),(-++=x x n x f X δδ、0121)1(21)(=?+-?=n X E 、{})()]()([)]()()][()([),(2121221121n n n X n X E n m n X n m n X En n Cov X X -==--=δ;不可预测2.9 (2.19)10103523)()(),(2111=?==t t t t Cov σσρ、所以(X,Y )满足10103;5,2;2,2的高斯分布。

其概率密度函数为:-+--?--?-=-+--?----=5)2(5)2)(2(32)2(5exp215)2(10)2)(2(1010322)2()10/91(21exp 21),(2222y y x x y y x x y x f XY ππ;特征函数为:++-+=)6)(5)(2(21)22(exp ),(21222121v v v v v v j y x XY φ3 平稳性与功率谱密度3.1 kk k u t t u u f-=)4exp(2*21),,;,,(211π ;因为k 阶概率密度函数与绝对时间无关,所以为严格平稳过程。

随机信号习题及答案

随机信号习题及答案
Y = 3 X + 1 的分布函数。
3.
⎧0 ⎪ 已知随机变量 X 的分布函数为: FX ( x) = ⎨kx 2 ⎪1 ⎩
x<0 0 ≤ x < 1 ,求:①系数 k;②X 落在区间 x >1
0 < x < +∞,0 < y < +∞ 其它
(0.3,0.7)内的概率;③随机变量 X 的概率密度函数。
4.
⎧e − ( x + y ) 设二维随机变量(X,Y)的概率密度为: f ( x, y ) = ⎨ ⎩0
求:①
分布函数 FXY ( x, y ) ;②(X,Y)落在如图所示的三角形区域内的概率。
y x+y=1
0
x
5. (续上题)求③边缘分布函数 FX ( x) 和 FY ( y ) ;④求边缘概率 f X ( x) 和 fY ( y ) 。 6. ( 续 上 题 ) ⑤ 求 条 件 分 布 函 数 FX ( x y ) 和 FY ( y x) ; ⑥ 求 条 件 概 率 密 度 f X ( x
103
9 若两个随机过程 X (t ) = A(t )cos t 和 Y (t ) = B(t )sin t 都是非平稳过程,其中 A(t ) 和 B (t ) 为相互独立,且 各自平稳的随机过程,它们的均值为 0 ,自相关函数 R A (τ ) = RB (τ ) = R (τ ) 。试证这两个过程之和
和 Y 的相关性及独立性。
11. 已知随机变量 X 的均值 m X = 3 ,方差 σ 2 X = 2 ,且另一随机变量 Y = −6 X + 22 。讨论 X 和 Y 的相关性和正交性。 12. 设随机变量 Y 和 X 之间为线性关系 Y = aX + b ,a、b 为常数,且 a ≠ 0 。已知随机变量 X 为正态分布,即:

随机信号分析(常建平,李林海)课后习题答案第三章 习题讲解

随机信号分析(常建平,李林海)课后习题答案第三章 习题讲解

、随机过程 X(t)=A+cos(t+B),其中A 是均值为2,方差为1的高斯变量,B 是(0,2π)上均匀分布的随机变量,且A 和B 独立。

求(1)证明X(t)是平稳过程。

(2)X(t)是各态历经过程吗?给出理由。

(3)画出该随机过程的一个样本函数。

(1)(2)3-1 已知平稳过程()X t 的功率谱密度为232()(16)X G ωω=+,求:①该过程的平均功率? ②ω取值在(4,4)-范围内的平均功率?解[][]()[]2()cos 211,cos 5cos 22X E X t E A E t B A B R t t EA τττ=++=⎡⎤⎣⎦+=+=+与相互独立()()()21521()lim2TT T E X t X t X t X t dt AT-→∞⎡⎤=<∞⇒⎣⎦==⎰是平稳过程()()[]()()4112211222222242'4(1)24()()444(0)41132(1)224414414(2)121tan 13224X X XE X t G d RFG F e R G d d d arc x x ττωωωωωππωωπωωπωπωω∞----∞∞-∞-∞∞--∞∞⎡⎤⨯⎡⎤==⋅=⋅⎢⎥+⎣⎦====+==⎛⎫+ ⎪==⎣⎦=++⎝⎭=⎰⎰⎰⎰⎰P P P P 方法一()方:时域法取值范围为法二-4,4内(频域的平均率法功)2d ω=3-7如图3.10所示,系统的输入()X t 为平稳过程,系统的输出为()()()Y t X t X t T =--。

证明:输出()Y t 的功率谱密度为()2()(1cos )Y X G G T ωωω=-[][]:()[()()]{()()}{()(}2()()()()()()()()2(()[)()(()()]()())Y X X X Y X X Y Y Y X X X Y Y j T j T R E Y t Y t E X t X t T X t X t T R R R R E Y t Y t G F R T T e e G R G R G G G G ωωτττττωτωττωττττωωωω-⇒⇒=+=--+-+-=--=+=-⇔⇔∴=-+-=已知平稳过程的表达式利用定义求利用傅解系统输入输出立叶平变稳换的延时特性2()2()22()(1cos )j T j T X X X e e G G G T ωωωωωω-⎡⎤+-⎢⎥⎣⎦=-3-9 已知平稳过程()X t 和()Y t 相互独立,它们的均值至少有一个为零,功率谱密度分别为216()16X G ωω=+22()16Y G ωωω=+令新的随机过程()()()()()()Z t X t Y t V t X t Y t =+⎧⎨=-⎩ ①证明()X t 和()Y t 联合平稳; ②求()Z t 的功率谱密度()Z G ω? ③求()X t 和()Y t 的互谱密度()XY G ω? ④求()X t 和()Z t 的互相关函数()XZ R τ? ⑤求()V t 和()Z t 的互相关函数()VZ R τ 解:()()4124(1)()()()2[()]()0[()]0()2[()]0()()(,)[()][()]0()()(2)()()()()[()()][()()][()X X X Y XY Z X t Y t R F G e E X t R E X t R eE Y t X t Y t R t t E X t E Y t X t Y t Z t X t Y t R E Z t Z t E X t Y t X t τττωτδττττττ---==∞=⇒=⎡⎤⎣⎦=-⇒=∴+=⋅+=⇒=+=+=++、都平稳=与与联合独平立稳[][]{}2214||()]()()()()()0()()()16()()()116(3)()0()0(4)()[()()]()()()()()()[()]2(5)(X YX XY Y XY Z X Y Z X Y XY XY XZ X XY X X VZ Y t R R R R R R R R G G G R G R E X t Z t E X t X t Y t R R R F G e R ττττττττττωωωωωτωτττττττωτ--++=+++=∴=++∴=+==+=→==+=+++=+==={}4||)[()()][()()][()()]()()()4X Y E V t Z t E X t Y t X t Y t R R e ττττττδτ-=+=-+++=-=+-3-11 已知可微平稳过程()X t 的自相关函数为2()2exp[]X R ττ=-,其导数为()()Y t X t '=。

随机信号分析(第3版)第三章 习题答案

随机信号分析(第3版)第三章 习题答案

Z (t )的均值: E[ Z (t )] = E[ A ⋅ X (t ) ⋅ Y (t )] = E[ A] ⋅ E[ X (t )] ⋅ E[Y (t )] = 2 E[ X (t )] ⋅ E[Y (t )]
2 mX = RX (∞) = lim
2 cos ω0τ = 0 → mX = 0 τ →∞ eτ
⎡ 2 1.3 0.4 __ ⎤ ⎢ __ 2 1.2 0.8⎥ ⎢ ⎥ ⎢ 0.4 1.2 __ 1.1 ⎥ ⎢ ⎥ ⎣ 0.9 __ __ 2 ⎦ 3.12 解:根据广义平稳随机信号过程的自相关函数矩阵的对称性,得到: ⎛ 2 1.3 0.4 0.9 ⎞ ⎜ 1.3 2 1.2 0.8 ⎟ ⎟ C= ⎜ ⎜ 0.4 1.2 2 1.1 ⎟ ⎜ ⎟ ⎝ 0.9 0.8 1.1 2 ⎠ 3.13
= E[100 sin 2 (ω 0 t + θ ) ×100 sin 2 (ω 0 t + ω 0τ + θ ) ] = 2500 E[1 − cos(2ω 0τ ) − cos(4ω 0 t + 2ω 0τ + 4θ )] = 2500 E[1 − cos(2ω 0τ ) ] ∴ R Z (τ ) 仅与 τ 有关,且均值为常数,故 Y(t ) 是平稳过程。
3.6 给定随机过程 X ( t ) = A cos (ω 0t ) + B sin (ω 0t ) ,其中 ω 0 是常数, A 和 B 是 两个任意的不相关随机变量,它们均值为零,方差同为 σ 2 。证明 X ( t ) 是广义平 稳而不是严格平稳的。 3.6 证明:Q m X (t ) = E[X(t )] = E[ A cos(ω 0 t ) + B sin(ω 0 t) ] = 0

随机信号分析基础第三章课后答案

随机信号分析基础第三章课后答案

第三章,平稳随机过程的n 维概率密度不随时间平移而变化的特性,反映在统计特征上就是其均值不随时间的变化而变化,mx 不是t 的函数。

同样均方值也应是常数。

(2)二维概率密度只与t1,t2的时间间隔有关,而与时间起点t1无关。

因此平稳过程的自相关函数仅是单变量tao 的函数。

则称他们是联合宽平稳的。

第三章Chapter 3 ==========================================3.2 随机过程()t X 为()()ΦωX +=t cos A t 0式中,A 具有瑞利分布,其概率密度为()02222>=-a eaa P a A ,σσ,()πΦ20,在上均匀分布,A Φ与是两个相互独立的随机变量,0ω为常数,试问X(t)是否为平稳过程。

解:由题意可得:()[]()()002121020222220002222=⇒+=*+=⎰⎰⎰⎰∞--∞φφωπσφπσφωX E πσσπd t cos da e a a dad eat cos a t a a ()()()[]()()()()()()[]()()()()()120212021202021202022212020220210120220222020100222222002010212121221122102122121212212122222222222222t t cos t t cos t t cos det t cos da e e a t t cos dea d t t cos t t cos a d ea d t cos t cos da eaadad e at cos a t cos a t t t t R a a a a a a a -=-⨯=-⨯-=-⨯⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫-∞+-=-⨯-=⎩⎨⎧⎭⎬⎫+++---=++=++==-∞∞---∞∞-∞--∞⎰⎰⎰⎰⎰⎰⎰⎰⎰ωσωσωσωωφφωωπσφπφωφωσφσπφωφωX X E σσσσπσπσσπXX )(,可见()[]t X E 与t 无关,()21t t R ,XX 与t 无关,只与()12t t -有关。

随机信号分析基础作业题

随机信号分析基础作业题

随机信号分析基础作业题第⼀章1、有朋⾃远⽅来,她乘⽕车、轮船、汽车或飞机的概率分别是0.3,0.2,0.1和0.4。

如果她乘⽕车、轮船或者汽车来,迟到的概率分别是0.25,0.4和0.1,但她乘飞机来则不会迟到。

如果她迟到了,问她最可能搭乘的是哪种交通⼯具?解:()0.3P A =()0.2P B =()0.1P C =()0.4P D =E -迟到,由已知可得(|)0.25(|)0.4(|)0.1(|)0P E A P E B P E C P E D ====全概率公式: ()()()()(P E P E AP E B P E C P E D=+++ 贝叶斯公式:()(|)()0.075(|)0.455()()0.165(|)()0.08(|)0.485()0.165(|)()0.01(|)0.06()0.165(|)()(|)0()P EA P E A P A P A E P E P E P E B P B P B E P E P E C P C P C E P E P E D P D P D E P E ?====?===?===?==综上:坐轮船3、设随机变量X 服从瑞利分布,其概率密度函数为2222,0()0,0X x x X x e x f x x σσ-??>=??式中,常数0X σ>,求期望()E X 和⽅差()D X 。

考察:已知()x f x ,如何求()E X 和()D X ?222222()()()[()]()()()()()()()x x E X x f x dxD XE X m X m f x dxD XE X E X E X x f x dx∞-∞∞-∞∞-∞=?=-=-=-?=6、已知随机变量X 与Y ,有1,3,()4,()16,0XYEX EY D X D Y ρ=====,令3,2,U X Y V X Y =+=-试求EU 、EV 、()D U 、()D V 和(,)Cov U V 。

信号分析第三章答案

信号分析第三章答案

第三章习题参考解答3.1 求下列信号展开成傅里叶级数,并画出响应相应的幅频特性曲线。

解 (a) ⎰-=Ttjk dt et x Tk X 011)(1)(ωω⎰-=τω011dt AeTtjk 2121τωτωτk Sae T A k j -= )2(1Tπω=t jk k j k e e k Sa TA t x 11212)(ωωττωτ⋅=∴-∞-∞=∑3.1解 (b) ⎰-=Tt jk dt e t x Tk X 011)(1)(ωω⎰-=Tt jk dt te T A T011ω⎰--⋅=T t jk e td jk T A 012][11ωω ⎰-+-=T t jk dt e T jk Ak j A 02112ωωπkjA π2= )2(1T πω= ⎰=Tdt t x TX 0)(1)0(2A =∑∞≠-∞=+=∴)0(122)(k k t jk e kjA At x ωπ解 (c) ⎰-=Ttjk dt et x Tk X 011)(1)(ωωdt e TTtjk T T ωπ--⋅=⎰442cos1dt e e Tt k j t k j T T ][21111)1()1(44ωω+---+=⎰][)1(121][)1(1214)1(4)1(14)1(4)1(11111Tk j Tk j Tk j Tk j e ek j T e e k j T ωωωωωω++-----⋅+-⋅+--⋅=2)1sin()1(212)1sin()1(21ππππ--+++=k k k k π2)1(412)1(41-++=k Sa k Sa t jk k e k Sa k Sat x 1)2)1(2)1((41)(ωππ-++=∴∑∞-∞= )2(1T πω=解 (d) ⎰--=221)(1TT t jk n dt e t TF ωδT1=∑∞-∞==∴k tjk eTt x 11)(4ω3.2 求题图3.2所示信号的傅里叶变换。

随机信号分析习题.doc

随机信号分析习题.doc

随机信号分析习题一,试证明F(x)是某个随机变的分布函数。

并求卜列概率:< 1), P(1 < ^ < 2) o2. 设的联合密度w 数为求 p{o<x<i ,o<y<i}、3. 设二维随机变g(x ,y)的联合密度函数为fxY^ y) = —exp --(A :2+2xy + 5y 2) 71 2求:(l)边沿密度八0), f Y (y)(2)条件概率密度人|x (y|x),A,r (x|y)4. 设离散型随机变的可能取值为1,0,1,,取每个值的概率都为1/4,又设随机变(1) 求r 的可能取值 (2) 确定Y 的分布。

(3)E[Y] o5. 设两个离散随机变量y 的联合概率密度为:fxY J )=2)^(y-l)+|^(x-3)5()’-l) + |<y (x-A)6(y-A)试求:(1) X 与y 不相关吋的所有A 值。

(2)x 与y 统计独立时所有A 值。

6. 二维随机变量(x, y)满足:X =cos (p Y = sin (p识为在[(),上均匀分布的随机变量,讨论X, r 的独立性与相关性。

7. 已知随机变fix 的概率密度为/(X),求y=/?X 2的概率密度/(y)。

fxY (^y) =,x>0, y>0 ,other8.两个随机变量12,己知其联合概率密度为/(久七),求1 + 的概率密度?9.设X足零均值,单位方差的高斯随机变量,:v = 如图,求y二以X)的概率密度人(夕)10.设随机变sw和z是w两个随机变s x和r的函数fw = x2 +r2 [z = x2设x,y是相互独立的高斯变景。

求随机变景w和z的联合概率密度函数。

11.设随# L变量w和z是另两个随# L变量x和r的函数J W = X + Y^z = 2(x+ r)己知,求联合概率密度函数人“耿幻。

12.设随机变量X为均匀分布,其概率密度厶=0, 其它(1)求X的特征函数,外(幼。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档