2017-2018年新疆初三上学期期末数学试卷含答案解析
2018-2019学年新疆九年级上学期期末数学试卷与答案

2018-2019学年新疆九年级上学期期末数学试卷一、正确选择(每题所给的四个选项中只有一个是正确的.本题有8小题,每题2分,共16分)1.(2分)一元二次方程x2﹣4x+5=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根2.(2分)抛物线y=(x﹣1)2+2的顶点坐标是()A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)3.(2分)下列图形:任取一个是中心对称图形的概率是()A.B.C.D.14.(2分)若正六边形的半径长为4,则它的边长等于()A.4B.2C.2D.45.(2分)如图,A,B,C三点在⊙O上,且∠BOC=100°,则∠A的度数为()A.40°B.50°C.80°D.100°6.(2分)如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在B′位置,A点落在A′位置,若AC⊥A′B′,则∠BAC的度数是()A.50°B.60°C.70°D.80°7.(2分)如图,平面直角坐标系中,⊙P与x轴分别交于A、B两点,点P的坐标为(3,﹣1),AB=.将⊙P沿着与y轴平行的方向平移多少距离时⊙P与x轴相切()A.1B.2C.3D.1或38.(2分)在同一坐标系中,一次函数y=﹣mx+n2与二次函数y=x2+m的图象可能是()A.B.C.D.二、合理填空(本大题有8小题,每题2分,共16分.9.(2分)已知点P(a+1,1)关于原点的对称点在第四象限,则a的取值范围是.10.(2分)已知圆锥的底面圆半径是1,母线是3,则圆锥的侧面积是.11.(2分)某文具店七月份销售铅笔200支,八,九两个月销售量连续增长,若月平均增长率为x,则该文具店九月份销售铅笔的支数是(用含有x的代数式表达).12.(2分)一个不透明的袋中装有除颜色外均相同的9个红球,3个白球,若干个绿球,每次摇匀后随机摸出一个球,记下颜色后再放回袋中,经过大量重复实验后,发现摸到绿球的频率稳定在0.2,则袋中约有绿球个.13.(2分)如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=1,则弦AB的长是.14.(2分)如图,从一块直径为24cm的圆形纸片上剪出一个圆心角为90°的扇形ABC,使点A、B、C在圆周上,则剪下的扇形的弧长是(结果保留x).15.(2分)已知二次函数y=3(x﹣1)2+k的图象上三点A(2,y1),B(3,y2),C(﹣4,y3),则y1、y2、y3的大小关系是.16.(2分)如图,在平面直角坐标系中,将△ABO绕点A顺指针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去……,若点A(,0),B(0,4),则点B2019的横坐标为.三、认真解答(本大题有8小题,共68分)17.(4分)一个圆形零件的部分碎片如图所示,请你利用尺规作图找到圆心O.(要求:不写作法,保留作图痕迹)18.(10分)解下列方程(1)3x2+2x﹣5=0;(2)(1﹣2x)2=x2﹣6x+9.19.(6分)已知关于x的一元二次方程x2+(2k+1)x+k2=0有两个不相等的实数根.(1)求k的取值范围;(2)设方程的两个实数根分别为x1,x2,当k=2时,求x12+x22的值.20.(8分)一幅长20cm、宽12cm的图案,如图,其中有一横两竖的彩条,横、竖彩条的宽度比为3:2.设竖彩条的宽度为xcm,图案中三条彩条所占面积为ycm2.(1)求y与x之间的函数关系式;(2)若图案中三条彩条所占面积是图案面积的,求横、竖彩条的宽度.21.(8分)在校园文化艺术节中,九年级一班有1名男生和2名女生获得美术奖,另有2名男生和2名女生获得音乐奖.(1)从获得美术奖和音乐奖的7名学生中选取1名参加颁奖大会,求刚好是男生的概率;(2)分别从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会,用列表或树状图求刚好是一男生一女生的概率.22.(10分)某商场购进一批单价为4元的日用品,若按每件5元的价格销售,每天能卖出300件,若按每件6元的价格销售,每天能卖出200件,假定每天销售件数y(件)与价格x(元/件)之间满足一次函数关系.(1)试求y与x之间的函数关系式;(2)令每天的利润为W,求出W与x之间的函数关系式;当销售价格定为多少时,才能使每天的利润最大?每天最大利润是多少?23.(10分)如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:P A是⊙O的切线;(2)若AB=4+,BC=2,求⊙O的半径.24.(12分)如图,抛物线y=x2+bx+c与x轴交于点A和B(3,0),与y轴交于点C(0,3).(1)求抛物线的解析式;(2)若点M是抛物线上在x轴下方的动点,过M作MN∥y轴交直线BC于点N,求线段MN的最大值;(3)E是抛物线对称轴上一点,F是抛物线上一点,是否存在以A,B,E,F为顶点的四边形是平行四边形?若存在,请直接写出点F的坐标;若不存在,请说明理由.2018-2019学年新疆九年级上学期期末数学试卷参考答案与试题解析一、正确选择(每题所给的四个选项中只有一个是正确的.本题有8小题,每题2分,共16分)1.【解答】解:∵a=1,b=﹣4,c=5,∴△=b2﹣4ac=(﹣4)2﹣4×1×5=﹣4<0,所以原方程没有实数根.故选:D.2.【解答】解:y=(x﹣1)2+2的顶点坐标为(1,2).故选:A.3.【解答】解:∵共有4种等可能的结果,任取一个是中心对称图形的有3种情况,∴任取一个是中心对称图形的概率是:.故选:C.4.【解答】解:正六边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形,故正六边形的外接圆半径等于4,则正六边形的边长是4.故选:A.5.【解答】解:由题意得∠A=∠BOC=×100°=50°.故选:B.6.【解答】解:∵△ABC绕着点C按顺时针方向旋转20°,B点落在B′位置,A点落在A′位置∴∠BCB′=∠ACA′=20°∵AC⊥A′B′,∴∠BAC=∠A′=90°﹣20°=70°.故选:C.7.【解答】解:连接P A,作PC⊥AB于点C,由垂径定理得:AC=AB=×2=,在直角△P AC中,由勾股定理得:P A2=PC2+AC2,即P A2=12+()2=4,∴P A=2,∴○P的半径是2.将○P向上平移,当○P与x轴相切时,平移的距离=1+2=3;将○P向下平移,当○P与x轴相切时,平移的距离=2﹣1=1.故选:D.8.【解答】解:A、由直线与y轴的交点在y轴的负半轴上可知,n2<0,错误;B、由抛物线与y轴的交点在y轴的正半轴上可知,m>0,由直线可知,﹣m>0,错误;C、由抛物线y轴的交点在y轴的负半轴上可知,m<0,由直线可知,﹣m<0,错误;D、由抛物线y轴的交点在y轴的负半轴上可知,m<0,由直线可知,﹣m>0,正确,故选:D.二、合理填空(本大题有8小题,每题2分,共16分.9.【解答】解:∵P(a+1,1)关于原点对称的点在第四象限,∴P点在第二象限,∴a+1<0,解得:a<﹣1,故答案为:a<﹣1.10.【解答】解:∵圆锥的底面圆半径是1,∴圆锥的底面圆的周长=2π,则圆锥的侧面积=×2π×3=3π,故答案为:3π.11.【解答】解:若月平均增长率为x,则该文具店九月份销售铅笔的支数是:200(1+x)2,故答案为:200(1+x)2.12.【解答】解:设绿球的个数为x,根据题意,得:=0.2,解得:x=3,经检验x=3是原分式方程的解,即袋中有绿球3个,故答案为:313.【解答】解:连接AO,∵半径是5,CD=1,∴OD=5﹣1=4,根据勾股定理,AD===3,∴AB=3×2=6,因此弦AB的长是6.14.【解答】解:如图,连接BC.∵∠BAC=90°,∴BC是直径,∵AB=AC,BC=24,∴AB=AC=12,∴的长==6π.故答案为6π15.【解答】解:∵y=3(x﹣1)2+k,∴图象的开口向上,对称轴是直线x=1,A(﹣4,y3)关于直线x=﹣2的对称点是(6,y3),∵2<3<6,∴y1<y2<y3,故答案为y1<y2<y3.16.【解答】解:由图象可知点B2019在x轴上,∵OA=,OB=4,∠AOB=90°,∴AB=,∴B2(10,4),B4(20,4),B6(30,4),…∴B2018(10090,4).∴点B2019横坐标为10090++=10096.故答案为:10096.三、认真解答(本大题有8小题,共68分)17.【解答】解:如图,点O即为所求.18.【解答】解:(1)(3x+5)(x﹣1)=0,3x+5=0或x﹣1=0,所以x1=﹣,x2=1;(2)(2x﹣1)2﹣(x﹣3)2=0,(2x﹣1+x﹣3)(2x﹣1﹣x+3)=0,2x﹣1+x﹣3=0或2x﹣1﹣x+3=0,所以x1=,x2=2.19.【解答】解:(1)∵方程有两个不相等的实数根,∴△>0,即(2k+1)2﹣4k2=4k+1>0,解得k>﹣;(2)当k=2时,方程为x2+5x+4=0,∵x1+x2=﹣3,x1x2=1,∴x12+x22=(x1+x2)2﹣2x1x2=25﹣8=17.20.【解答】解:(1)根据题意可知,横彩条的宽度为xcm,∴,解得:0<x<8,y=20×x+2×12•x﹣2×x•x=﹣3x2+54x,即y与x之间的函数关系式为y=﹣3x2+54x(0<x<8);(2)根据题意,得:﹣3x2+54x=×20×12,整理,得:x2﹣18x+32=0,解得:x1=2,x2=16(舍),∴x=3,答:横彩条的宽度为3cm,竖彩条的宽度为2cm.21.【解答】解:(1)从获得美术奖和音乐奖的7名学生中选取1名参加颁奖大会,刚好是男生的概率==;(2)画树状图为:共有12种等可能的结果数,其中刚好是一男生一女生的结果数为6,所以刚好是一男生一女生的概率==.22.【解答】解:(1)由题意可设y=kx+b,依题意得:,解得:,∴y与x之间的关系式为:y=﹣100x+800;(2)设利润为W元,则W=(x﹣4)(﹣100x+800)=﹣100x2+1200x﹣3200=﹣100(x﹣6)2+400,∴当x=6时,W取得最大值,最大值为400元.答:当销售价格定为6元时,每天的利润最大,最大利润为400元.23.【解答】(1)证明:连接OA,∵∠B=60°,∴∠AOC=2∠B=120°,又∵OA=OC,∴∠OAC=∠OCA=30°,又∵AP=AC,∴∠P=∠ACP=30°,∴∠OAP=∠AOC﹣∠P=90°,∴OA⊥P A,∴P A是⊙O的切线;(2)解:过点C作CE⊥AB于点E.在Rt△BCE中,∠B=60°,BC=2,∴BE=BC=,CE=3,∵AB=4+,∴AE=AB﹣BE=4,∴在Rt△ACE中,AC==5,∴AP=AC=5.∴在Rt△P AO中,OA=,∴⊙O的半径为.24.【解答】解:(1)将点B(3,0)、C(0,3)代入抛物线y=x2+bx+c中,得:,解得:.故抛物线的解析式为y=x2﹣4x+3.(2)设点M的坐标为(m,m2﹣4m+3),设直线BC的解析式为y=kx+3,把点B(3,0)代入y=kx+3中,得:0=3k+3,解得:k=﹣1,∴直线BC的解析式为y=﹣x+3.∵MN∥y轴,∴点N的坐标为(m,﹣m+3).∵抛物线的解析式为y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的对称轴为x=2,∴点(1,0)在抛物线的图象上,∴1<m<3.∵线段MN=﹣m+3﹣(m2﹣4m+3)=﹣m2+3m=﹣(m﹣)2+,∴当m=时,线段MN取最大值,最大值为.(3)存在.点F的坐标为(2,﹣1)或(0,3)或(4,3).当以AB为对角线,如图1,∵四边形AFBE为平行四边形,EA=EB,∴四边形AFBE为菱形,∴点F也在对称轴上,即F点为抛物线的顶点,∴F点坐标为(2,﹣1);当以AB为边时,如图2,∵四边形AFBE为平行四边形,∴EF=AB=2,即F2E=2,F1E=2,∴F1的横坐标为0,F2的横坐标为4,对于y=x2﹣4x+3,当x=0时,y=3;当x=4时,y=16﹣16+3=3,∴F点坐标为(0,3)或(4,3).综上所述,F点坐标为(2,﹣1)或(0,3)或(4,3).单词的词性变化动词变为名词cleaner seller player surfer。
[试卷合集3套]新疆名校2018年九年级上学期数学期末监测试题
![[试卷合集3套]新疆名校2018年九年级上学期数学期末监测试题](https://img.taocdn.com/s3/m/59b9ecd3b52acfc788ebc957.png)
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.一组数据3,1,4,2,-1,则这组数据的极差是()A.5 B.4 C.3 D.2【答案】A【分析】根据极差的定义进行计算即可.【详解】这组数据的极差为:4-(-1)=5.故选A.【点睛】本题考查极差,掌握极差的定义:一组数据中最大数据与最小数据的差,是解题的关键.2.商场举行摸奖促销活动,对于“抽到一等奖的概率为0.01”.下列说法正确的是()A.抽101次也可能没有抽到一等奖B.抽100次奖必有一次抽到一等奖C.抽一次不可能抽到一等奖D.抽了99次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖【答案】A【分析】根据概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现进行解答即可.【详解】解:根据概率的意义可得“抽到一等奖的概率为为0.01”就是说抽100次可能抽到一等奖,也可能没有抽到一等奖,抽一次也可能抽到一等奖,抽101次也可能没有抽到一等奖.故选:A.【点睛】本题考查概率的意义,概率是对事件发生可能性大小的量的表现.3.已知关于x的方程x2﹣3x+2k=0有两个不相等的实数根,则k的取值范围是()A.k>98B.k<98C.k<﹣98D.k<89【答案】B【分析】利用判别式的意义得到△=(﹣3)2﹣4•2k>0,然后解不等式即可.【详解】解:根据题意得△=(﹣3)2﹣4•2k>0,解得k<98.故选:B.【点睛】此题主要考查一元二次方程的根的情况,解题的关键是熟知根的判别式.4.下列抛物线中,与抛物线y=-3x2+1的形状、开口方向完全相同,且顶点坐标为(-1,2)的是()A.y=-3(x+1)2+2 B.y=-3(x-2)2+2 C.y=-(3x+1)2+2 D.y=-(3x-1)2+2【解析】由条件可设出抛物线的顶点式,再由已知可确定出其二次项系数,则可求得抛物线解析式.【详解】∵抛物线顶点坐标为(﹣1,1),∴可设抛物线解析式为y =a (x+1)1+1.∵与抛物线y =﹣3x 1+1的形状、开口方向完全相同,∴a =﹣3,∴所求抛物线解析式为y =﹣3(x+1)1+1.故选A .【点睛】本题考查了二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y =a (x -h )1+k 中,顶点坐标为(h ,k ),对称轴为x =h .5.从1、2、3、4四个数中随机选取两个不同的数,分别记为a ,c ,则满足4ac ≤的概率为() A .14 B .13 C .12 D .23【答案】C【分析】根据题意列出树状图,得到所有a 、c 的组合再找到满足4ac ≤的数对即可.【详解】如图:符合4ac ≤的共有6种情况,而a 、c 的组合共有12种,故这两人有“心灵感应”的概率为61122=.故选:C .【点睛】此题考查了利用树状图法求概率,要做到勿漏、勿多,同时要适时利用概率公式解答.6.在下面的计算程序中,若输入x 的值为1,则输出结果为( ).A .2B .6C .42D .12【答案】C【分析】根据程序框图,计算(1)x x +,直至计算结果大于等于10即可.【详解】当1x =时,(1)122x x +=⨯=,继续运行程序,当2x =时,(1)236x x +=⨯=,继续运行程序,当6x =时,(1)6742x x +=⨯=,输出结果为42,【点睛】本题考查利用程序框图计算代数式的值,按照程序运算的规则进行计算是解题的关键.7.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】D【分析】根据轴对称图形、中心对称图形的定义即可判断.【详解】A、是轴对称图形,不符合题意;B、是中心对称图形,不符合题意;C、是轴对称图形,不符合题意;D、是轴对称图形,也是中心对称图形,故符合题意.故选:D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.8.已知⊙O的半径为5cm,点P在⊙O上,则OP的长为()A.4cm B.5cm C.8cm D.10cm【答案】B【分析】根据点与圆的位置关系解决问题即可.【详解】解:∵点P在⊙O上,∴OP=r=5cm,故选:B.【点睛】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.9.如图,某幢建筑物从2.25米高的窗口A用水管向外喷水,喷的水流呈抛物线型(抛物线所在平面与墙面垂直),如果抛物线的最高点M离墙1米,离地面3米,则水流下落点B离墙的距离OB是( )A.2.5米B.3米C.3.5米D.4米【答案】B【分析】由题意可以知道M(1,2),A(0,2.25),用待定系数法就可以求出抛物线的解析式,当y=0时就可以求出x的值,这样就可以求出OB的值.【详解】解:设抛物线的解析式为y=a(x-1)2+2,把A(0,2.25)代入,得2.25=a+2,a=-0.1.∴抛物线的解析式为:y=-0.1(x-1)2+2.当y=0时,0=-0.1(x-1)2+2,解得:x1=-1(舍去),x2=2.OB=2米.故选:B.【点睛】本题是一道二次函数的综合试题,考查了利用待定系数法求函数的解析式的运用,运用抛物线的解析式解决实际问题,解答本题是求出抛物线的解析式.10.若关于x的一元二次方程kx2+2x–1=0有实数根,则实数k的取值范围是A.k≥–1 B.k>–1C.k≥–1且k≠0D.k>–1且k≠0【答案】C【解析】解:∵一元二次方程kx2﹣2x﹣1=1有两个实数根,∴△=b2﹣4ac=4+4k≥1,且k≠1,解得:k≥﹣1且k≠1.故选C.点睛:此题考查了一元二次方程根的判别式,根的判别式的值大于1,方程有两个不相等的实数根;根的判别式的值等于1,方程有两个相等的实数根;根的判别式的值小于1,方程没有实数根.11.如图,等边ABC的边长为8,AD是BC边上的中线,点E是AC边上的中点. 如果点P是AD 的最小值为()上的动点,那么EP CPA.4B.23C.33D.43【答案】D【分析】要求EP+CP的最小值,需考虑通过作辅助线转化EP,CP的值,从而找出其最小值求解【详解】连接BE,与AD交于点G.∵△ABC是等边三角形,AD是BC边上的中线,∴AD⊥BC,∴AD是BC的垂直平分线,∴点C关于AD的对称点为点B,∴BE就是EP+CP的最小值.∴G点就是所求点,即点G与点P重合,∵等边△ABC的边长为8,E为AC的中点,∴CE=4,BE⊥AC,在直角△BEC中,2222-=-=,8443BC CE∴EP+CP的最小值为43故选D.【点睛】此题考查轴对称-最短路线问题,等边三角形的对称性、三线合一的性质以及勾股定理的运用,熟练掌握,即可解题.123x2﹣3x+c=0的一个根,则c的值是()A.﹣6 B.6 C3D.3【答案】B【解析】把x=3代入方程x 2-33x+c=0,求出所得方程的解即可.【详解】把x=3代入方程x 2-33x+c=0得:3-9+c=0,解得:c=6,故选B .【点睛】本题考查了一元二次方程的解的应用,解此题的关键是得出关于c 的方程.二、填空题(本题包括8个小题)13.抛物线y=x 2+2x+3的顶点坐标是_____________.【答案】(﹣1,2)【详解】解:将二次函数转化成顶点式可得:y=2(1)2x ++,则函数的顶点坐标为(-1,2)故答案为:(-1,2)【点睛】本题考查二次函数的顶点坐标.14.如图,在平面直角坐标系中,菱形OABC 的边OA 在x 轴上,AC 与OB 交于点D (4,2),反比例函数k y x=的图象经过点D .若将菱形OABC 向左平移n 个单位,使点C 落在该反比例函数图象上,则n 的值为_____________.【答案】1【分析】根据菱形的性质得出CD=AD ,BC ∥OA ,根据D (4,2)和反比例函数x k y =的图象经过点D 求出k=8,C 点的纵坐标是2×2=4,求出C 的坐标,即可得出答案.【详解】∵四边形ABCO 是菱形,∴CD=AD,BC ∥OA ,∵D (4,2),反比例函数xk y =的图象经过点D , ∴k=8,C 点的纵坐标是2×2=4,∴8xy =,把y=4代入得:x=2,∴n=3−2=1,∴向左平移1个单位长度,反比例函数能过C 点,故答案为1.【点睛】本题主要考查了反比例函数图象上点的坐标特征,菱形的性质,坐标与图形变化-平移,数形结合思想是关键.15.已知关于 x 的一元二次方程x 2+2x-a=0的两个实根为x1,x2,且121123x x+=,则 a 的值为 . 【答案】1.【详解】解:∵关于 x 的一元二次方程x 2+2x-a=0 的两个实根为x 1,x 2,∴x 1+x 2=-2,x 1x 2=-a ,∴12121211223+-+===-x x x x x x a ∴a=1.16.如图,已知点D ,E 是半圆O 上的三等分点,C 是弧DE 上的一个动点,连结AC 和BC ,点I 是△ABC 的内心,若⊙O 的半径为3,当点C 从点D 运动到点E 时,点I 随之运动形成的路径长是_____.【答案】22π. 【分析】连接AI,BI,作OT ⊥AB 交⊙O 于T,连接AT,TB,以T 为圆心,TA 为半径作⊙T, 在优弧AB 上取一点G ,连接AG ,BG .证明∠AIB+∠G=180°,推出A,I,B,G 四点共圆,【详解】如图,连接AI ,BI ,作OT ⊥AB 交⊙O 于T ,连接AT ,TB ,以T 为圆心,TA 为半径作⊙T ,在优弧AB 上取一点G ,连接AG ,BG .推出点I 的运动轨迹是MN 即可解决问题.∵AB是直径,∴∠ACB=90°,∵I是△ABC的内心,∴∠AIB=135°,∵OT⊥AB,OA=OB,∴TA=TB,∠ATB=90°,∴∠AGB=12∠ATB=45°,∴∠AIB+∠G=180°,∴A,I,B,G四点共圆,∴点I的运动轨迹是MN,由题意AD DE EB== ,∴∠MTM=30°,易知TA=TM=2,∴点I随之运动形成的路径长是303221802π⋅⋅=,2.【点睛】本题考查了轨迹,垂径定理、圆周角定理、三角形的内心和等边三角形的性质等知识, 解题的关键是正确寻找点的运动轨迹.17.《算学宝鉴》中记载了我国南宋数学家杨辉提出的一个问题:直田积八百六十四步,只云阔不及长一十二步.问阔及长各几步?大意是“一个矩形田地的面积等于864平方步,它的宽比长少12步,问长与宽各多少步?”若设矩形田地的宽为x步,则所列方程为__________.【答案】(12)864x x+=【分析】如果设矩形田地的宽为x步,那么长就应该是(x+12)步,根据面积为864,即可得出方程.【详解】解:设矩形田地的宽为x步,那么长就应该是(x+12)步,根据面积公式,得:x x+=;(12)864x x+=.故答案为:(12)864【点睛】本题为面积问题,考查了由实际问题抽象出一元二次方程,掌握好面积公式即可进行正确解答;矩形面积=矩形的长×矩形的宽.18.从地面竖直向上抛出一小球,小球的高度h(米)与小球运动时间t(秒)的关系式是h=30t﹣5t2,小球运动中的最大高度是_____米.【答案】1【分析】首先理解题意,先把实际问题转化成数学问题后,知道解此题就是求出h=30t﹣5t2的顶点坐标即可.【详解】解:h=﹣5t2+30t=﹣5(t2﹣6t+9)+1=﹣5(t﹣3)2+1,∵a=﹣5<0,∴图象的开口向下,有最大值,当t=3时,h最大值=1.故答案为:1.【点睛】本题考查了二次函数的应用,解此题的关键是把实际问题转化成数学问题,利用二次函数的性质就能求出结果.三、解答题(本题包括8个小题)19.在大课间活动中,同学们积极参加体育锻炼,小明就本班同学“我最喜爱的体育项目”进行了一次调查统计,下面是他通过收集数据后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题:(1)该班共有名学生;(2)补全条形统计图;(3)在扇形统计图中,“乒乓球”部分所对应的圆心角度数为;(4)学校将举办体育节,该班将推选5位同学参加乒乓球活动,有3位男同学(A,B,C)和2位女同学(D,E),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.【答案】(1)50;(2)答案见解析;(3)115.2°;(4)35.【分析】(1)根据统计图数据,直接求解,即可;(2)先求出足球项目和其他项目的人数,再补全条形统计图,即可;(3)由“乒乓球”部分所对应的圆心角度数=360°×“乒乓球”部分所占的百分比,即可求解;(4)先画出树状图,再根据概率公式,即可得到答案.【详解】(1)由题意得:该班的总人数=15÷30%=50(名),故答案为:50;(2)足球项目的人数=50×18%=9(名),其它项目的人数=50﹣15﹣9﹣16=10(名),补全条形统计图如图所示:(3)“乒乓球”部分所对应的圆心角度数=360°1650⨯=115.2°.故答案为:115.2°;(4)画树状图如图:由图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,∴P(恰好选出一男一女)123 205 ==.【点睛】本题主要考查扇形统计图和条形统计图以及概率,掌握扇形统计图和条形统计图的特征以及画树状图,是解题的关键.20.如图,AB是O的直径,C为O上一点,OE BC⊥于点E,交O于点F,AF与BC交于点,M D 为OF 延长线上一点,且ODB AFC ∠=∠.(1)求证:BD 是O 的切线;(2)求证:2CF FM FA =⋅;(3)若310,sin 5AB BAF =∠=,求BM 的长.【答案】(1)证明见解析;(2)证明见解析;(3)152【分析】(1)欲证明BD 是⊙O 的切线,只要证明BD ⊥AB ;(2)连接AC ,证明△FCM ∽△FAC 即可解决问题;(3)连接BF ,想办法求出BF ,FM 即可解决问题.【详解】(1)∵AC AC =,∴∠AFC=∠ABC ,又∵∠AFC=∠ODB ,∴∠ABC=∠ODB ,∵OE ⊥BC ,∴∠BED=90°,∴∠ODB+∠EBD=90°,∴∠ABC+∠EBD=90°,∴OB ⊥BD ,∴BD 是⊙O 的切线;(2)连接AC ,∵OF ⊥BC ,∴BF FC =,BF FC =,∴∠BCF=∠FAC ,又∵∠CFM=∠AFC ,∴△FCM ∽△FAC ,∴2CF FMFA =;(3)连接BF ,∵AB 是⊙O 的直径,且AB=10,∴∠AFB=90°, ∴3sin 5BF BAF AB ∠==, ∴31065BF =⨯=,∴8AF ===,∵BF FC =,∴6FC BF ==,∵2CF FM FA =,∴268FM =, ∴92FM =,∴152BM ===. 【点睛】本题属于圆综合题,考查了圆周角定理,切线的判定,相似三角形的判定和性质,勾股定理,解直角三角形等知识,解题的关键是学会添加常用辅助线.21.已知关于x 的一元二次方程()222140x m x m +++-=. (1)当m 为何值时,方程有两个不相等的实数根?(2)设方程两根分别为1x 、2x ,且21x 、22x 分别是边长为5的菱形的两条对角线,求m 的值.【答案】(1)174m >-;(2)4m =- 【分析】(1)由根的判别式2=40b ac ∆->即可求解;(2)根据菱形对角线互相垂直且平分,由勾股定理得222125x x +=,又由一元二次方程根与系数的关系1212, b c x x x x a a+=-=,所以有()2221212122x x x x x x +-=+,据此列出关于m 的方程求解. 【详解】(1)∵方程有两个不相等的实数根,∴()()22=2144=417m m m ∆+--+>0 解得:174m>-∴当174m >-时,方程有两个不相等的实数根; (2)由题意得:2221212212521?4x x x x m x x m ⎧+=⎪+=--⎨⎪=-⎩ ∴()()()222222121212=2212424925x x x x x x m m m m ++-=----=++= 解得:2m =或4m =-∵21x 、22x 分别是边长为5的菱形的两条对角线∴122 1 0x x m +=-->,即12m <-∴4m =-【点睛】本题考查一元二次方程根的判别式、结合菱形的性质考查勾股定理和韦达定理,熟知一元二次方程根与系数的关系是解题关键.22.如图,抛物线x 与轴交于()()A 1,0B 3,0-、两点,与y 轴交于点()0,3C-,设抛物线的顶点为点D . (1)求该抛物线的解析式与顶点D 的坐标.(2)试判断BCD ∆的形状,并说明理由.(3)坐标轴上是否存在点P ,使得以P A C 、、为顶点的三角形与BCD ∆相似?若存在,请直接写出点P 的坐标;若不存在,请说明理由.【答案】(1)223y x x =--,()1,4D -;(2)BCD ∆是直角三角形,理由见解析;(3)存在,()()12310,0,0,,9,03P P P ⎛⎫ ⎪⎝⎭. 【分析】(1)已知了抛物线图象上的三点坐标,可用待定系数法求出该抛物线的解析式,进而可用配方法或公式法求得顶点D 的坐标.(2)根据B 、C 、D 的坐标,可求得△BCD 三边的长,然后判断这三条边的长是否符合勾股定理即可. (3)假设存在符合条件的P 点;首先连接AC ,根据A 、C 的坐标及(2)题所得△BDC 三边的比例关系,即可判断出点O 符合P 点的要求,因此以P 、A 、C 为顶点的三角形也必与△COA 相似,那么分别过A 、C 作线段AC 的垂线,这两条垂线与坐标轴的交点也符合点P 点要求,可根据相似三角形的性质(或射影定理)求得OP 的长,也就得到了点P 的坐标.【详解】(1)设抛物线的解析式为2y ax bx c =++.由抛物线与y 轴交于点()0,3C -,可知3c =-即抛物线的解析式为23y ax bx =+-把()()A 1,0B 3,0-、代入309330a b a b --=⎧⎨+-=⎩解得1,2a b ==-∴抛物线的解析式为223y x x =--∴顶点D 的坐标为()1,4-(2)BCD ∆是直角三角形.过点D 分别作x 轴、y 轴的垂线,垂足分别为E 、F在Rt BOC △中,3,3OB OC ==∴22218BC OB OC =+=在Rt CDF 中,1,431DF CF OF OC ==-=-=∴2222CD DF CF =+=在Rt BDE 中,4,312DE BE OB OE ==-=-=∴22220BD DE BE =+=∴222BC CD BD +=∴BCD ∆是直角三角形.(3)连接AC ,根据两点的距离公式可得:CD BC BD ===222CD CB BD +=,可得Rt COA Rt BCD △∽△,得符合条件的点为()0,0O .过A 作1AP AC ⊥交y 轴正半轴于1P ,可知1Rt CAPRt COA Rt BCD △∽△∽△,求得符合条件的点为110,3P ⎛⎫ ⎪⎝⎭过C 作2CP AC ⊥交x 轴正半轴于2P ,可知2Rt P CA Rt COA Rt BCD △∽△∽△,求得符合条件的点为()29,0P∴符合条件的点有三个:()()12310,0,0,,9,03P P P ⎛⎫⎪⎝⎭.【点睛】本题考查了抛物线的综合问题,掌握抛物线的性质以及解法是解题的关键.23.小彬做了探究物体投影规律的实验,并提出了一些数学问题请你解答:(1)如图1,白天在阳光下,小彬将木杆AB 水平放置,此时木杆在水平地面上的影子为线段A B ''. ①若木杆AB 的长为1m ,则其影子A B ''的长为 m ;②在同一时刻同一地点,将另一根木杆CD 直立于地面,请画出表示此时木杆CD 在地面上影子的线段DM ;(2)如图2,夜晚在路灯下,小彬将木杆EF 水平放置,此时木杆在水平地面上的影子为线段E F ''. ①请在图中画出表示路灯灯泡位置的点P ;②若木杆EF 的长为1m ,经测量木杆EF 距离地面1m ,其影子E F ''的长为1.5m ,则路灯P 距离地面的高度为m .【答案】(1)①1;②见解析;(2)①见解析;②3【分析】(1)①根据题意证得四边形AA B B ''为平行四边形,从而求得结论;②根据平行投影的特点作图:过木杆的顶点作太阳光线的平行线;(2)①分别过影子的端点及其线段的相应的端点作射线,两条射线的交点即为光源的位置;②根据EF ∥E F '',可证得PEF PE F ''∆∆,利用相似三角形对应高的比等于相似比即可求得结论.【详解】(1)①根据题意:AA '∥BB ',AB ∥A B '',∴四边形AA B B ''为平行四边形,∴1A B AB cm ='=';②如图所示,线段DM 即为所求;(2)①如图所示,点P 即为所求;②过点P 作PH E F ''⊥分别交EF 、E F ''于点G 、H∵EF ∥E F ''∴PEF PE F ''∆∆::EF E F PG PH ''∴=1EF =, 1.5E F ''=,1GH =()1:1.5:1PG PG ∴=+解得:2PG =,3PH ∴=∴路灯P 距离地面的高度为3米.【点睛】本题考查平行投影问题以及相似三角形的判定和性质,平行光线得到的影子是平行光线经过物体的顶端得到的影子,利用相似三角形对应高的比等于相似比是解决本题的关键.24.如图,在△ABC 中,利用尺规作图,画出△ABC 的内切圆.【答案】见解析【分析】分别作出三角形两个内角的角平分线,交点即为三角形的内心,也就是三角形内切圆的圆心,进而得出即可.【详解】如图所示【点睛】此题主要考查了复杂作图,正确把握三角形内心位置确定方法是解题关键.25.如图,在平面直角坐标系中,已知ABC ∆三个顶点的坐标分别是()4,2A -, ()3,1B -,()1,2C -. (1)请画出ABC ∆关于x 轴对称的111A B C ∆;(2)以点O 为位似中心,相似比为1:2,在y 轴右侧,画出111A B C ∆放大后的222A B C ∆;【答案】(1)见解析;(2)见解析.【分析】(1)利用关于x 轴对称点的性质:横坐标相等,纵坐标互为相反数可以求出.(2)利用位似图像的性质得出对应点位置.【详解】如图所示:画出ABC ∆轴对称的111A B C ∆.画出111A B C ∆放大后的位似222A B C ∆.【点睛】本题考查了关于对称轴对称的点的性质以及位似的性质.26.如图,⊙O 与△ABC 的AC 边相切于点C ,与BC 边交于点E ,⊙O 过AB 上一点D ,且DE ∥AO ,CE 是⊙O 的直径.(1)求证:AB 是⊙O 的切线;(2)若BD =4,EC =6,求AC 的长.【答案】(1)见解析;(2)AC =1【分析】(1)要证AB 切线,连接半径OD ,证∠ADO =90°即可,由∠ACB =90°,由OD =OE ,DE ∥OA ,可得∠AOD =∠AOC ,证△AOD ≌△AOC (SAS )即可,(2)AB 是⊙O 的切线,∠BDO =90°,由勾股定理求BE ,BC =BE+EC 可求,利用AD ,AC 是⊙O 的切线长,设AD =AC =x ,在Rt △ABC 中,AB 2=AC 2+BC 2构造方程求AC 即可.【详解】(1)证明:连接OD ,∵OD =OE ,∴∠OED =∠ODE ,∵DE ∥OA ,∴∠ODE =∠AOD ,∠DEO =∠AOC ,∴∠AOD =∠AOC ,∵AC 是切线,∴∠ACB =90°,在△AOD 和△AOC 中OD=OC AOD=AOC OA=OA ⎧⎪∠∠⎨⎪⎩,∴△AOD ≌△AOC (SAS ),∴∠ADO =∠ACB =90°,∵OD 是半径,∴AB 是⊙O 的切线;(2)解:∵AB 是⊙O 的切线,∴∠BDO =90°,∴BD 2+OD 2=OB 2,∴42+32=(3+BE )2,∴BE =2,∴BC =BE+EC =8,∵AD ,AC 是⊙O 的切线,∴AD =AC ,设AD =AC =x ,在Rt △ABC 中,AB 2=AC 2+BC 2,∴(4+x )2=x 2+82,解得:x =1,∴AC =1.【点睛】本题考查AB 切线与切线长问题,掌握连接半径OD ,证∠ADO =90°是证切线常用方法,利用△AOD ≌△AOC (SAS )来实现目标,先在Rt △BOD ,用勾股定理求BE ,再利用AD ,AC 是⊙O 的切线长,在Rt △ABC 中,用勾股定理构造方程求AC 是解题关键.27.如图,反比例函数k y x=与一次函数y ax b =+交于(3,1)A 和(1,)B m -两点.(1)根据题中所给的条件,求出一次函数和反比例函数的解析式.(2)结合函数图象,指出当k ax b x >+时,x 的取值范围. 【答案】(1)3y x=,y=x-2;(2)1x <-或03x << 【分析】(1)根据点A 的坐标即可求出反比例函数的解析式,再求出B 的坐标,然后将A ,B 的坐标代入一次函数求出a ,b ,即可求出一次函数的解析式.(2)结合图象找出反比例函数在一次函数上方所对应的自变量的取值范围即可解答.【详解】解:(1)根据点A 的坐标可知,在反比例函数k y x =中,3k =, ∴反比例函数的解析式为3y x =. ∴3m =-把点(3,1)A 和(1,3)B --代入y ax b =+,即313a b a b +=⎧⎨-+=-⎩,解得12a b =⎧⎨=-⎩ ∴一次函数的解析式为2y x =-.(2)观察图象可得,1x <-或03x <<.【点睛】本题考查了反比例函数与一次函数的应用,结合待定系数法求函数的解析式.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.二次函数2y ax bx c =++中x 与y 的部分对应值如下表所示,则下列结论错误的是( )A .0a <B .当1x >时,y 的值随x 值的增大而减小C .当0x <时,3y <D .方程25ax bx c ++=有两个不相等的实数根【答案】B【分析】根据表中各对应点的特征和抛物线的对称性求出抛物线的解析式即可判断.得出c=3,抛物线的对称轴为x=1.5,顶点坐标为(1,5),抛物线开口向下,【详解】解:由题意得出:315c a b c a b c =⎧⎪-=-+⎨⎪=++⎩,解得,133a b c =-⎧⎪=⎨⎪=⎩∴抛物线的解析式为:2y 33x x =-++抛物线的对称轴为x=1.5,顶点坐标为(1,5),抛物线开口向下∵a=-1<0,∴选项A 正确;∵当1x >时,y 的值先随x 值的增大而增大,后随随x 值的增大而增大,∴选项B 错误; ∵当0x <时,y 的值先随x 值的增大而增大,因此当x<0时,3y <,∴选项C 正确;∵原方程可化为2320x x -+-=,2341210=-⨯-⨯-=>,∴有两个不相等的实数根,选项D 正确. 故答案为B.【点睛】本题考查的知识点是二次函数的图象与性质,根据题目得出抛物线解析式是解题的关键.2.在Rt △ABC 中,∠C =90°,cosA=2,AC BC 等于( ) AB .1C .2D .3 【答案】B 【分析】根据余弦函数的定义、勾股定理,即可直接求解.【详解】解:∵在Rt △ABC 中,∠C =90°,cosA AC∴32AC cosA AB ==,即332AB =, 2AB ∴=,∴22=BC AB AC -=1,故选:B .【点睛】本题考查了解直角三角形,解题的基础是掌握余弦函数的定义和勾股定理.3.如图,⊙O 是△ABC 的外接圆,∠OCB =40°,则∠A 的大小为( )A .40°B .50°C .80°D .100°【答案】B 【解析】试题分析:∵OB =OC ,∠OCB =40°,∴∠BOC =180°-2∠OCB =100°,∴由圆周角定理可知:∠A =12∠BOC =50°. 故选B .4.若点()1,5A x ,()2,5B x 是函数223y x x =-+上两点,则当12x x x =+时,函数值y 为( ) A .2B .3C .5D .10 【答案】B【分析】根据点A(x 1,5),B(x 2,5)是函数y=x 2﹣2x+1上两对称点,可求得x=x 1+x 2=2,把x=2代入函数关系式即可求解.【详解】∵点A(x 1,5),B(x 2,5)是函数y=x 2﹣2x+1上两对称点,对称轴为直线x=1,∴x 1+x 2=2×1=2,∴x=2,∴把x=2代入函数关系式得y=22﹣2×2+1=1.故选:B .【点睛】本题考查了函数图象上的点的坐标与函数解析式的关系,以及二次函数的性质.求出x 1+x 2的值是解答本题的关键.5.在Rt △ABC 中,∠C=90°,∠A=α,AC=3,则AB 的长可以表示为( )A .3cos αB .3sin αC .3sinαD .3cosα【答案】A【解析】Rt ∆ABC 中,∠C=90°,∴cos A =AC AB, ∵A α∠=,AC=3, ∴cosα=3AB, ∴AB=3cos α , 故选A.【点睛】考查解直角三角形的知识;掌握和一个角的邻边与斜边有关的三角函数值是余弦值的知识是解决本题的关键.6.已知一次函数y x b =-+与反比例函数1y x =的图象有2个公共点,则b 的取值范围是( ) A .2b >B .22b -<<C .2b >或2b <-D .2b <- 【答案】C【分析】将两个解析式联立整理成关于x 的一元二次方程,根据判别式与根的关系进行解题即可.【详解】将y x b =-+代入到1y x =中,得1x b x -+=, 整理得210x bx -+=∵一次函数y x b =-+与反比例函数1y x=的图象有2个公共点 ∴方程2+10x bx -=有两个不相等的实数根所以()2=40b -->解得2b <-或2b >故选C.【点睛】本题考查的是一次函数与反比例函数图像交点问题,能用函数的思想思考问题是解题的关键.7.下列函数的对称轴是直线3x =-的是( )A .23y x =-B .2(3)y x =-C .23()y x =-+D .26y x x =- 【答案】C【分析】根据二次函数的性质分别写出各选项中抛物线的对称轴,然后利用排除法求解即可.【详解】A 、对称轴为y 轴,故本选项错误;B 、对称轴为直线x=3,故本选项错误;C 、对称轴为直线x=-3,故本选项正确;D 、∵26y x x =-=2(93)x --∴对称轴为直线x=3,故本选项错误.故选:C .【点睛】本题考查了二次函数的性质,主要利用了对称轴的确定,是基础题.8.2020-的绝对值是( )A .2020-B .2020C .12020-D .12020 【答案】B【分析】根据绝对值的定义直接解答.【详解】解:根据绝对值的概念可知:|−2121|=2121,故选:B .【点睛】本题考查了绝对值.解题的关键是掌握绝对值的概念,注意掌握一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;1的绝对值是1.9.已知方程2231x x -=的两根为1x ,2x 则1122x x x x ++的值是( )A .1B .2C .-2D .4 【答案】A【分析】先化成一元二次方程的一般形式,根据根与系数的关系得出x 1+x 232=,x 1•x 212=-,代入求出即可.【详解】∵2x 2﹣3x=1,∴2x 2﹣3x ﹣1=0,由根与系数的关系得:x 1+x 232=,x 1•x 212=-, 所以x 1+x 1x 2+x 232=+(12-)=1. 故选:A .【点睛】本题考查了根与系数的关系,能熟记根与系数的关系的内容是解答本题的关键.10.如图,OA 交⊙O 于点B ,AD 切⊙O 于点D ,点C 在⊙O 上.若∠A =40°,则∠C 为( )A .20°B .25°C .30°D .35°【答案】B 【分析】根据切线的性质得到∠ODA =90°,根据直角三角形的性质求出∠DOA ,根据圆周角定理计算即可.【详解】解:∵AD 切O 于点D ∴OD AD ⊥∴90ODA =∠°∵40A ∠=︒∴904050DOA ∠=︒-︒=︒ ∴1252BCD DOA ∠=∠=︒ 故选:B【点睛】本题考查了切线的性质:圆心与切点的连线垂直切线、圆周角定理以及直角三角形两锐角互余的性质,结合图形认真推导即可得解.11.如图平行四边变形ABCD 中,E 是BC 上一点,BE ∶EC=2∶3,AE 交BD 于F ,则S △BFE ∶S △FDA 等于( )A .2∶5B .4∶9C .4∶25D .2∶3【答案】C 【分析】由四边形ABCD 是平行四边形,可得AD ∥BE ,由平行得相似,即△BEF ∽△DAF ,再利用相似比解答本题.【详解】∵:2:3BE EC =,∴:2:5BE BC =,∵四边形ABCD 是平行四边形,∴AD BC =,AD ∥BE ,∴:2:5BE AD =,BEF DAF ∽,∴::2:5BF FD BE AD ==,BFE FDA :S S 4:25=,故选:C .【点睛】本题考查了相似三角形的判定与性质.正确运用相似三角形的相似比是解题的关键.12.一副透明的三角板,如图叠放,直角三角板的斜边AB 、CE 相交于点D ,则∠BDC 的度数为( )A .60°B .45°C .75°D .90°【答案】C 【分析】根据三角形的外角的性质计算,得到答案.【详解】∵∠GFA =90°,∠A =45°,∴∠CGD =45°,∴∠BDC =∠CGD +∠C =75°,故选:B .【点睛】本题考查的是三角形的外角性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.二、填空题(本题包括8个小题)13.如图,已知二次函数y=x 2+bx+c 的图象经过点(﹣1,0),(1,﹣2),当y 随x 的增大而增大时,x 的取值范围是______.【答案】x >12【详解】解:把(﹣1,0),(1,﹣2)代入二次函数y=x 2+bx+c 中,得:1012b c b c -+=⎧⎨++=-⎩,解得:12b c =-⎧⎨=-⎩, 那么二次函数的解析式是:2y x x 2=--, 函数的对称轴是:12x =, 因而当y 随x 的增大而增大时, x 的取值范围是:12x >. 故答案为12x >. 【点睛】本题考查待定系数法求二次函数解析式;二次函数的图象性质,利用数形结合思想解题是关键. 14.从一个不透明的口袋中随机摸出一球,再放回袋中,不断重复上述过程,一共摸了150次,其中有50次摸到黑球,已知口袋中仅有黑球5个和白球若干个,这些球除颜色外,其他都一样,由此估计口袋中有___个白球.【答案】1 【分析】先由“频率=频数÷数据总数”计算出频率,再由简单事件的概率公式列出方程求解即可.【详解】解:摸了150次,其中有50次摸到黑球,则摸到黑球的频率是5011503=, 设口袋中大约有x 个白球,则5153x =+, 解得10x =. 故答案为:1.【点睛】考查利用频率估计概率.大量反复试验下频率稳定值即概率.关键是得到关于黑球的概率的等量关系. 15.如图,AB 是O 的直径,弦,30,23,CD AB CDB CD ⊥∠=︒=则阴影部分图形的面积为_________.【答案】23π 【分析】根据垂径定理求得3;然后由圆周角定理知∠COE=60°.然后通过解直角三角形求得线段OC ,求出扇形COB 面积,即可得出答案.【详解】解:∵AB 是⊙O 的直径,弦CD ⊥AB ,3。
★试卷3套精选★新疆名校2018届九年级上学期数学期末考前模拟试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列各式由左到右的变形中,属于分解因式的是( )A .()a m n am an +=+B .()()2222a b c a b a b c --=+--C .()2105521x x x x -=-D .()()168448x x x x x -+=+-+【答案】C【解析】根据题中“属于分解因式的是”可知,本题考查多项式的因式分解的判断,根据因式分解的概念,运用因式分解是把多项式分解成若干个整式相乘的形式,进行分析判断.【详解】A . 属于整式乘法的变形.B . 不符合因式分解概念中若干个整式相乘的形式.C . 运用提取公因式法,把多项式分解成了5x 与(2x-1)两个整式相乘的形式.D . 不符合因式分解概念中若干个整式相乘的形式.故应选C【点睛】本题解题关键:理解因式分解的概念是把多项式分解成若干个整式相乘的形式,注意的是相乘的形式. 2.下列图案中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】B【解析】根据轴对称图形与中心对称图形的概念求解.【详解】A 、是轴对称图形,不是中心对称图形,故此选项错误;B 、是轴对称图形,也是中心对称图形,故此选项正确;C 、不是轴对称图形,是中心对称图形,故此选项错误;D 、不是轴对称图形,是中心对称图形,故此选项错误.故选B .【点睛】考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.如图,点C 、D 在圆O 上,AB 是直径,∠BOC=110°,AD ∥OC ,则∠AOD=( )A.70°B.60°C.50°D.40°【答案】D【分析】根据平角的定义求得∠AOC的度数,再根据平行线的性质及三角形内角和定理即可求得∠AOD的度数.【详解】∵∠BOC=110°,∠BOC+∠AOC=180°∴∠AOC=70°∵AD∥OC,OD=OA∴∠D=∠A=70°∴∠AOD=180°−2∠A=40°故选:D.【点睛】此题考查圆内角度求解,解题的关键是熟知圆的基本性质、平行线性质及三角形内角和定理的运用.4.某工厂一月份生产机器100台,计划二、三月份共生产机器240台,设二、三月份的平均增长率为x,则根据题意列出方程是()A.100(1+x)2=240B.100(1+x)+100(1+x)2=240C.100+100(1+x)+100(1+x)2=240D.100(1﹣x)2=240【答案】B【分析】设二、三月份的平均增长率为x,则二月份的生产量为100×(1+x),三月份的生产量为100×(1+x)(1+x),根据二月份的生产量+三月份的生产量=1台,列出方程即可.【详解】设二、三月份的平均增长率为x,则二月份的生产量为100×(1+x),三月份的生产量为100×(1+x)(1+x),根据题意,得100(1+x)+100(1+x)2=1.故选B.【点睛】本题考查了由实际问题抽象出一元二次方程的知识,设出未知数,正确找出等量关系是解决问题的关键.5.从下列直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是()A.B.C.D.【答案】B【分析】根据圆周角定理(直径所对的圆周角是直角)求解,即可求得答案.【详解】∵直径所对的圆周角等于直角,∴从直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是B.故选B.【点睛】本题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.6.二次函数y=ax2+bx+c(a≠0,a、b、c为常数)的图象如图所示,则方程ax2+bx+c=m有实数根的条件是()A.m≥﹣4 B.m≥0C.m≥5D.m≥6【答案】A【解析】利用函数图象,当m≥﹣1时,直线y=m与二次函数y=ax2+bx+c有公共点,从而可判断方程ax2+bx+c=m有实数根的条件.【详解】∵抛物线的顶点坐标为(6,﹣1),即x=6时,二次函数有最小值为﹣1,∴当m≥﹣1时,直线y=m与二次函数y=ax2+bx+c有公共点,∴方程ax2+bx+c=m有实数根的条件是m≥﹣1.故选:A.【点睛】本题考查了图象法求一元二次方程的近似根:作出函数的图象,并由图象确定方程的解的个数;由图象与y=h的交点位置确定交点横坐标的范围;7.抛物线y=ax2+bx+c(a≠0)形状如图,下列结论:①b>0;②a﹣b+c=0;③当x<﹣1或x>3时,y >0;④一元二次方程ax2+bx+c+1=0(a≠0)有两个不相等的实数根.正确的有()A .4个B .3个C .2个D .1个【答案】B 【分析】根据抛物线的开口方向、对称轴、顶点坐标和增减性,以及二次函数与一元二次方程的关系逐个进行判断即可.【详解】解:由抛物线开口向上,可知a >1,对称轴偏在y 轴的右侧,a 、b 异号,b <1,因此①不符合题意;由对称轴为x =1,抛物线与x 轴的一个交点为(3,1),可知与x 轴另一个交点为(﹣1,1),代入得a ﹣b+c =1,因此②符合题意;由图象可知,当x <﹣1或x >3时,图象位于x 轴的上方,即y >1.因此③符合题意;抛物线与y =﹣1一定有两个交点,即一元二次方程ax 2+bx+c+1=1(a≠1)有两个不相等的实数根,因此④符合题意;综上,正确的有3个,故选:B .【点睛】本题考查了二次函数的性质和二次函数同一元二次方程的关系,解决本题的关键是正确理解题意,熟练掌握二次函数的性质.8.如图,有一块三角形余料ABC ,它的面积为362cm ,边12BC cm ,要把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB ,AC 上,则加工成的正方形零件的边长为( )cmA .8B .6C .4D .3【答案】C 【分析】先求出△ABC 的高,再根据正方形边的平行关系,得出对应的相似三角形,即△AEF ∽△ABC ,从而根据相似三角形的性质求出正方形的边长.【详解】作AH ⊥BC ,交BC 于H ,交EF 于D.设正方形的边长为xcm ,则EF=DH= xcm ,∵△AB 的面积为362cm ,边12BC =cm ,∴AH=36×2÷12=6.∵EF ∥BC,∴△AEF ∽△ABC, ∴EF AD BC AH=, ∴6126x x -=, ∴x=4.故选C.【点睛】本题考查综合考查相似三角形性质的应用以及正方形的有关性质,解题的关键是根据正方形的性质得到相似三角形.9.如图,AB 是O 的直径,C ,D 是O 上的两点,且BC 平分ABD ∠,AD 分别与BC ,OC 相交于点E ,F ,则下列结论不一定成立的是( )A .OC BDB .AD OC ⊥ C .CEF BED ∆≅∆ D .AF FD =【答案】C【分析】由圆周角定理和角平分线得出90ADB ∠=︒,OBC DBC ∠=∠,由等腰三角形的性质得出OCB OBC ∠=∠,得出DBC OCB ∠=∠,证出OC BD ,选项A 成立;由平行线的性质得出AD OC ⊥,选项B 成立;由垂径定理得出AF FD =,选项D 成立;CEF ∆和BED ∆中,没有相等的边,CEF ∆与BED ∆不全等,选项C 不成立,即可得出答案.【详解】∵AB 是O 的直径,BC 平分ABD ∠,∴90ADB ∠=︒,OBC DBC ∠=∠,∴AD BD ⊥,∵OB OC =,∴OCB OBC ∠=∠,∴DBC OCB ∠=∠,∴OC BD ,选项A 成立;∴AD OC ⊥,选项B 成立;∴AF FD =,选项D 成立;∵CEF ∆和BED ∆中,没有相等的边,∴CEF ∆与BED ∆不全等,选项C 不成立,故选C .【点睛】本题考查了圆周角定理,垂径定理,等腰三角形的性质,平行线的性质,角平分线的性质,解本题的关键是熟练掌圆周角定理和垂径定理.10.太阳与地球之间的平均距离约为150000000km ,用科学记数法表示这一数据为( )A .1.5×108 kmB .15×107 kmC .0.15×109 kmD .1.5×109 km【答案】A【解析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值是易错点,由于150000000有9位,所以可以确定n=9-1=1.【详解】150 000 000km=1.5×101km .故选:A .【点睛】此题考查科学记数法表示较大的数的方法,准确确定a 与n 值是关键.11.如图,在矩形ABCD 中,3AB =,对角线,AC BD 相交于点O ,AE 垂直平分OB 于点E ,则AD 的长为( )A .4B .33C .5D .52【答案】B 【分析】由矩形的性质和线段垂直平分线的性质证出OA=AB=OB=3,得出BD=2OB=6,由勾股定理求出AD 即可.【详解】解:∵四边形ABCD 是矩形,∴OB=OD ,OA=OC ,AC=BD ,∴OA=OB ,∵AE 垂直平分OB ,∴AB=AO,∴OA=AB=OB=3,∴BD=2OB=6,∴AD=22226333BD AB-=-=;故选:B.【点睛】此题考查了矩形的性质、等边三角形的判定与性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.12.下列语句中,正确的是()①相等的圆周角所对的弧相等;②同弧或等弧所对的圆周角相等;③平分弦的直径垂直于弦,并且平分弦所对的弧;④圆内接平行四边形一定是矩形.A.①②B.②③C.②④D.④【答案】C【分析】根据圆周角定理、垂径定理、圆内接四边形的性质定理判断.【详解】①在同圆或等圆中,相等的圆周角所对的弧相等,本说法错误;②同弧或等弧所对的圆周角相等,本说法正确;③平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧,本说法错误;④圆内接平行四边形一定是矩形,本说法正确;故选:C.【点睛】本题考查的是命题的真假判断,掌握圆周角定理、垂径定理、圆内接四边形的性质定理是解题的关键.二、填空题(本题包括8个小题)13.已知Rt△ABC中,AC=3,BC=4,以C为圆心,以r为半径作圆.若此圆与线段AB只有一个交点,则r的取值范围为_____.【答案】3<r≤1或r=125.【解析】根据直线与圆的位置关系得出相切时有一交点,再结合图形得出另一种有一个交点的情况,即可得出答案.【详解】解:过点C作CD⊥AB于点D,∵AC=3,BC=1.∴AB=5,如果以点C为圆心,r为半径的圆与斜边AB只有一个公共点,当直线与圆相切时,d =r ,圆与斜边AB 只有一个公共点,∴CD×AB =AC×BC ,∴CD =r =125, 当直线与圆如图所示也可以有一个交点,∴3<r≤1,故答案为3<r≤1或r =125.【点睛】此题主要考查了直线与圆的位置关系,结合题意画出符合题意的图形,从而得出答案,此题比较容易漏解. 14.如图,两个大小不同的三角板放在同一平面内,直角顶点重合于点C ,点D 在AB 上,BAC ∠=30DEC ︒∠=,AC 与DE 交于点F ,连接AE ,若1BD =,5AD =,则CF EF=_____.【答案】213. 【解析】过点C 作CM ⊥DE 于点M ,过点E 作EN ⊥AC 于点N ,先证△BCD ∽△ACE ,求出AE 的长及∠CAE=60°,推出∠DAE=90°,在Rt △DAE 中利用勾股定理求出DE 的长,进一步求出CD 的长,分别在Rt △DCM 和Rt △AEN 中,求出MC 和NE 的长,再证△MFC ∽△NFE ,利用相似三角形对应边的比相等即可求出CF 与EF 的比值.【详解】解:如图,过点C 作CM DE ⊥于点M ,过点E 作EN AC ⊥于点N ,∵1BD =,5AD =,∴6AB BD AD =+=,∵在Rt ABC ∆中,30,9060BAC B BAC ︒︒︒∠=∠=-∠=,∴13,2BC AB AC ==== 在Rt BCA ∆与Rt DCE ∆中,∵30BAC DEC ︒∠=∠=,∴tan tan BAC DEC ∠=∠, ∴BC DC AC EC=, ∵90BCA DCE ︒∠=∠=,∵BCA DCA DCE DCA ∠-∠=∠-∠,∴BCD ACE ∠=∠,∴BCD ∆∽ACE ∆,∴60CAE B ︒∠=∠=,∴BC BD AC AE=, ∴306090DAE DAC CAE ︒︒︒+∠=∠∠=+=1AE =,∴AE =在Rt ADE ∆中,DE ===在Rt DCE ∆中,30DEC ∠=,∴60EDC ∠=,12DC DE == 在Rt DCM ∆中,22MC DC ==, 在Rt AEN ∆中,32NE AE ==, ∵,90MFC NFE FMC FNE ∠=∠∠=∠=,∴MFC ∆∽NFE ∆,∴2332CF MC EF NE ==故答案为:213. 【点睛】 本题考查了相似三角形的判定与性质,勾股定理,解直角三角形等,解题关键是能够通过作适当的辅助线构造相似三角形,求出对应线段的比.15.计算sin30tan45sin45tan60︒︒-︒︒=__________.【答案】16- 【分析】先把特殊角的三角函数值代入原式,再计算即得答案.【详解】解:原式=1216132-⨯-⨯=. 故答案为:162-. 【点睛】 本题考查了特殊角的三角函数值,属于基础题型,熟记特殊角的三角函数值、正确计算是关键. 16.抛物线y =2(x ﹣1)2﹣5的顶点坐标是_____.【答案】 (1,﹣5)【分析】根据二次函数的顶点式即可求解.【详解】解:抛物线y =2(x ﹣1)2﹣5的顶点坐标是(1,﹣5).故答案为(1,﹣5).【点睛】本题考查了顶点式对应的顶点坐标,顶点式的理解是解题的关键17.如图,已知ABC 中,点D 、E 、F 分别是边AB 、AC 、BC 上的点,且DE BC ∥,EF AB ∥,且:1:2AD DB =,若9CF =,那么BF =__________【答案】92【分析】根据平行线分线段成比例定理列出比例式,得到AE :EC=AD :DB=1:2,BF :FC=AE :EC=1:2,进行分析计算即可.【详解】解:∵DE ∥BC ,∴AE:EC=AD:DB=1:2,∵EF∥AB,∴BF:FC=AE:EC=1:2,∵CF=9,∴BF=9 2 .故答案为:92.【点睛】本题考查的是平行线分线段成比例定理,熟练掌握并灵活运用定理并找准对应关系是解题的关键.18.将含有30°角的直角三角板OAB 如图放置在平面直角坐标系中,OB 在x轴上,若OA=2,将三角板绕原点O 顺时针旋转75°,则点 A 的对应点A′ 的坐标为___________.【答案】(2,2)【解析】过A′作A′C⊥x轴于C,根据旋转得出∠AOA′=75°,OA=OA′=2,求出∠A′OC=45°,推出OC=A′C,解直角三角形求出OC和A′C,即可得出答案.【详解】如图,过A′作A′C⊥x轴于C,∵将三角板绕原点O顺时针旋转75°,∴∠AOA′=75°,OA=OA′=2,∵∠AOB=30°,∴∠A′OC=45°,∴OC=A′C=OA′sin45°=2×222,∴A′的坐标为(2,-2).故答案为:(2,2-).【点睛】本题考查的知识点是坐标与图形变化-旋转,解题的关键是熟练的掌握坐标与图形变化-旋转.三、解答题(本题包括8个小题)19.如图,二次函数2(2)y x m =-+的图象与一次函数y kx b =+的图象交于点 (1,0)A 及点(,3)B n(1)求二次函数的解析式及B 的坐标(2)根据图象,直按写出满足2(2)kx b x m +≥-+的x 的取值范围 【答案】(1)2(2)1y x =--或2(23)y x x =-+,点B 的坐标为(4,3);(2)当14x ≤≤时,kx+b≥(x-2)2+m【分析】(1)先将点A (1,0)代入2(2)y x m =-+求出m 的值,即可得出二次函数的解析式,再将(,3)B n 代入二次函数的解析式即可求出B 的坐标;(2)根据图象和A 、B 的交点坐标可直接求出2(2)kx b x m +≥-+的x 的取值范围.【详解】解:(1)∵二次函数y=(x-2)2+m 的图象经过点A (1,0)∴2(12)0m -+=解得:1m =-∴二次函数的解析式为22(2)1(23)y x y x x =--=-+或 23(2)13y n =--=当时,解得:14n = 20n =(不合题意,舍去)∴点B 的坐标为(4,3)(2)由图像可知二次函数y=(x-2)2+m 的图像与一次函数y=kx+b 的图象交于点A (1,0)及点B (4,3) ∴当14x ≤≤时,kx+b≥(x-2)2+m【点睛】本题考查用待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x 轴有两个交点时,可选择设其解析式为交点式来求解.20.已知关于x 的一元二次方程:2x 2+6x ﹣a =1.(1)当a =5时,解方程;(2)若2x 2+6x ﹣a =1的一个解是x =1,求a ;(3)若2x 2+6x ﹣a =1无实数解,试确定a 的取值范围.【答案】(1)1x =2x =;(2)a =8;(3)92<-a 【分析】(1)将a 的值代入,再利用公式法求解可得;(2)将x =1代入方程,再求a 即可;(3)由方程无实数根得出△=62﹣4×2(﹣a )<1,解之可得.【详解】解:(1)当a =5时,方程为2x 2+6x ﹣5=1,∴36425760>,∴x ==解得:1x =,2x =; (2)∵x =1是方程2x 2+6x ﹣a =1的一个解,∴2×12+6×1﹣a =1,∴a =8;(3)∵2x 2+6x ﹣a =1无实数解,∴△=62﹣4×2(﹣a )=36+8a <1, 解得:92<-a . 【点睛】本题主要考查一元二次方程的解、解一元二次方程以及一元二次方程根的判别式的意义,一元二次方程ax 2+bx +c =1(a≠1)的根与△=b 2−4ac 有如下关系:①当△>1时,方程有两个不相等的实数根;②当△=1时,方程有两个相等的实数根;③当△<1时,方程无实数根.21.(1)已知332x y x y +=-,求x y的值; (2)已知直线123,,l l l 分别截直线4l 于点、、A B C ,截直线5l 于点,,D E F ,且123////l l l ,4,8,12AB BC EF ===,求DE 的长.【答案】(1)9;(2)6.【分析】(1)交叉相乘,化简后同除以y 即可得出答案;(2)根据平行线的性质计算即可得出答案.【详解】解:(1)()()233x y x y +=-9x y = ∴9x y=; (2)∵123////l l l ∴DE AB EF BC= 即:4128DE = ∴6DE =【点睛】本题考查的是解分式方程以及平行线的性质,比较简单,需要熟练掌握相关基础知识.22.解方程(1)x 2-6x -7=0;(2) (2x -1)2=1.【答案】(1)x 1=7,x 2=-1;(2)x 1=2,x 2=-1【分析】(1)根据配方法法即可求出答案.(2)根据直接开方法即可求出答案;【详解】解:(1)x 2-6x +1-1-7=0(x -3) 2=16x -3=±4x 1=7,x 2=-1(2)2x -1=±32x =1±3x 1=2,x 2=-1【点睛】本题考查了解一元二次方程,观察所给方程的形式,分别使用配方法和直接开方法求解.23.在学校组织的科学素养竞赛中,每班参加比赛的人数相同,成绩分为A 、B 、C 、D 四个等级,其中相应等级的得分依次为100分,90分,80分,70分.马老师将九年级一班和二班的成绩整理并绘制成如下的统计图:请你根据以上提供的信息解答下列问题:(1)此次竞赛中二班成绩在80分及其以上的人数是_______人;(2)补全下表中a 、b 、c 的值:平均数(分) 中位数(分) 众数(分) 方差 一班87.6 b 90 106.24 二班 a 80 c 138.24(3)学校准备在这两个班中选一个班参加市级科学素养竞赛,你建议学校选哪个班参加?说说你的理由.【答案】(1)21;(2)87.6a =;90b =;100c =;(3)见解析.【分析】(1)根据条形统计图得到参赛人数,然后根据扇形统计图求得C 级的百分率,即可求出成绩在80分及以上的人数;(2)由上题中求得的总人数分别求出各个成绩段的人数,然后可以求得平均数、中位数、众数; (3)根据数据波动大小来选择.【详解】(1)由条形统计图知,参加竞赛的人数为:6122525+++=(人),此次竞赛中二班成绩在80分的百分率为:116%44%4%36%---=,∴此次竞赛中二班成绩在80分及其以上的人数是:()2544%4%36%21⨯++=(人),故答案为:21;(2)二班成绩分别为:100分的有2544%11⨯=(人),90分的有254%1⨯=(人),80分的有2536%9⨯=(人),70分的有2516%4⨯=(人),1001190180970487.625a ⨯+⨯+⨯+⨯==(分), ∵一班成绩的中位数在第1132n +=位上, ∴一班成绩的中位数是:90b =(分),∵二班成绩中100分的人数最多达到11个,∴二班成绩的众数为:100c =故答案为:87.6a =,90b =,100c =(3)选一班参加市级科学素养竞赛,因为一班方差较小,比较稳定.【点睛】本题考查了平均数、中位数、众数、方差的意义以及各种统计图之间的相互转化的知识,在关键是根据题目提供的信息得到相应的解决下一题的信息,考查了学生们加工信息的能力.24.甲、乙两名同学5次数学练习(满分120分)的成绩如下表:(单位:分)已知甲同学这5次数学练习成绩的平均数为100分,方差为10分2.(1)乙同学这5次数学练习成绩的平均数为 分,方差为 分2;(2)甲、乙都认为自已在这5次练习中的表现比对方更出色,请你分别写出一条支持他们俩观点的理由.【答案】(1)100,10;(2)答案不唯一,如:甲的数学成绩逐渐进步,更有潜力;乙的数学成绩在100分以上(含100分)的次数更多.【分析】(1)根据平均数公式和方差公式计算即可;(2)通过成绩逐渐的变化情况或100分以上(含100分)的次数分析即可.【详解】解:(1)x 乙=()1100951001051001005⨯++++= 2s 乙=()()()()()22222110010095100100100105100100100105⎡⎤⨯-+-+-+-+-=⎣⎦ 故答案为:100,10;(2)答案不唯一,如:甲的数学成绩逐渐进步,更有潜力;乙的数学成绩在100分以上(含100分)的次数更多.【点睛】此题考查的是求平均数和方差,掌握平均数公式和方差公式是解决此题的关键.25.今年某市为创评“全国文明城市”称号,周末团市委组织志愿者进行宣传活动.班主任梁老师决定从4名女班干部(小悦、小惠、小艳和小倩)中通过抽签的方式确定2名女生去参加.抽签规则:将4名女班干部姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,梁老师先从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名.(1)该班男生“小刚被抽中”是 事件,“小悦被抽中”是 事件(填“不可能”或“必然”或“随机”);第一次抽取卡片“小悦被抽中”的概率为 ;(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出“小惠被抽中”的概率.【答案】(1)不可能;随机;14;(2)12 【解析】(1)根据从女班干部中抽取,由此可知男生“小刚被抽中”是不可能事件,“小悦被抽中”是随机事件,第一次抽取有4种可能,“小悦被抽中”有1种可能,由此即可求得概率;(2)画树状图得到所有可能的情况,然后找出符合题意的情况数,利用概率公式进行计算即可得.【详解】(1)因为从女班干部中进行抽取,所以男生“小刚被抽中”是不可能事件,“小悦被抽中”是随机事件,第一次抽取有4种可能,“小悦被抽中”有1种可能,所以“小悦被抽中”的概率为14, 故答案为不可能, 随机,14; (2)画树状图如下:由树状图可知共12种可能,其中“小惠被抽中”有6种可能,所以“小惠被抽中”的概率是: 61P 122== . 【点睛】本题考查了随机事件、不可能事件、列表或画树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.26.由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达A 处时,测得小岛C 位于它的北偏东70︒方向,且与航母相距80海里,再航行一段时间后到达B 处,测得小岛C 位于它的北偏东37︒方向.如果航母继续航行至小岛C 的正南方向的D 处,求还需航行的距离BD 的长.(参考数据:sin700.94︒≈,cos700.34︒≈,tan70 2.75︒≈,sin370.6︒≈,370.80cos ︒≈,tan370.75︒≈)【答案】还需要航行的距离BD 的长为20.4海里.【解析】分析:根据题意得:∠ACD=70°,∠BCD=37°,AC=80海里,在直角三角形ACD 中,由三角函数得出CD=27.2海里,在直角三角形BCD 中,得出BD ,即可得出答案.详解:由题知:70ACD ∠=︒,37BCD ∠=︒,80AC =.在Rt ACD ∆中,cos CD ACD AC ∠=,0.3480CD ∴=,27.2CD ∴=(海里). 在Rt BCD ∆中,tan BD BCD CD ∠=,0.7527.2BD ∴=,20.4BD ∴=(海里). 答:还需要航行的距离BD 的长为20.4海里.点睛:此题考查了解直角三角形的应用-方向角问题,三角函数的应用;求出CD 的长度是解决问题的关键. 27.2019年9月30日,由著名导演李仁港执导的电影《攀登者》在各大影院上映后,好评不断,小亮和小丽都想去观看这部电影,但是只有一张电影票,于是他们决定采用模球的办法决定胜负,获胜者去看电影,游戏规则如下:在一个不透明的袋子中装有编号1-4的四个球(除编号外都相同),从中随机摸出一个球,记下数字后放回,再从中摸出一个球,记下数字,若两次数字之和大于5,则小亮获胜,若两次数字之和小于5,则小丽获胜.(1)请用列表或画树状图的方法表示出随机摸球所有可能的结果;(2)分别求出小亮和小丽获胜的概率,并判断这种游戏规则对两人公平吗?【答案】(1)见解析 (2)38,38;公平 【分析】(1)根据题意,列出树状图,即可得到答案;(2)根据概率公式,分别求出小亮和小丽获胜的概率,即可.【详解】(1)画树状图如下:两数和的所有可能结果为:2,3,4,5,3,4,5,6,4,5,6,7,5,6,7,8共16种.(2)∵两次数字之和大于5的结果数为6,∴小亮获胜的概率63 168 ==,∵两次数字之和小于5的结果数为6,∴小丽获胜的概率63 168 ==,∴此游戏是公平的.【点睛】本题主要考查简单事件概率的实际应用,画出树状图,求出概率,是解题的关键.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如果一个一元二次方程的根是x 1=x 2=1,那么这个方程是A .(x +1)2=0B .(x -1)2=0C .x 2=1D .x 2+1=0【答案】B【分析】分别求出四个选项中每一个方程的根,即可判断求解.【详解】A 、(x+1)2=0的根是:x 1=x 2=-1,不符合题意;B 、(x-1)2=0的根是:x 1=x 2=-1,符合题意;C 、x 2=1的根是:x 1=1,x 2=-1,不符合题意;D 、x 2+1=0没有实数根,不符合题意;故选B .2.如图,抛物线22y x x m =-++交x 轴于点A(a ,0)和B(b ,0),交y 轴于点C ,抛物线的顶点为D ,下列四个结论:①点C 的坐标为(0,m );②当m=0时,△ABD 是等腰直角三角形;③若a =-1,则b =4;④抛物线上有两点P(1x ,1y )和Q(2x ,2y ),若1x <1<2x ,且1x +2x >2,则1y >2y . 其中结论正确的序号是( )A .①②B .①②③C .①②④D .②③④【答案】C 【分析】根据二次函数图像的基本性质依次进行判断即可.【详解】①当x=0时,y=m ,∴点C 的坐标为(0,m ),该项正确;②当m=0时,原函数解析式为:22y x x =-+,此时对称轴为:1x =,且A 点交于原点, ∴B 点坐标为:(2,0),即AB=2,∴D 点坐标为:(1,1),根据勾股定理可得:2,∴△ABD 为等腰三角形,∵222AD BD AB +=,∴△ABD 为等腰直角三角形,该项正确;③由解析式得其对称轴为:1x =,利用其图像对称性,∴当若a =-1,则b =3,该项错误; ④∵1x +2x >2,∴1212x x +>,又∵1x <1<2x ,∴1x -1<1<2x -1,∴Q 点离对称轴较远,∴1y >2y ,该项正确;综上所述,①②④正确,③错误,故选:C.【点睛】本题主要考查了二次函数图像解析式与其函数图像的性质综合运用,熟练掌握相关概念是解题关键. 3.O 的直径为15cm ,O 点与P 点的距离为8cm ,点P 的位置( )A .在⊙O 外B .在⊙O 上C .在⊙O 内D .不能确定 【答案】A【分析】由⊙O 的直径为15cm ,O 点与P 点的距离为8cm ,根据点与圆心的距离与半径的大小关系,即可求得答案.【详解】∵⊙O 的直径为15cm ,∴⊙O 的半径为7.5cm ,∵O 点与P 点的距离为8cm ,∴点P 在⊙O 外.故选A .【点睛】此题考查了点与圆的位置关系.注意点到圆心的距离为d ,则有:当d >r 时,点在圆外;当d=r 时,点在圆上,当d <r 时,点在圆内.4.四张分别画有平行四边形、等腰直角三角形、正五边形、圆的卡片,它们的背面都相同,现将它们背面朝上,从中任取一张,卡片上所画图形恰好是中心对称图形的概率是( )A .14B .12C .34D .1【答案】B【分析】先找出卡片上所画的图形是中心对称图形的个数,再除以总数即可.【详解】解:∵四张卡片中中心对称图形有平行四边形、圆,共2个, ∴卡片上所画的图形恰好是中心对称图形的概率为21=42, 故选B .【点睛】此题考查概率公式:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n,关键是找出卡片上所画的图形是中心对称图形的个数. 5.如图,AB 为⊙O 的直径,点C 、D 在⊙O 上,若∠AOD=30°,则∠BCD 的度数是( )A .150°B .120°C .105°D .75°【答案】C 【解析】试题解析:连接AC ,∵AB 为⊙O 的直径,∴∠ACB=90°,∵∠AOD=30°,∴∠ACD=15°,∴∠BCD=∠ACB+∠ACD=105°,故选C .6.将抛物线22y x =向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为( ). A .22(2)3y x =++;B .22(2)3y x =-+;C .22(2)3y x =--;D .22(2)3y x =+-.【答案】B【分析】根据抛物线图像的平移规律“左加右减,上加下减”即可确定平移后的抛物线解析式.【详解】解:将抛物线22y x =向上平移3个单位长度,再向右平移2个单位长度,得到的抛物线的解析式为()2223y x =-+,故选B .【点睛】本题考查了二次函数的平移规律,熟练掌握其平移规律是解题的关键.7.边长分别为6,8,10的三角形的内切圆半径与外接圆半径的比为( )A .1:5B .4:5C .2:10D .2:5 【答案】D【分析】由面积法求内切圆半径,通过直角三角形外接圆半径为斜边一半可求外接圆半径, 则问题可求.【详解】解:∵62+82=102 ,∴此三角形为直角三角形,∵直角三角形外心在斜边中点上,∴外接圆半径为5,设该三角形内接圆半径为r, ∴由面积法12×6×8=12×(6+8+10)r, 解得r=2,三角形的内切圆半径与外接圆半径的比为2:5 ,故选D .【点睛】本题主要考查了直角三角形内切圆和外接圆半径的有关性质和计算方法,解决本题的关键是要熟练掌握面积计算方法.8.如图,在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形图,如果要使整个挂图的面积是25400cm ,设金色纸边的宽为xcm ,那么x 满足的方程是( )A .213014000x x +-=B .2653500x x +-=C .213014000x x --=D .2653500x x --=【答案】B 【分析】根据矩形的面积=长×宽,我们可得出本题的等量关系应该是:(风景画的长+2个纸边的宽度)×(风景画的宽+2个纸边的宽度)=整个挂图的面积,由此可得出方程.【详解】依题意,设金色纸边的宽为xcm ,则:()()8025025400x x ++=,整理得出:2653500x x +-=.故选:B .【点睛】本题主要考查了由实际问题抽象出一元二次方程,对于面积问题应熟记各种图形的面积公式,然后根据题意列出方程是解题关键.。
2017-2018学年人教版初三数学第一学期期末试卷含答案

2017-2018学年九年级(上)期末数学试卷一、选择题(本题10小题,每小题3分,共30分)1.反比例函数y=﹣的图象在()A.第一、三象限 B.第一、二象限 C.第二、四象限 D.第三、四象限2.如果两个相似三角形对应边的比为2:3,那么这两个相似三角形面积的比是()A.2:3 B.:C.4:9 D.8:273.一个几何体的三视图如图所示,则该几何体的形状可能是()A.B.C.D.4.已知反比例函数y=的图象经过点(3,2),那么下列四个点中,也在这个函数图象上的是()A.(3,﹣2)B.(﹣2,﹣3) C.(1,﹣6)D.(﹣6,1)5.下列一元二次方程中,有两个相等实数根的是()A.x2﹣8=0 B.2x2﹣4x+3=0 C.9x2﹣6x+1=0 D.5x+2=3x26.已知两点A(4,6),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则点A的对应点C的坐标为()A.(2,3) B.(3,1) C.(2,1) D.(3,3)7.若ab<0,则正比例函数y=ax与反比例函数y=在同一坐标系中的大致图象可能是()A.B.C.D.8.如图,点P是▱ABCD边AB上的一点,射线CP交DA的延长线于点E,则图中相似的三角形有()A.0对B.1对C.2对D.3对9.某商品经过连续两次降价,销售单价由原来200元降到162元.设平均每次降价的百分率为x,根据题意可列方程为()A.200(1﹣x)2=162 B.200(1+x)2=162 C.162(1+x)2=200 D.162(1﹣x)2=200 10.将抛物线y=x2+1先向左平移2个单位,再向下平移4个单位,那么所得到的抛物线的函数关系式是()A.y=(x+2)2+3 B.y=(x+2)2﹣3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣3二、填空题(本题4个小题,每小题4分,共16分)11.如果=,那么的值等于______.12.在Rt△ABC中,若∠C=90°,BC=1,AC=2,tanB=______.13.如图,点P是反比例函数y=﹣图象上一点,PM⊥x轴于M,则△POM的面积为______.14.如图,△ABC中,点D、E分别在边AB、BC上,DE∥AC.若BD=4,DA=2,BE=3,则EC=______.三、解答题(15题每小题12分,16题6分,共18分)15.(12分)(2015秋•崇州市期末)(1)解方程:x2﹣2x﹣3=0(2)计算:(π﹣)0+()﹣1﹣﹣tan60°.16.已知:如图,△ABC中,AD=DB,∠1=∠2.求证:△ABC∽△EAD.四、解答题17.如图,某建筑物BC顶部有一旗杆AB,且点A,B,C在同一条直线上,小红在D处观测旗杆顶部A的仰角为47°,观测旗杆底部B的仰角为42°已知点D到地面的距离DE为1.56m,EC=21m,求旗杆AB的高度和建筑物BC的高度(结果保留小数后一位).参考数据:tan47°≈1.07,tan42°≈0.90.18.有两个构造完全相同(除所标数字外)的转盘A、B,游戏规定:转动两个转盘各一次,指向大的数字获胜.(1)用树状图或列表格列出两个转盘转出的所有可能出现的结果;(2)如果由你和小明各选择一个转盘游戏,你会选择哪一个,为什么?五、解答题(19题10分,20题10分,共20分)19.(10分)(2015秋•崇州市期末)如图,已知反比例函数y=与一次函数y=x+b的图形在第一象限相交于点A(1,﹣k+4).(1)试确定这两函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标,并求△AOB的面积;(3)根据图象直接写出反比例函数值大于一次函数值的x的取值范围.20.(10分)(2015秋•崇州市期末)如图,在△ABC中,BA=BC=20cm,AC=30cm,点P从A出发,沿AB以4cm/s的速度向点B运动;同时点Q从C点出发,沿CA以3cm/s 的速度向A点运动.设运动时间为x(s).(1)当x为何值时,PQ∥BC;(2)当△APQ与△CQB相似时,AP的长为______;(3)当S△BCQ:S△ABC=1:3,求S△APQ:S△ABQ的值.一、填空题(本题共5个小题,每小题4分,共20分)21.已知a、b是方程x2﹣2015x+1=0的两根,则a2﹣2014a+b的值为______.22.甲乙两人玩猜数字游戏,规则如下:有四个数分别为1,2,3,4,先由甲在心中任想其中一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b.若|a﹣b|≤1,则称甲乙“心有灵犀”.现任意找两人玩这个游戏,得出他们“心有灵犀”的概率为______.23.如图,已知二次函数y=ax2+bx+c的图象如图所示,给出以下四个结论:①abc=0;②a+b+c>0;③a>b;④4ac﹣b2<0.其中正确结论有______.24.如图,点A(m,2),B(5,n)在函数y=(k>0,x>0)的图象上,将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′.图中阴影部分的面积为8,则k的值为______.25.如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为______.二、解答题26.某蔬菜经销商去蔬菜生产基地批发某种蔬菜,已知这种蔬菜的批发量在20千克~60千克之间(含20千克和60千克)时,每千克批发价是5元;若超过60千克时,批发的这种蔬菜全部打八折,但批发总金额不得少于300元.(1)根据题意,填写如表:(2)经调查,该蔬菜经销商销售该种蔬菜的日销售量y(千克)与零售价x(元/千克)是一次函数关系,其图象如图,求出y与x之间的函数关系式;(3)若该蔬菜经销商每日销售此种蔬菜不低于75千克,且当日零售价不变,那么零售价定为多少时,该经销商销售此种蔬菜的当日利润最大?最大利润为多少元?27.(10分)(2015•天津)将一个直角三角形纸片ABO,放置在平面直角坐标系中,点A(,0),点B(0,1),点0(0,0).过边OA上的动点M(点M不与点O,A 重合)作MN丄AB于点N,沿着MN折叠该纸片,得顶点A的对应点A′,设OM=m,折叠后的△AM′N与四边形OMNB重叠部分的面积为S.(Ⅰ)如图①,当点A′与顶点B重合时,求点M的坐标;(Ⅱ)如图②,当点A′,落在第二象限时,A′M与OB相交于点C,试用含m的式子表示S;(Ⅲ)当S=时,求点M的坐标(直接写出结果即可).28.(12分)(2015•通辽)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的顶点为B(2,1),且过点A(0,2),直线y=x与抛物线交于点D,E(点E在对称轴的右侧),抛物线的对称轴交直线y=x于点C,交x轴于点G,EF⊥x轴,垂足为F,点P 在抛物线上,且位于对称轴的右侧,PQ⊥x轴,垂足为点Q,△PCQ为等边三角形(1)求该抛物线的解析式;(2)求点P的坐标;(3)求证:CE=EF;(4)连接PE,在x轴上点Q的右侧是否存在一点M,使△CQM与△CPE全等?若存在,试求出点M的坐标;若不存在,请说明理由.[注:3+2=(+1)2].2017-2018学年九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题10小题,每小题3分,共30分)1.反比例函数y=﹣的图象在()A.第一、三象限 B.第一、二象限 C.第二、四象限 D.第三、四象限【考点】反比例函数的性质.【分析】根据反比例函数y=(k≠0)的图象是双曲线;当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大进行解答.【解答】解:∵k=﹣1,∴图象在第二、四象限,故选:C.【点评】此题主要考查了反比例函数的性质,关键是掌握反比例函数图象的性质.2.如果两个相似三角形对应边的比为2:3,那么这两个相似三角形面积的比是()A.2:3 B.:C.4:9 D.8:27【考点】相似三角形的性质.【分析】根据相似三角形的面积的比等于相似比的平方,据此即可求解.【解答】解:两个相似三角形面积的比是(2:3)2=4:9.故选C.【点评】本题考查对相似三角形性质的理解.(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.3.一个几何体的三视图如图所示,则该几何体的形状可能是()A.B.C.D.【考点】由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:由主视图和左视图可得此几何体上面为台,下面为柱体,由俯视图为圆环可得几何体为.故选D.【点评】此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.4.已知反比例函数y=的图象经过点(3,2),那么下列四个点中,也在这个函数图象上的是()A.(3,﹣2)B.(﹣2,﹣3) C.(1,﹣6)D.(﹣6,1)【考点】反比例函数图象上点的坐标特征.【分析】把已知点坐标代入反比例解析式求出k的值,即可做出判断.【解答】解:把(2,3)代入反比例解析式得:k=6,∴反比例解析式为y=,则(﹣2,﹣3)在这个函数图象上,故选B.【点评】此题考查了反比例函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.5.下列一元二次方程中,有两个相等实数根的是()A.x2﹣8=0 B.2x2﹣4x+3=0 C.9x2﹣6x+1=0 D.5x+2=3x2【考点】根的判别式.【分析】分别求出各个选项中一元二次方程的根的判别式,进而作出判断.【解答】解:A、x2﹣8=0,△=32>0,方程有两个不相等的实数根,此选项错误;B、2x2﹣4x+3=0,△=42﹣4×2×3=﹣8<0,方程没有实数根,此选项错误;C、9x2﹣6x+1=0,△=(﹣6)2﹣4×9×1=0,方程有两个相等的实数根,此选项正确;D、5x+2=3x2=,△(﹣5)2﹣4×3×(﹣2)=49>0,方程有两个不相等的实数根,此选项错误;故选C.【点评】本题考查了根的判别式.一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6.已知两点A(4,6),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则点A的对应点C的坐标为()A.(2,3) B.(3,1) C.(2,1) D.(3,3)【考点】位似变换;坐标与图形性质.【分析】由两点A(4,6),B(6,2),以原点O为位似中心,在第一象限内将线段AB 缩小为原来的后得到线段CD,根据位似的性质,即可求得答案.【解答】解:∵A(4,6),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴点A的对应点C的坐标为:(2,3).故选A.【点评】此题考查了位似变换的性质.注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.7.若ab<0,则正比例函数y=ax与反比例函数y=在同一坐标系中的大致图象可能是()A.B.C.D.【考点】反比例函数的图象;正比例函数的图象.【分析】根据ab<0及正比例函数与反比例函数图象的特点,可以从a>0,b<0和a<0,b>0两方面分类讨论得出答案.【解答】解:∵ab<0,∴分两种情况:(1)当a>0,b<0时,正比例函数y=ax数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;(2)当a<0,b>0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项B符合.故选B.【点评】本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.8.如图,点P是▱ABCD边AB上的一点,射线CP交DA的延长线于点E,则图中相似的三角形有()A.0对B.1对C.2对D.3对【考点】相似三角形的判定;平行四边形的性质.【分析】利用相似三角形的判定方法以及平行四边形的性质得出即可.【解答】解:∵四边形ABCD是平行四边形,∴AB∥DC,AD∥BC,∴△EAP∽△EDC,△EAP∽△CBP,∴△EDC∽△CBP,故有3对相似三角形.故选:D.【点评】此题主要考查了相似三角形的判定以及平行四边形的性质,熟练掌握相似三角形的判定方法是解题关键.9.某商品经过连续两次降价,销售单价由原来200元降到162元.设平均每次降价的百分率为x,根据题意可列方程为()A.200(1﹣x)2=162 B.200(1+x)2=162 C.162(1+x)2=200 D.162(1﹣x)2=200 【考点】由实际问题抽象出一元二次方程.【分析】此题利用基本数量关系:商品原价×(1﹣平均每次降价的百分率)=现在的价格,列方程即可.【解答】解:由题意可列方程是:200×(1﹣x)2=168.故选A.【点评】此题考查一元二次方程的应用最基本数量关系:商品原价×(1﹣平均每次降价的百分率)=现在的价格.10.将抛物线y=x2+1先向左平移2个单位,再向下平移4个单位,那么所得到的抛物线的函数关系式是()A.y=(x+2)2+3 B.y=(x+2)2﹣3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣3【考点】二次函数图象与几何变换.【分析】根据平移规律:“左加右减,上加下减”,直接代入函数解析式求得平移后的函数解析式.【解答】解:抛物线y=x2+1先向左平移2个单位,再向下平移4个单位,得y=(x+2)2﹣3,故选:B.【点评】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.二、填空题(本题4个小题,每小题4分,共16分)11.如果=,那么的值等于.【考点】比例的性质.【分析】根据比例的性质,可用b表示a,根据分式的性质,可得答案.【解答】解:由=,得a=.当a=时,===,故答案为:.【点评】本题考查了比例的性质,利用了比例的性质,分式的性质.12.在Rt△ABC中,若∠C=90°,BC=1,AC=2,tanB=2.【考点】锐角三角函数的定义.【分析】由正切的定义可知tanB=,代入计算即可.【解答】解:∵∠C=90°,AC=4,BC=2,∴tanB===2,故答案为:2.【点评】本题主要考查三角函数的定义,掌握正切的定义是解题的关键.13.如图,点P是反比例函数y=﹣图象上一点,PM⊥x轴于M,则△POM的面积为1.【考点】反比例函数系数k的几何意义.【分析】因为过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值|k|,△POD 的面积为矩形面积的一半,即|k|.【解答】解:由于点P是反比例函数y=﹣图象上的一点,所以△POD的面积S=|k|=|﹣2|=1.故答案为:1.【点评】主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y 轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.14.如图,△ABC中,点D、E分别在边AB、BC上,DE∥AC.若BD=4,DA=2,BE=3,则EC=.【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理即可直接求解.【解答】解:∵DE∥AC,∴,即,解得:EC=.故答案为:.【点评】本题考查了平行线分线段成比例定理,理解定理内容是解题的关键.三、解答题(15题每小题12分,16题6分,共18分)15.(12分)(2015秋•崇州市期末)(1)解方程:x2﹣2x﹣3=0(2)计算:(π﹣)0+()﹣1﹣﹣tan60°.【考点】实数的运算;解一元二次方程-因式分解法.【分析】(1)方程利用因式分解法求出解即可;(2)原式利用零指数幂、负整数指数幂,以及特殊角的三角函数值计算即可得到结果.【解答】解:(1)分解得:(x﹣3)(x+1)=0,可得x﹣3=0或x+1=0,解得:x1=3,x2=﹣1;(2)原式=1+2﹣3﹣=3﹣4.【点评】此题考查了实数的运算,以及解一元二次方程﹣因式分解法,熟练掌握运算法则是解本题的关键.16.已知:如图,△ABC中,AD=DB,∠1=∠2.求证:△ABC∽△EAD.【考点】相似三角形的判定.【分析】根据相似三角形的判定,解题时要认真审题,选择适宜的判定方法.【解答】证明:∵AD=DB,∴∠B=∠BAD.∵∠BDA=∠1+∠C=∠2+∠ADE,又∵∠1=∠2,∴∠C=∠ADE.∴△ABC∽△EAD.【点评】此题考查了相似三角形的判定:①有两个对应角相等的三角形相似;②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似.四、解答题17.如图,某建筑物BC顶部有一旗杆AB,且点A,B,C在同一条直线上,小红在D处观测旗杆顶部A的仰角为47°,观测旗杆底部B的仰角为42°已知点D到地面的距离DE为1.56m,EC=21m,求旗杆AB的高度和建筑物BC的高度(结果保留小数后一位).参考数据:tan47°≈1.07,tan42°≈0.90.【考点】解直角三角形的应用-仰角俯角问题.【分析】根据题意分别在两个直角三角形中求得AF和BF的长后求差即可得到旗杆的高度,进而求得BC的高度.【解答】解:根据题意得DE=1.56,EC=21,∠ACE=90°,∠DEC=90°.过点D作DF⊥AC于点F.则∠DFC=90°∠ADF=47°,∠BDF=42°.∵四边形DECF是矩形.∴DF=EC=21,FC=DE=1.56,在直角△DFA中,tan∠ADF=,∴AF=DF•tan47°≈21×1.07=22.47(m).在直角△DFB中,tan∠BDF=,∴BF=DF•tan42°≈21×0.90=18.90(m),则AB=AF﹣BF=22.47﹣18.90=3.57≈3.6(m).BC=BF+FC=18.90+1.56=20.46≈20.5(m).答:旗杆AB的高度约是3.6m,建筑物BC的高度约是20.5米.【点评】此题考查的知识点是解直角三角形的应用,解题的关键是把实际问题转化为解直角三角形问题,先得到等腰直角三角形,再根据三角函数求解.18.有两个构造完全相同(除所标数字外)的转盘A、B,游戏规定:转动两个转盘各一次,指向大的数字获胜.(1)用树状图或列表格列出两个转盘转出的所有可能出现的结果;(2)如果由你和小明各选择一个转盘游戏,你会选择哪一个,为什么?【考点】列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由转盘A获胜的有5种情况,转盘B获胜的有4种情况,即可求得其概率,继而求得答案.【解答】解:(1)画树状图得:则共有9种等可能的结果;(2)选择转盘A.理由:∵转盘A获胜的有5种情况,转盘B获胜的有4种情况,∴P(转盘A)=,P(转盘B)=,∴选择转盘A.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.五、解答题(19题10分,20题10分,共20分)19.(10分)(2015秋•崇州市期末)如图,已知反比例函数y=与一次函数y=x+b的图形在第一象限相交于点A(1,﹣k+4).(1)试确定这两函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标,并求△AOB的面积;(3)根据图象直接写出反比例函数值大于一次函数值的x的取值范围.【考点】反比例函数与一次函数的交点问题.【分析】(1)根据反比例函数y=与一次函数y=x+b的图形在第一象限相交于点A(1,﹣k+4),可以求得k的值,从而可以求得点A的坐标,从而可以求出一次函数y=x+b中b 的值,本题得以解决;(2)将第一问中求得的两个解析式联立方程组可以求得点B的坐标,进而可以求得△AOB 的面积;(3)根据函数图象可以解答本题.【解答】解;(1)∵反比例函数y=与一次函数y=x+b的图形在第一象限相交于点A(1,﹣k+4),∴,解得,k=2,∴点A(1,2),∴2=1+b,得b=1,即这两个函数的表达式分别是:,y=x+1;(2)解得,或,即这两个函数图象的另一个交点B的坐标是(﹣2,﹣1);将y=0代入y=x+1,得x=﹣1,∴OC=|﹣1|=1,∴S△AOB=S△AOC+S△BOC=,即△AOB的面积是;(3)根据图象可得反比例函数值大于一次函数值的x的取值范围是x<﹣2或0<x<1.【点评】本题考查反比例函数与一次函数的交点问题,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.20.(10分)(2015秋•崇州市期末)如图,在△ABC中,BA=BC=20cm,AC=30cm,点P从A出发,沿AB以4cm/s的速度向点B运动;同时点Q从C点出发,沿CA以3cm/s 的速度向A点运动.设运动时间为x(s).(1)当x为何值时,PQ∥BC;(2)当△APQ与△CQB相似时,AP的长为cm或20cm;(3)当S△BCQ:S△ABC=1:3,求S△APQ:S△ABQ的值.【考点】相似三角形的判定与性质.【分析】(1)当PQ∥BC时,根据平行线分线段成比例定理,可得出关于AP,PQ,AB,AC的比例关系式,我们可根据P,Q的速度,用时间x表示出AP,AQ,然后根据得出的关系式求出x的值.(2)本题要分两种情况进行讨论.已知了∠A和∠C对应相等,那么就要分成AP和CQ 对应成比例以及AP和BC对应成比例两种情况来求x的值;(3)当S△BCQ:S△ABC=1:3时,=,于是得到,通过相似三角形的性质得到,即可得到结论.【解答】解:(1)由题意得,PQ平行于BC,则AP:AB=AQ:AC,AP=4x,AQ=30﹣3x∴=∴x=;(2)假设两三角形可以相似,情况1:当△APQ∽△CQB时,CQ:AP=BC:AQ,即有=解得x=,经检验,x=是原分式方程的解.此时AP=cm,情况2:当△APQ∽△CBQ时,CQ:AQ=BC:AP,即有=解得x=5,经检验,x=5是原分式方程的解.此时AP=20cm.综上所述,AP=cm或AP=20cm;故答案为:cm或20cm;(3)当S△BCQ:S△ABC=1:3时,=,∴,由(1)知,PQ∥BC,∴△APQ∽△ABC,∴,∴S△APQ:S△ABQ=2.【点评】本题主要考查了相似三角形的判定和性质,根据三角形相似得出线段比或面积比是解题的关键.一、填空题(本题共5个小题,每小题4分,共20分)21.已知a、b是方程x2﹣2015x+1=0的两根,则a2﹣2014a+b的值为2014.【考点】根与系数的关系.【分析】根据一元二次方程的解的定义得到a2﹣2015a=﹣1,a2=2015a﹣1,再根据根与系数的关系得到a+b=2015,然后把要求的式子进行变形,再代入计算即可.【解答】解:∵a是方程x2﹣2015x+1=0的根,∴a2﹣2015a+1=0,∴a2﹣2015a=﹣1,a2=2015a﹣1,∵a,b是方程x2﹣2015x+1=0的两根,∴a+b=2015,∴a2﹣2014a+b=a2﹣2015a+a+b=﹣1+2015=2014;故答案为:2014.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=.也考查了一元二次方程的解.22.甲乙两人玩猜数字游戏,规则如下:有四个数分别为1,2,3,4,先由甲在心中任想其中一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b.若|a﹣b|≤1,则称甲乙“心有灵犀”.现任意找两人玩这个游戏,得出他们“心有灵犀”的概率为.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与得出他们“心有灵犀”的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,得出他们“心有灵犀”的有10种情况,∴得出他们“心有灵犀”的概率为:=.故答案为:.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.23.如图,已知二次函数y=ax2+bx+c的图象如图所示,给出以下四个结论:①abc=0;②a+b+c>0;③a>b;④4ac﹣b2<0.其中正确结论有①③④.【考点】二次函数图象与系数的关系.【分析】首先根据二次函数y=ax2+bx+c的图象经过原点,可得c=0,所以abc=0;然后根据x=1时,y<0,可得a+b+c<0;再根据图象开口向下,可得a<0,图象的对称轴为x=﹣=﹣,所以b=3a,a>b;最后根据二次函数y=ax2+bx+c图象与x轴有两个交点,可得△>0,所以b2﹣4ac>0,4ac﹣b2<0,据此解答即可.【解答】解:∵二次函数y=ax2+bx+c图象经过原点,∴c=0,∴abc=0,故①正确;∵x=1时,y<0,∴a+b+c<0,故②不正确;∵抛物线开口向下,∴a<0,∵抛物线的对称轴是x=﹣,∴﹣=﹣,∴b=3a,又∵a<0,b<0,∴a>b,故③正确;∵二次函数y=ax2+bx+c图象与x轴有两个交点,∴△>0,∴b2﹣4ac>0,4ac﹣b2<0,故④正确;综上,可得正确结论有3个:①③④.故答案为①③④.【点评】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a 与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y 轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).24.如图,点A(m,2),B(5,n)在函数y=(k>0,x>0)的图象上,将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′.图中阴影部分的面积为8,则k的值为2.【考点】反比例函数系数k的几何意义;平移的性质.【分析】利用平行四边形的面积公式得出M的值,进而利用反比例函数图象上点的性质得出k的值.【解答】解:∵将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′,图中阴影部分的面积为8,∴5﹣m=4,∴m=1,∴A(1,2),∴k=1×2=2.故答案为:2.【点评】此题主要考查了平移的性质和反比例函数系数k的几何意义,得出A点坐标是解题关键.25.如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为16或4.【考点】翻折变换(折叠问题).【分析】根据翻折的性质,可得B′E的长,根据勾股定理,可得CE的长,根据等腰三角形的判定,可得答案.【解答】解:(i)当B′D=B′C时,过B′点作GH∥AD,则∠B′GE=90°,当B′C=B′D时,AG=DH=DC=8,由AE=3,AB=16,得BE=13.由翻折的性质,得B′E=BE=13.∴EG=AG﹣AE=8﹣3=5,∴B′G===12,∴B′H=GH﹣B′G=16﹣12=4,∴DB′===4(ii)当DB′=CD时,则DB′=16(易知点F在BC上且不与点C、B重合).(iii)当CB′=CD时,∵EB=EB′,CB=CB′,∴点E、C在BB′的垂直平分线上,∴EC垂直平分BB′,由折叠可知点F与点C重合,不符合题意,舍去.综上所述,DB′的长为16或4.故答案为:16或4.【点评】本题考查了翻折变换,利用了翻折的性质,勾股定理,等腰三角形的判定.二、解答题26.某蔬菜经销商去蔬菜生产基地批发某种蔬菜,已知这种蔬菜的批发量在20千克~60千克之间(含20千克和60千克)时,每千克批发价是5元;若超过60千克时,批发的这种蔬菜全部打八折,但批发总金额不得少于300元.(1)根据题意,填写如表:(2)经调查,该蔬菜经销商销售该种蔬菜的日销售量y(千克)与零售价x(元/千克)是一次函数关系,其图象如图,求出y与x之间的函数关系式;(3)若该蔬菜经销商每日销售此种蔬菜不低于75千克,且当日零售价不变,那么零售价定为多少时,该经销商销售此种蔬菜的当日利润最大?最大利润为多少元?【考点】二次函数的应用;一次函数的应用.【分析】(1)根据这种蔬菜的批发量在20千克~60千克之间(含20千克和60千克)时,每千克批发价是5元,可得60×5=300元;若超过60千克时,批发的这种蔬菜全部打八折,则90×5×0.8=360元;(2)把点(5,90),(6,60)代入函数解析式y=kx+b(k≠0),列出方程组,通过解方程组求得函数关系式;(3)利用最大利润=y(x﹣4),进而利用配方法求出函数最值即可.【解答】解:(1)由题意知:当蔬菜批发量为60千克时:60×5=300(元),当蔬菜批发量为90千克时:90×5×0.8=360(元).故答案为:300,360;(2)设该一次函数解析式为y=kx+b(k≠0),把点(5,90),(6,60)代入,得,解得.故该一次函数解析式为:y=﹣30x+240;(3)设当日可获利润w(元),日零售价为x元,由(2)知,w=(﹣30x+240)(x﹣5×0.8)=﹣30(x﹣6)2+120,﹣30x+240≥75,即x≤5.5,当x=5.5时,当日可获得利润最大,最大利润为112.5元.【点评】此题主要考查了一次函数的应用以及二次函数的应用,得出y与x的函数关系式是解题关键.27.(10分)(2015•天津)将一个直角三角形纸片ABO,放置在平面直角坐标系中,点A(,0),点B(0,1),点0(0,0).过边OA上的动点M(点M不与点O,A 重合)作MN丄AB于点N,沿着MN折叠该纸片,得顶点A的对应点A′,设OM=m,折叠后的△AM′N与四边形OMNB重叠部分的面积为S.(Ⅰ)如图①,当点A′与顶点B重合时,求点M的坐标;(Ⅱ)如图②,当点A′,落在第二象限时,A′M与OB相交于点C,试用含m的式子表示S;(Ⅲ)当S=时,求点M的坐标(直接写出结果即可).【考点】一次函数综合题.【分析】(Ⅰ)根据折叠的性质得出BM=AM,再由勾股定理进行解答即可;(Ⅱ)根据勾股定理和三角形的面积得出△AMN,△COM和△ABO的面积,进而表示出S的代数式即可;(Ⅲ)把S=代入解答即可.【解答】解:(Ⅰ)在Rt△ABO中,点A(,0),点B(0,1),点O(0,0),∴OA=,OB=1,由OM=m,可得:AM=OA﹣OM=﹣m,根据题意,由折叠可知△BMN≌△AMN,∴BM=AM=﹣m,在Rt△MOB中,由勾股定理,BM2=OB2+OM2,可得:,解得m=,∴点M的坐标为(,0);(Ⅱ)在Rt△ABO中,tan∠OAB=,∴∠OAB=30°,。
《试卷3份集锦》新疆名校2017-2018年九年级上学期数学期末达标测试试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)∠为31︒,扶梯长AB为9米,则扶梯高AC的长为()1.如图,某超市自动扶梯的倾斜角ABCA.9sin31︒米B.9cos31︒米C.9tan31︒米D.9米【答案】A【详解】解:由题意,在Rt△ABC中,∠ABC=31°,由三角函数关系可知,AC=AB•sinα=9sin31°(米).故选A.【点睛】本题主要考查了三角函数关系在直角三角形中的应用.2.如图,点B,C,D在⊙O上,若∠BCD=30°,则∠BOD的度数是()A.75°B.70°C.65°D.60°【答案】D【分析】根据在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得答案.【详解】∵∠BCD=30°,∴∠BOD=2∠BCD=2×30°=60°.故选:D.【点睛】本题考查了圆的角度问题,掌握圆周角定理是解题的关键.4,3,那么sinα的值是()3.如图,在平面直角坐标系中,点A的坐标为()A.34B.43C.45D.35【答案】D【分析】过A作AB⊥x轴于点B,在Rt△AOB中,利用勾股定理求出OA,再根据正弦的定义即可求解. 【详解】如图,过A作AB⊥x轴于点B,∵A的坐标为(4,3)∴OB=4,AB=3,在Rt△AOB中,2222OA=OB AB=43++∴AB3 sin==OA5α故选:D.【点睛】本题考查求正弦值,利用坐标求出直角三角形的边长是解题的关键.4.下列各式计算正确的是()A235=B.43331=C.233363=2733=【答案】D【分析】根据二次根式的加减法对A、B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法法则对D进行判断.【详解】A.2与3不能合并,所以A选项错误;B. 原式=3,所以B选项错误;C. 原式=6×3=18,所以C选项错误;D. 原式27393,=÷==所以D选正确.故选D.【点睛】考查二次根式的运算,熟练掌握二次根式加减乘除的运算法则是解题的关键.5.反比例函数y=kx和一次函数y=kx-k在同一坐标系中的图象大致是( )A.B.C.D.【答案】C【解析】由于本题不确定k的符号,所以应分k>0和k<0两种情况分类讨论,针对每种情况分别画出相应的图象,然后与各选项比较,从而确定答案.【详解】(1)当k>0时,一次函数y=kx-k 经过一、三、四象限,反比例函数经过一、三象限,如图所示:(2)当k<0时,一次函数y=kx-k经过一、二、四象限,反比例函数经过二、四象限.如图所示:故选C.【点睛】本题考查了反比例函数、一次函数的图象.灵活掌握反比例函数的图象性质和一次函数的图象性质是解决问题的关键,在思想方法方面,本题考查了数形结合思想、分类讨论思想.6.下列事件中,属于必然事件的是()A.明天的最高气温将达35℃B.任意购买一张动车票,座位刚好挨着窗口C.掷两次质地均匀的骰子,其中有一次正面朝上D.对顶角相等【答案】D【解析】A、明天最高气温是随机的,故A选项错误;B、任意买一张动车票,座位刚好挨着窗口是随机的,故B选项错误;C、掷骰子两面有一次正面朝上是随机的,故C选项错误;D、对顶角一定相等,所以是真命题,故D选项正确.【详解】解:“对顶角相等”是真命题,发生的可能性为100%,故选:D.【点睛】本题的考点是随机事件.解决本题需要正确理解必然事件的概念:必然事件指在一定条件下一定发生的事件.7.在平面直角坐标系中,将抛物线y=x2的图象向左平移3个单位、再向下平移2个单位所得的抛物线的函数表达式为()A.y=(x-3)2-2 B.y=(x-3)2+2 C.y=(x+3)2-2 D.y=(x+3)2+2【答案】C【解析】先确定抛物线y=x2的顶点坐标为(0,0),再根据点平移的规律得到点(0,0)向左平移3个单位、再向下平移2个单位所得对应点的坐标为,然后利用顶点式写出新抛物线解析式即可.【详解】抛物线y=x2的顶点坐标为(0,0),把点(0,0) 向左平移3个单位、再向下平移2个单位所得对应点的坐标为,所以平移后的抛物线解析式为y=(x+3)2-2.故选:C.【点睛】考查二次函数的平移,掌握二次函数平移的规律是解题的关键.8.如图,△ABC中,AB=25,BC=7,CA=1.则sinA的值为()A.725B.2425C.724D.247【答案】A【分析】根据勾股定理逆定理推出∠C=90°,再根据sin=BCAAB进行计算即可;【详解】解:∵AB=25,BC=7,CA=1,又∵22225=247+,∴222=AB BC AC +,∴△ABC 是直角三角形,∠C=90°, ∴sin =BC A AB =725; 故选A. 【点睛】 本题主要考查了锐角三角函数的定义,勾股定理逆定理,掌握锐角三角函数的定义,勾股定理逆定理是解题的关键.9.Rt ABC ∆中,90C ∠=︒,若4AB =,4cos 5A =,则AC 的长为( ) A .125 B .165 C .203D .5 【答案】B【分析】根据题意,可得cos AC A AB ==45,又由AB=4,代入即可得AC 的值. 【详解】解:∵Rt ABC ∆中,90C ∠=︒,4cos 5A =, ∴cos AC A AB ==45. ∴AC=45AB=454⨯=165 . 故选B.【点睛】本题考查解直角三角形、勾股定理,解答本题的关键是明确题意,利用锐角三角函数和勾股定理解答. 10.下列图象能表示y 是x 的函数的是( )A .B .C .D .【答案】D【解析】根据函数的定义可知,满足对于x 的每一个取值,y 都有唯一确定的值与之对应关系,据此即可确定答案.【详解】A .如图,,对于该x 的值,有两个y 值与之对应,不是函数图象; B .如图,,对于该x 的值,有两个y 值与之对应,不是函数图象;C .如图,对于该x 的值,有两个y 值与之对应,不是函数图象;D .对每一个x 的值,都有唯一确定的y 值与之对应,是函数图象.故选:D .【点睛】本题考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x ,y ,对于x 的每一个取值,y 都有唯一确定的值与之对应,则y 是x 的函数,x 叫自变量.11.下列方程中,没有实数根的是( )A .20x x +=B .220x -=C .210x x +-=D .210x x -+=【答案】D【分析】要判定所给方程根的情况,只要分别求出它们的判别式,然后根据判别式的正负情况即可作出判断.没有实数根的一元二次方程就是判别式的值小于0的方程.【详解】解:A 、x 2+x=0中,△=b 2-4ac=1>0,有实数根;B 、x 2-2=0中,△=b 2-4ac=8>0,有实数根;C 、x 2+x-1=0中,△=b 2-4ac=5>0,有实数根;D 、x 2-x+1=0中,△=b 2-4ac=-3,没有实数根.故选D .【点睛】本题考查一元二次方程根判别式△:即(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.12.如图,在Rt△ABC中,CD是斜边AB上的中线,已知AC=3,CD=2,则cosA的值为()A.34B.43C.73D.74【答案】A【分析】利用直角三角形的斜边中线与斜边的关系,先求出AB,再利用直角三角形的边角关系计算cosA.【详解】解:∵CD是Rt△ABC斜边AB上的中线,∴AB=2CD=4,∴cosA=ACAB=34.故选A.【点睛】本题考查了直角三角形斜边的中线与斜边的关系、锐角三角函数.掌握直角三角形斜边的中线与斜边的关系是解决本题的关键.在直角三角形中,斜边的中线等于斜边的一半.二、填空题(本题包括8个小题)13.在平面直角坐标系内,一次函数y=k1x+b1与y=k2x+b2的图象如图所示,则关于x,y的方程组1122y k x by k x b-=⎧⎨-=⎩的解是________.【答案】21xy=⎧⎨=⎩.【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标求解.【详解】∵一次函数y=k1x+b1与y=k2x+b2的图象的交点坐标为(2,1),∴关于x,y的方程组1122y k x by k x b-=⎧⎨-=⎩的解是21xy=⎧⎨=⎩.故答案为21 xy=⎧⎨=⎩.【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标.14.如图,一个小球由地面沿着坡度i=1:2的坡面向上前进了10m,此时小球距离出发点的水平距离为__m.【答案】45.【分析】可利用勾股定理及所给的比值得到所求的线段长.【详解】如图,∵AB=10米,tanA=BCAC=12.∴设BC=x,AC=2x,由勾股定理得,AB2=AC2+BC2,即100=x2+4x2,解得x=25,∴AC=45米.故答案为45.【点睛】本题主要考查了解直角三角形的应用-坡度坡角问题,能从实际问题中整理出直角三角形是解答本题的关键.15.如图,一渔船由西往东航行,在A点测得海岛C位于北偏东60°的方向,前进20海里到达B点,此时,测得海岛C位于北偏东30°的方向,则海岛C到航线AB的距离CD等于海里.【答案】【详解】试题分析:BD设为x,因为C位于北偏东30°,所以∠BCD=30°在RT△BCD中,BD=x,CD=,又∵∠CAD=30°,在RT△ADC中,AB=20,AD=20+x,又∵△ADC ∽△CDB ,所以, 即:,求出x =10,故CD =.考点:1、等腰三角形;2、三角函数16.从1,2,﹣3三个数中,随机抽取两个数相乘,积是偶数的概率是_____. 【答案】23 【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与随机抽取两个数相乘,积是偶数的情况,再利用概率公式求解即可求得答案.【详解】解:画树状图得:∵共有6种等可能的结果,随机抽取两个数相乘,积是偶数的有4种情况,∴随机抽取两个数相乘,积是偶数的概率是4263=; 故答案为:23. 【点睛】此题考查了用列表法或树状图法求概率.列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.17.当x =________时,24x -的值最小.【答案】2x =【分析】根据二次根式的意义和性质可得答案.【详解】解:由二次根式的性质可知240x -≥,当2x =时,24x -取得最小值0故答案为2【点睛】本题考查二次根式的“双重非负性”即“根式内的数或式大于等于零”和“根式的计算结果大于等于零” 18.如图,在Rt ACB ∆中,90ACB ∠=︒,28CAB ∠=︒,若CD 为斜边上的中线,则BCD ∠的度数为________.【答案】62︒【分析】先根据直角三角形的性质得出AD=CD ,进而根据等边对等角得出=28ACD CAB =︒∠∠,再根据90BCD ACD ∠=︒-∠即得.【详解】∵CD 为Rt ACB △斜边上的中线∴AD=CD∴=28ACD CAB =︒∠∠∵90ACB ∠=︒∴90=62BCD ACD =︒-︒∠∠故答案为:62︒.【点睛】本题考查直角三角形的性质及等腰三角形的性质,解题关键是熟知直角三角形斜边上的中线等于斜边的一半.三、解答题(本题包括8个小题)19.关于x 的一元二次方程(k+1)x 2﹣3x ﹣3k ﹣2=0有一个根为﹣1,求k 的值及方程的另一个根.【答案】k =1,x =52 【分析】将x =﹣1代入原方程可求出k 值的值,然后根据根与系数的关系即可求出另外一根.【详解】将x =﹣1代入(k+1)x 2﹣3x ﹣3k ﹣2=0,∴k =1,∴该方程为2x 2﹣3x ﹣5=0,设另外一根为x ,由根与系数的关系可知:﹣x =52-, ∴x =52. 【点睛】本题考查了根与系数的关系,能熟记根与系数的关系的内容是解题的关键.20.如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于点D ,且∠D=2∠CAD .(1)求∠D 的度数;(2)若CD=2,求BD 的长.【答案】(1)45°;(2)222-.【解析】试题分析:(1)根据等腰三角形性质和三角形外角性质求出∠COD=2∠A,求出∠D=∠COD,根据切线性质求出∠OCD=90°,即可求出答案;(2)求出OC=CD=2,根据勾股定理求出BD即可.试题解析:(1)∵OA=OC,∴∠A=∠ACO,∴∠COD=∠A+∠ACO=2∠A,∵∠D=2∠A,∴∠D=∠COD,∵PD切⊙O于C,∴∠OCD=90°,∴∠D=∠COD=45°;(2)∵∠D=∠COD,CD=2,∴OC=OB=CD=2,在Rt△OCD中,由勾股定理得:22+22=(2+BD)2,解得:BD=222-.考点:切线的性质21.如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于C点,OA=2,OC=6,连接AC和BC.(1)求抛物线的解析式;(2)点D在抛物线的对称轴上,当△ACD的周长最小时,求点D的坐标;(3)点E是第四象限内抛物线上的动点,连接CE和BE.求△BCE面积的最大值及此时点E的坐标;【答案】(1)y=x2﹣x﹣6;(2)点D的坐标为(12,﹣5);(3)△BCE的面积有最大值278,点E坐标为(32,﹣214).【分析】(1)先求出点A,C的坐标,再将其代入y=x2+bx+c即可;(2)先确定BC交对称轴于点D,由两点之间线段最短可知,此时AD+CD有最小值,而AC的长度是定值,故此时△ACD的周长取最小值,求出直线BC的解析式,再求出其与对称轴的交点即可;(3)如图2,连接OE,设点E(a,a2﹣a﹣6),由式子S△BCE=S△OCE+S△OBE﹣S△OBC即可求出△BCE的面积S 与a的函数关系式,由二次函数的图象及性质可求出△BCE的面积最大值,并可写出此时点E坐标.【详解】解:(1)∵OA=2,OC=6,∴A(﹣2,0),C(0,﹣6),将A(﹣2,0),C(0,﹣6)代入y=x2+bx+c,得4206b cc-+=⎧⎨=-⎩,解得,b=﹣1,c=﹣6,∴抛物线的解析式为:y=x2﹣x﹣6;(2)在y=x2﹣x﹣6中,对称轴为直线x=12,∵点A与点B关于对称轴x=12对称,∴如图1,可设BC交对称轴于点D,由两点之间线段最短可知,此时AD+CD有最小值,而AC的长度是定值,故此时△ACD的周长取最小值,在y=x2﹣x﹣6中,当y=0时,x1=﹣2,x2=3,∴点B的坐标为(3,0),设直线BC的解析式为y=kx﹣6,将点B(3,0)代入,得,k=2,∴直线BC的解析式为y=2x﹣6,当x=12时,y=﹣5,∴点D的坐标为(12,﹣5);(3)如图2,连接OE,设点E(a,a2﹣a﹣6),S△BCE=S△OCE+S△OBE﹣S△OBC=12×6a+12×3(﹣a2+a+6)﹣12×3×6=﹣32a2+92a=﹣32(a﹣32)2+278,根据二次函数的图象及性质可知,当a=32时,△BCE的面积有最大值278,当a=32时,22332166224a a⎛⎫=--=-⎪⎝⎭﹣﹣∴此时点E坐标为(32,﹣214).【点睛】本题考查的是二次函数的综合,难度适中,第三问解题关键是找出面积与a的关系式,再利用二次函数的图像与性质求最值.22.为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)求∠APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?.【答案】(1)30°;(2)海监船继续向正东方向航行是安全的.【分析】(1)根据直角的性质和三角形的内角和求解;(2)过点P作PH⊥AB于点H,根据解直角三角形,求出点P到AB的距离,然后比较即可.【详解】解:(1)在△APB中,∠PAB=30°,∠ABP=120°∴∠APB=180°-30°-120°=30°(2)过点P作PH⊥AB于点H在Rt △APH 中,∠PAH=30°,AH=3PH 在Rt △BPH 中,∠PBH=30°,BH=3PH ∴AB=AH-BH=23PH=50 解得PH=253>25,因此不会进入暗礁区,继续航行仍然安全.考点:解直角三角形23.如图,在ABC 中,90ACB ∠=︒,CD 是AB 边上的中线,过点A 作AE CD ⊥,垂足为M ,交BC 于点E ,2AM CM =.(1)求sin B 的值:(2)若5CD =BC 的长.【答案】(15;(2)4 【分析】(1)根据∠ACB=90°,CD 是斜边AB 上的中线,可得出CD=BD ,则∠B=∠BCD ,再由AE ⊥CD ,可证明∠B=∠CAM ,由AM=2CM ,可得出CM :AC=15sinB 的值;(2)根据sinB 的值,可得出AC :AB=15AB=25AC=2,根据勾股定理即可得出结论.【详解】(1)∵90ACB ∠=︒,CD 是斜边AB 的中线,∴CD BD =,∴B DCB ∠=∠,∵AE CD ⊥,∴90ACD CAM ∠+∠=︒.∵90DCB ACD ∠+∠=︒,∴DCB CAM ∠=∠.∴B CAM ∠=∠.在Rt ACM 中,∵2AM CM =,∴()222225AC AM CM CM CM CM =+=+=.∴5sin sin 555CM B CAM AC CM =∠====. (2)∵5CD =,∴225AB CD ==.由(1)知5sin 5B =, ∴5sin 2525AC AB B =⨯=⨯=. ∴()22222524BC AB AC =-=-=.【点睛】 本题主要考查了勾股定理和锐角三角比,熟练掌握根据锐角三角比解直角三角形是解题的关键. 24.如图,在△ABC 中,AB =4cm ,AC =6cm .(1)作图:作BC 边的垂直平分线分别交与AC ,BC 于点D ,E (用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连结BD ,求△ABD 的周长.【答案】(1)详见解析;(2)10cm .【分析】(1)运用作垂直平分线的方法作图,(2)运用垂直平分线的性质得出BD =DC ,利用△ABD 的周长=AB+BD+AD =AB+AC 即可求解.【详解】解:(1)如图1,(2)如图2,∵DE 是BC 边的垂直平分线,∴BD =DC ,∵AB =4cm ,AC =6cm .∴△ABD 的周长=AB+BD+AD =AB+AC =4+6=10cm .【点睛】本题考查的是尺规作图以及线段垂直平分线的性质:线段垂直平分线上的点到线段两端的距离相等, 25.为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y (千克)与销售价x (元/千克)有如下关系:y=﹣2x+1.设这种产品每天的销售利润为w 元. (1)求w 与x 之间的函数关系式.(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?【答案】 (1)2w 2x 120x 1600=-+-;(2) 该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润2元;(3)该农户想要每天获得150元的销售利润,销售价应定为每千克25元.【分析】(1)根据销售额=销售量×销售价单x ,列出函数关系式.(2)用配方法将(2)的函数关系式变形,利用二次函数的性质求最大值.(3)把y=150代入(2)的函数关系式中,解一元二次方程求x ,根据x 的取值范围求x 的值.【详解】解:(1)由题意得:()()()2w x 20y x 202x 802x 120x 1600=-⋅=--+=-+-, ∴w 与x 的函数关系式为:2w 2x 120x 1600=-+-.(2)()22w 2x 120x 16002x 30200=-+-=--+,∵﹣2<0,∴当x=30时,w 有最大值.w 最大值为2.答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润2元.(3)当w=150时,可得方程﹣2(x ﹣30)2+2=150,解得x 1=25,x 2=3.∵3>28,∴x 2=3不符合题意,应舍去.答:该农户想要每天获得150元的销售利润,销售价应定为每千克25元.26.如图,已知AC 与⊙O 交于,B C 两点,过圆心O 且与⊙O 交于,E D 两点,OB 平分AOC ∠.(1)求证:ACD ∆∽ABO ∆(2)作EF AD ⊥交于,若//EF OC ,3OC =,求EF 的值.【答案】(1)见解析;(2)632EF =-【分析】(1)由题意可得∠BOE=12∠AOC=∠D ,且∠A=∠A ,即可证△ACD ∽△ABO ; (2)由切线的性质和勾股定理可求CD 的长,由相似三角形的性质可求AE=32例可得AE EF AO OC=,即可求EF 的值. 【详解】证明:(1)∵OB 平分AOC ∠ ∴12BOE AOC ∠=∠ 又∵CE 所对圆心角是EOC ∠,所对的圆周角是D ∠ ∴12D EOC ∠=∠ ∴D BOE ∠=∠又∵A A ∠=∠∴ACD ∆∽ABO ∆(2)∵EF AD ⊥,∴090OEF ∠=∵//EF OC ,∴090DOC OEF ∠=∠=∵3OC OD ==, ∴2232CD OC OD =+=∵ACD ∆∽ABO ∆ ∴AD CD AO BO= ∴63222AE AE +=+,∴32AE =, ∵//EF OC , ∴AEF ∆∽AOC ∆∴AE EF AO OC= ∴222322EF =+ ∴632EF =-【点睛】本题考查了相似三角形的判定和性质,圆的有关知识,勾股定理,求出AE 的长是本题的关键. 27.(8分)向阳村2010年的人均收入为12000元,2012年的人均收入为14520元,求人均收入的年平均增长率.【答案】10%.【解析】试题分析:设这两年的平均增长率为x ,根据等量关系“2010年的人均收入×(1+平均增长率)2=2012年人均收入”列方程即可.试题解析:设这两年的平均增长率为x ,由题意得:,解得:(不合题意舍去),. 答:这两年的平均增长率为10%.考点:1.一元二次方程的应用;2.增长率问题.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,点A、B、C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°,∠ACD的度数为()A.10°B.15°C.20°D.30°【答案】C【分析】根据圆周角定理求得∠BOC=100°,进而根据三角形的外角的性质求得∠BDC=70°,然后根据外角求得∠ACD的度数.【详解】解:∵∠A=50°,∴∠BOC=2∠A=100°,∵∠B=30°,∠BOC=∠B+∠BDC,∴∠BDC=∠BOC-∠B=100°-30°=70°,∴∠ACD=70°-50°=20°;故选:C.【点睛】本题考查了圆心角和圆周角的关系及三角形外角的性质,圆心角和圆周角的关系是解题的关键.2.计算11111133557793739+++++⨯⨯⨯⨯⨯的结果是()A.1937B.1939C.3739D.3839【答案】B【分析】把每个分数写成两个分数之差的一半,然后再进行简便运算.【详解】解:原式=1111111111(1) 233557793739⨯-+-+-+-+⋅⋅⋅-=11(1) 239⨯-=1939.故选B.【点睛】本题是一个规律计算题,主要考查了有理数的混合运算,关键是把分数乘法转化成分数减法来计算.3.一件衣服225元,连续两次降价x%后售价为144元,则x=()A.0.2 B.2 C.8 D.20【答案】D【分析】根据该衣服的原价及经过两次降价后的价格,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【详解】解:依题意,得:225(1﹣x%)2=144,解得:x1=20,x2=180(不合题意,舍去).故选:D.【点睛】本题考查一元二次方程的应用,根据题意得出关于x的一元二次方程是解题关键.4.2018年,临江市生产总值为1587.33亿元,请用科学记数法将1587.33亿表示为()A.1587.33×108B.1.58733×1013C.1.58733×1011D.1.58733×1012【答案】C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:用科学记数法将1587.33亿表示为1587.33×108=1.58733×1.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10na 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.下列事件是随机事件的是()A.在一个标准大气压下,水加热到100℃会沸腾B.购买一张福利彩票就中奖C.有一名运动员奔跑的速度是50米/秒D.在一个仅装有白球和黑球的袋中摸球,摸出红球【答案】B【解析】根据事件的类型特点及性质进行判断.【详解】A、是必然事件,选项错误;B、是随机事件,选项错误;C、是不可能事件,选项错误;D、是不可能事件,选项错误.故选B.【点睛】本题考查的是随机事件的特性,熟练掌握随机事件的特性是本题的解题关键.6.如图,直角坐标平面内有一点(2,4)P ,那么OP 与x 轴正半轴的夹角α的余切值为( )A .2B .12C .5D .5【答案】B 【分析】作PA ⊥x 轴于点A ,构造直角三角形,根据三角函数的定义求解.【详解】过P 作x 轴的垂线,交x 轴于点A ,∵P(2,4),∴OA=2,AP=4,.∴4tan 22AP OA α=== ∴1cot 2=α.故选B .【点睛】本题考查的知识点是锐角三角函数的定义,解题关键是熟记三角函数的定义. 7.下列方程是一元二次方程的是( )A .20x -=B .2320x x -=C .30xy +=D .1230x x-+= 【答案】B【分析】一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为ax 2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程.【详解】解:选项A :是一元一次方程,故不符合题意;选项B :只含一个未知数,并且未知数最高次项是2次,是一元二次方程,故符合题意;选项C :有两个未知数,不是一元二次方程,故不符合题意;选项D :不是整式方程,故不符合题意;综上,只有B 正确.故选:B .【点睛】本题考查了一元二次方程的定义,属于基础知识的考查,比较简单.8.已知:如图,某学生想利用标杆测量一棵大树的高度,如果标杆EC 的高为 1.6 m ,并测得BC=2.2 m ,CA=0.8 m, 那么树DB 的高度是( )A .6 mB .5.6 mC .5.4 mD .4.4 m【答案】A 【分析】先根据相似三角形的判定定理得出Rt △ACE ∽Rt △ABD ,再根据相似三角形的对应边成比例即可求出BD 的长.【详解】解:∵EC ∥AB ,BD ⊥AB ,∴EC ∥BD ,∠ACE=∠ABD=90°,在Rt △ACE ∽Rt △ABD 中,∠A=∠A ,∠ACE=∠ABD=90°,∴Rt △ACE ∽Rt △ABD , ∴EC CA BD CA BC =+,即1.60.80.8 2.2BD =+,解得BD=6m .故选A .【点睛】本题考查的是相似三角形的应用,用到的知识点为:相似三角形的对应边成比例.9.对于反比例函数k y x =,如果当2-≤x ≤1-时有最大值4y =,则当x ≥8时,有( ) A .最大值1y =-B .最小值1y =-C .最大值y =12-D .最小值y =12- 【答案】D【解析】解:由当21x -≤≤-时有最大值4y =,得1x =-时,4y =,144k =-⨯=-, 反比例函数解析式为4y x=-, 当8x ≥时,图象位于第四象限,y 随x 的增大而增大,当8x =时,y 最小值为12- 故选D . 10.若关于x 的一元二次方程x 2﹣2x+a ﹣1=0没有实数根,则a 的取值范围是( )A .a <2B .a >2C .a <﹣2D .a >﹣2【答案】B【分析】根据题意得根的判别式0<,即可得出关于a 的一元一次不等式,解之即可得出结论.【详解】∵1a =,2b =-,1c a =-,由题意可知: ()()22424110b ac a =-=--⨯⨯-<⊿,∴a >2,故选:B .【点睛】本题考查了一元二次方程20ax bx c ++=(a ≠0)的根的判别式24b ac =-⊿:当0>,方程有两个不相等的实数根;当0=,方程有两个相等的实数根;当0<,方程没有实数根.11.把分式2a a b-中的a 、b 都扩大3倍,则分式的值( ) A .扩大3倍B .扩大6倍C .不变D .缩小3倍 【答案】C【分析】依据分式的基本性质进行计算即可.【详解】解:∵a 、b 都扩大3倍,∴()3262333a a a a b a b a b⨯==--- ∴分式的值不变.故选:C .【点睛】本题主要考查的是分式的基本性质,熟练掌握分式的基本性质是解题的关键.12.如图,AB 是⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于D ,且AO =CD ,则∠PCA =( )A .30°B .60°C .67.5°D .45°【答案】C【分析】直接利用切线的性质结合等腰三角形的性质得出∠PCA的度数.【详解】解:∵PD切⊙O于点C,∴∠OCD=90°,∵AO=CD,∴OC=DC,∴∠COD=∠D=45°,∵AO=CO,∴∠A=∠ACO=22.5°,∴∠PCA=90°﹣22.5°=67.5°.故选:C.【点睛】此题主要考查了切线的性质以及等腰三角形的性质,正确得出∠COD=∠D=45°是解题关键.二、填空题(本题包括8个小题)13.某一建筑物的楼顶是“人”字型,并铺上红瓦装饰.现知道楼顶的坡度超过0.5时,瓦片会滑落下来.请你根据图中数据判断这一楼顶铺设的瓦片是否会滑落下来?________.(填“会”或“不会”)【答案】不会【分析】根据斜坡的坡度的定义,求出坡度,即可得到答案.【详解】∵∆ABC是等腰三角形,AB=AC=13m,AH⊥BC,∴CH=12BC=12m,∴2213125-=m,∴楼顶的坡度=50.512AHCH=<,∴这一楼顶铺设的瓦片不会滑落下来.故答案是:不会.【点睛】本题主要考查斜坡坡度的定义,掌握坡度的定义,是解题的关键.14.因式分解x3-9x=__________.【答案】x(x+3)(x-3)【分析】先提取公因式x,再利用平方差公式进行分解.【详解】解:x3-9x,=x(x2-9),=x(x+3)(x-3).【点睛】本题主要考查提公因式法分解因式和利用平方差公式分解因式,本题要进行二次分解,分解因式要彻底.15.如图,在43⨯的矩形方框内有一个不规则的区城A(图中阴影部分所示),小明同学用随机的办法求区域A的面积.若每次在矩形内随机产生10000个点,并记录落在区域A内的点的个数,经过多次试验,计算出落在区域A内点的个数的平均值为6700个,则区域A的面积约为___________.【答案】8.04【分析】先利用古典概型的概率公式求概率,再求区域A的面积的估计值.【详解】解:由题意,∵在矩形内随机产生10000个点,落在区域A内点的个数平均值为6700个,∴概率P=67000.67 10000=,∵4×3的矩形面积为12,∴区域A的面积的估计值为:0.67×12=8.04;故答案为:8.04;【点睛】本题考查古典概型概率公式,考查学生的计算能力,属于中档题.16.某数学兴趣小组想测量一棵树的高度,在阳光下,一名同学测得一根长为1m的竹竿的影长为0.5m,同时另一名同学测量一棵树的高度时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上,其中,落在墙壁上的影长为0.8m,落在地面上的影长为4.4m,则树的高为_______m.【答案】9.2【分析】由题意可知在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.经过树在教学楼上的影子的顶端作树的垂线和经过树顶的太阳光线以及树所成三角形,与竹竿,影子光线形成的三角形相似,这样就可求出垂足到树的顶端的高度,再加上墙上的影高就是树高.【详解】解:设从墙上的影子的顶端到树的顶端的垂直高度是x米.则有10.5 4.4x=,解得x=1.1.树高是1.1+0.1=9.2(米).故答案为:9.2.【点睛】本题考查相似三角形的应用,解题的关键是从复杂的数学问题中整理出三角形并利用相似三角形求解. 17.等边三角形ABC绕着它的中心,至少旋转______度才能与它本身重合【答案】120【分析】根据等边三角形的性质,结合图形可以知道旋转角度应该等于120°.【详解】解:等边△ABC绕着它的中心,至少旋转120度能与其本身重合.【点睛】本题考查旋转对称图形及等边三角形的性质.18.已知扇形的圆心角为90°,弧长等于一个半径为5cm的圆的周长,用这个扇形恰好围成一个圆锥的侧面(接缝忽略不计).则该圆锥的高为__________cm.【答案】【分析】利用弧长公式求该扇形的半径,圆锥的轴截面为等腰三角形,其中底边为10,腰为母线即扇形的半径,根据勾股定理求圆锥的高.【详解】解:设扇形半径为R,根据弧长公式得,90R=25180∴R=20,225515.故答案为:.【点睛】本题考查弧长公式,及圆锥的高与母线、底面半径之间的关系,底面周长等于扇形的弧长这个等量关系和勾股定理是解答此题的关键.三、解答题(本题包括8个小题)19.已知:如图,在正方形ABCD中,F是AB上一点,延长CB到E,使BE=BF,连接CF并延长交AE于G.(1)求证:△ABE≌△CBF;(2)将△ABE绕点A逆时针旋转90°得到△ADH,请判断四边形AFCH是什么特殊四边形,并说明理由.。
初中数学2017-2018第一学期期末九数答案

2017—2018学年度第一学期期末教学质量检测九年级数学答案一、选择题:二、填空题:三、解答题:20.解:(1)∵关于x的一元二次方程x2+3x+1﹣m=0有两个不相等的实数根,∴△=b2﹣4ac=32﹣4(1﹣m)>0,………………………………………2分即5+4m>0,解得:m>﹣.………………………………………4分∴m的取值范围为m>﹣.(2)∵m为负整数,且m>﹣,∴m=﹣1 (6)分将m=﹣1代入原方程得:x2+3x+2=0,解得:x1=﹣1,x2=﹣2.………………………………………………………9分故当m=﹣1时,此方程的根为x1=﹣1和x2=﹣2.21.解:(1)根据题意得:3÷15%=20(人)∴参赛学生共20人……………………………………………………………2分B等级人数5人图略…………………………………………………………3分(2)40,72 ………………………………………………………………………5分……………………………………………………………………………………8分所有等可能的结果有6种,其中恰好是一名男生和一名女生的情况有4种,则P恰好是一名男生和一名女生== ………………………………………………………9分 22.解:(1)在Rt△ACE中,cos 22°=ACCE………………………………………………2分 ∴AC = 22cos CE=93.05.22≈24.2m ………………………………………………………4分 答:彩旗的连接线AC 的长是24.2m.(2) 在Rt△ACE 中,tan 22°=CEAE…………………………………………………………………6分 ∴AE =CE ·tan 22° =22.5×0.4 =9m ……………………………………………………………………8分 ∴AB =AE+BE =9+3=12m ………………………………………………………9分23.解:(1)B (3,b ),C (4,b +1) …………………………………………………2分(2)∵双曲线ky x过点B (3,b )和D (2,b +1) ∴3b =2(b+1)…………………………………………………………… 3分解得b=2,…………………………………………………………………4分∴B点坐标为(3,2),D点坐标(2,3)………………………………5分把B点坐标(3,2)代入kyx=,解得k=6;……………………………6分∴当点A(1,b)在双曲线yx=,得到b =4……………………………7分当点C(4,b+1)在双曲线4yx=,得到b=0…………………………8分∴b的取值范围0≤b≤4 ……………………………………………………9分24.证明(1)∵△ABC∽△DEC,CA=CB,∴CE=CD,∠ACB=∠ECD,……………………………………………1分∴∠ACE=∠BCD在△ACE和△BCD中,CA=CB,CE=CD,∠ACE=∠BCD,∴△ACE ≌△BCD .…………………………………………………………3分∴AE =BD . …………………………………………………………………4分 (2)∵△ACE ≌△BCD . ∴∠AEC =∠BDC∵∠DOC =∠EOB ,∴△COD ∽△BOE . ………………………………………………………6分(3)∵△BOE ∽△COD . ∴EOCOBE CD =………………………………………………………………7分 ∵CD =10,BE =5 ∴EOCO =510即12=EO CO …………………………………………………8分 ∵CE =CD=10∴320103232=⨯==CE CO …………………………………………10分25.解:(1)由图像可知,当28≤x ≤188时,V 是x 的一次函数,设函数解析式为V =kx +b ……………………………1分则⎩⎨⎧=+=+01888028b k b k ……………………………………………………………2分 解得⎪⎩⎪⎨⎧=-=9421b k所以3分(3)当V ≥50时,包含V =80,由函数图象可知,当28<x ≤88时,P 随x 的增大而增大,即当x =88时,P 取得最大值,所以当x =88时,P 取得最大为4400.………………………………………10分26.解:(1)24 ………………………………………2分(2)①连接OA 、OF ,由题意得,∠NAD =30°,∠DAM =30°, 故可得∠OAM =30°,则∠OAF =60°, 又∵OA =OF ,∴△OAF 是等边三角形,∵OA =4,∴AF =OA =4;……………………………5分 ②连接B 'F ,此时∠NAD =60°, ∵AB '=8,∠DAM =30°, ∴AF =AB 'cos∠DAM =34238=⨯; ……………………………………………7分此时DM 与⊙O 的位置关系是相离; 过点O 作OE ⊥DM , ∴OE =OM cos∠MOE ∵AM =331623830cos 0==AD 图18-3∴OE =OMcos∠MOE =43282343316>-=⨯⎪⎪⎭⎫⎝⎛- ………………………9分 ∴DM 与⊙O 的位置关系是相离…………………………………………………10分③90° …………………………………………………………………………12分备用图E备用图。
新疆维吾尔自治区2018届九年级上学期期末考试数学试卷含答案
軒纒雄吾余负治区 軒疆生户建设兵团A. 摸出的是3个白球B. 摸出的是3个黑球C. 摸出的是2个白球、1个黑球2. 下列方程中,没有实数根的是 A.= 0C. - 2戈 + 1 = 0D. 摸出的是2个黑球、1个白球B. x 2 -2x -1 =0 D. *2 - 2太 + 2= 02017 -2018学年第一学期期末考试试卷九年级数学中一次摸出3个球,下列事件是不可能事件的是 3. 如图,00的直径仙垂直于弦⑶,垂足为= 15°,半径为2,则弦Ci >的长为 A.2 B.l C .^2D.44. 一元二次方程-2^-1 =0配方后所得的方程为A. (*-2)2=0B. (x - I)2= 2 C. (x - I)2= 1D. (x -2)2= 25. 关于抛物线y =x 2-2x + l ,下列说法错误的是A •开口向上 TB.与*轴有一个交点C.X#称轴是直线^ =1 D •当欠>1时,y 随*的增大而减小 6. 如图,将AABC 在平面内绕点A 逆时针旋转到AAB 'C '的位置,若= 55。
,则ZCW 的 度数为A.35°B.45°C.55°D.65°自治区、兵团2017-2018学年第一学期九年级数学期末考试试卷(人教版)第1页共6页从袋子A7. 某广场绿化工程中有一块长2千米,宽1千米的矩形空地,计划在其中修建两块相同的矩形 绿地,两块绿地之间及周边留有宽度相等的人行通道(如图),并在这些人行通道铺上瓷砖,要求铺瓷砖的面积是矩形空地面积的^•,设人行通道的宽度为x 千米,则下列方程正确的是 A. (2 -3*)(1 - 2x)= 1B. y(2 -3^)(1 -2x) = 1C.^(2 -3*)(1 -2x) = 1D. j(2 -3*)(1 -2x) =28.如图,是二次函数y = ax 2+ bx + c(a 0)的图象的一部分,给出下列命题:①<0; ②6 > 2a;③a + b + c = 0;@8a + c > 0;⑤a*2+ bx + c = 0的两根分别为一 3和1.其中正 确的命题有A.2个B.3个C.4个D.5个二、填空题(本大题共6题,每题3分,共18分,请将正确答案直接写 在题后的横线上) 9. 已知关于》的方程X 2+3x + a = 0有一个根为_ 2,则a = _______ .10. 对于下列图形:①等边三角形;②矩形;③平行四边形;④菱形;⑤正八边形;⑥圆.其中 既是轴对称图形,又是中心对称图形的是 ________ (填写图形的相应编号)11. 某口袋中有红色、黄色、蓝色玻璃球共72个,小明通过多次摸球试验后,发现摸到红球、黄 球、蓝球的频率为35%、25%和40%,估计口M 中黄色玻璃球有: '个.12. 抛物线y =-x 2+bx+c 的部分图象如图所示,则关于%的一元二次方程-x 2+b x + c=0 ’的解为________ _• 13. 60°的圆心角所对的弧长为2OTC IW ,则此弧所在圆的半径为 ____________ .14. 如.图,OO 是AABC 的外接圆,直径仙= 4,AABC = Z/MCJMC 长为 _______________ .(1)画出△ ABC关于原点0成中心对称的△ A, B, C,;(2)写出△A1B1C1的顶点坐标.(3)求出AA'/i的面积.三、解答题(本大题共8题,共50分.解答题应写出文字说明、演算步骤。
2017-2018学年第一学期九年级数学期末试题参考答案
2017—2018学年第一学期期末学业水平检测九年级数学试题参考答案各位老师:提前祝假期快乐,阅卷时请注意:评分标准仅做参考,只要学生作答正确,均可得分。
对于解答题目,答案错误原则上得分不超过分值的一半,有些题目有多种方法,只要做对,13. -3 14.-2 15. 516.2:3 17.24 18.(2,1) 19.解:(1)将x=1代入方程得:9-3a+a-1=0, 解得:a=4……………………………………………………………1分所以方程为:03x 4x 2=++,解得:3-x 1-x 21==,,所以方程的另一根为x=-3。
……………………………………3分(用根与系数的关系来解也可以)(2)证明:⊿=a 2-4×(a -1)= (a -2)2,∵(a -2)2≥0,⊿≥0. ∴不论a 取何实数,该方程都有两个不相等的实数根.………………8分20.解∶(1)21;………………………………………………2分 (2)乙家庭没有孩子,准备生两个孩子所有可能出现得结果有(男,男),(男,女),(女,男),(女,女),一共有4种结果,它们出现得可能性相同,所有结果种,满足“至少有一个是女孩”的结果有三种,所以至少有一个孩子是女孩的概率是43.………………7分 21.由题意得, 在直角ADC ∆中,∠APQ=45°,CD=60米,∴tan45°=ADCD ,即 ………2分 在直角BDC ∆中, ∠BPQ=60°,∴tan60°=CD BD ,即60BD =3, ∴BD=360………4分∴AB=BD-AD=60360-(米)。
答:海丰塔AB 的高为60360-米. ………8分22.(1)证明:连结OD .∵EF AC ⊥∴90DFA ∠=︒,∵AB AC =,∴1C ∠=∠……………………2分∵OB OD =,∴12∠=∠,∴2C ∠=∠ ,∴OD ∥AC …………3分∴90EDO DFA ∠=∠=︒,即OD EF ⊥.∴EF 是⊙O 的切线.…………………………5分(其他方法参照本题标准)(2)解: 连结AD .∵AB 是直径,∴AD BC ⊥.又AB AC =,∴CD=BD=5,在Rt CFD ∆中,DF=4, ∴CF=3…………………………………………6分在Rt CFD ∆中,DF AC ⊥∴CFD ∆∽ADC △ ………………………7分 ∴DC CF DA DF =,即534=DA ,∴320=DA ………………………9 根据勾股定理得:∴2222)320(5+=+=BD AD AB =325……………………10分 23. (1)∵ 四边形AMPN 是矩形,∴PN ∥AB ,PN =AM ,∴△DNP ∽△DAB . ∴ABNP DA DN =. ……………………………………………………2分 ∵AB =160,AD =100,AN =x ,AM =y ,∴160100100y x =-. ∴16058+-=x y . ………………………………………………4分 (2)设花坛AMPN 的面积为S ,则()40005058)16058(2+--=+-==x x x xy S …6分 ∵058<-,∴当50=x 时,S 有最大值, 4000=最大值S . ∴当AM =80,AN =50时,花坛AMPN 的最大面积为4000m 2 ………………8分24. 解:(1)∵直线y =ax +1与x 轴交于点A(-2,0),∴-2a +1=0,解得a =12,∴直线的解析式为y =12x +1,……2分 由PC ⊥x 轴,且PC =2,∴y =2=12x +1,解得x =2, ∴点P 的坐标为(2,2),………………………………3分∵点P 在反比例函数y =k x的图象上,∴k =2×2=4, ∴反比例函数解析式为y =4x.…………………………4分 (2)∵直线y =12x +1与y 轴交于点B ,∴点B 的坐标为(0,1),∴AO =2,OB = 1. ) 12如解图,过点Q 作QH ⊥x 轴于点H ,连接CQ ,则∠QHC =∠AOB =90°.∵点Q 在反比例函数y =4x 的图象上,∴设点Q 的坐标为(t ,4t),t >2, 则QH =4t,CH =t -2,……………………6分 若以点Q 、C 、H 为顶点的三角形S △AOB 相似时,则有两种可能,(ⅰ)当△QCH ∽△BAO 时,AO CH =OB QH ,即QH CH =OB AO =12,∴2×4t=t -2,解得t 1=4,t 2=-2(舍去), 则点Q 的坐标为(4,1);……………………………………7分(ⅱ)当△QCH ∽△ABO 时,AO QH =OB CH ,即QH CH =AO OB =2,∴4t=2(t -2),解得t 1=3+1,t 2=1-3(舍去),则点Q 的坐标为(3+1,23-2).……………………………………8分 综上所述,Q 点的坐标为(4,1)或(1+3,23-2).………………9分25.解:(1)设抛物线解析式为y=a (x+4)(x ﹣2),将B (0,﹣4)代入得:﹣4=﹣8a ,即a=,则抛物线解析式为y=(x+4)(x ﹣2)=x 2+x ﹣4;……………………4分(2)过M 作MN ⊥x 轴,将x=m 代入抛物线得:y=m 2+m ﹣4,即M (m , m 2+m ﹣4),∴MN=|m 2+m ﹣4|=﹣m 2﹣m+4,ON=﹣m ,………………………………6分∵A (﹣4,0),B (0,﹣4),∴OA=OB=4,∴△AMB 的面积为S=S △AMN +S 梯形MNOB ﹣S △AOB=×(4+m )×(﹣m 2﹣m+4)+×(﹣m )×(﹣m 2﹣m+4+4)﹣×4×4=2(﹣m 2﹣m+4)﹣2m ﹣8=﹣m 2﹣4m=﹣(m+2)2+4,当m=﹣2时,S 取得最大值,最大值为4.…………………………10分。
北师大版2017-2018学年九年级(上)期末数学试卷附答案
2017-2018学年九年级(上)期末数学试卷一.选择题(本题满分24分,共有8道小题,每小题3分)1.一元二次方程x2=2x的根是()A.0B.2C.0和2D.0和﹣22.如图图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.3.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1B.k>﹣1且k≠0C.k<1D.k<1且k≠04.把抛物线y=(x+1)2向下平移2个单位,再向右平移1个单位,所得到的抛物线是()A.y=(x+2)2+2B.y=(x+2)2﹣2C.y=x2+2D.y=x2﹣25.如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的,那么点B′的坐标是()A.(﹣2,3)B.(2,﹣3)C.(3,﹣2)或(﹣2,3)D.(﹣2,3)或(2,﹣3)6.如图,反比例函数和正比例函数y2=k2x的图象都经过点A(﹣1,2),若y1>y2,则x的取值范围是()A.﹣1<x<0B.﹣1<x<1C.x<﹣1或0<x<1D.﹣1<x<0或x>17.如图,将矩形ABCD绕点A旋转至矩形A′B′C′D′的位置,此时AC的中点恰好与D点重合,AB′交CD于点E.若AB=3,则△AEC的面积为()A.3B.1.5C.D.8.抛物线y=ax2+bx+c(a≠0)中自变量x和函数值y的部分对应值如下表:﹣﹣﹣﹣﹣从上表可知,下列说法正确的个数是()①抛物线与x轴的一个交点为(﹣2,0);②抛物线与y轴的交点为(0,﹣2);③抛物线的对称轴是:x=1;④在对称轴左侧,y随x增大而增大.A.1B.2C.3D.4二.填空题(本题满分18分,共有6道小题,每小题3分)9.在Rt△ABC中,∠C=90°,sin A=,则tan A=.10.一个不透明的盒子中装有10个黑球和若干个白球,它们除颜色不同外,其余均相同,从盒子中随机摸出一球记下其颜色,再把它放回盒子中摇匀,重复上述过程,共试验400次,其中有240次摸到白球,由此估计盒子中的白球大约有个.11.某厂一月份生产产品50台,计划二、三月份共生产产品120台,设二、三月份平均每月增长率为x,根据题意,可列出方程为.12.如图,直线l1∥l2∥l3,直线AC分别交l1、l2、l3于点A、B、C,直线DF分别交l1、l2、l3于点D、E、F,AC与DF相交于点H,且AH=2HB,BC=5HB,则的值为.13.如图,将边长为6的正方形ABCD折叠,使点D落在AB边的中点E处,折痕为FH,点C落在点Q处,EQ与BC交于点G,则tan∠EGB等于.14.墙角处有若千大小相同的小正方体堆成如图所示实体的立体图形,如果打算搬走其中部分小正方体(不考虑操作技术的限制),但希望搬完后的实体的三种视围分别保持不变,那么最多可以搬走个小正方体.三.作图题(本题满分4分)15.用圆规、直尺作围,不写作法,但要保留作围痕迹.如图,已知∠α,线段b,求作:菱形ABCD,使∠ABC=∠α,边BC=b.四.解答题(本大题满分74分,共有9道小题)16.(8分)解下列方程:(1)x2﹣5x+2=0(2)2(x﹣3)2=x(x﹣3)17.(6分)小敏的爸爸买了某项体育比赛的一张门票,她和哥哥两人都很想去观看.可门票只有一张,读九年级的哥哥想了一个办法,拿了8张扑克牌,将数字为2,3,5,9的四张牌给小敏,将数字为4,6,7,8的四张牌留给自己,并按如下游戏规则进行:小敏和哥哥从各自的四张牌中随机抽出一张,然后将抽出的两张扑克牌数字相加,如果和为偶数,则小敏去;如果和为奇数,则哥哥去.(1)请用画树形图或列表的方法求小敏去看比赛的概率;(2)哥哥设计的游戏规则公平吗?若公平,请说明理由;若不公平,请你设计一种公平的游戏规则.18.(6分)如图,某高楼顶部有一信号发射塔,在矩形建筑物ABCD的A、C两点处测得该塔顶端F的仰角分别为∠α=48°,∠β=65°,矩形建筑物宽度AD=20m,高度DC=33m.计算该信号发射塔顶端到地面的高度FG(结果精确到1m).(参考数据:sin48°≈0.7,cos48°≈0.7,tan48°≈1.1,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)19.(6分)一天晚上,李明利用灯光下的影子长来测量一路灯D的高度.如图,当在点A处放置标杆时,李明测得直立的标杆高AM与影子长AE正好相等,接着李明沿AC方向继续向前走,走到点B处放置同一个标杆,测得直立标杆高BN的影子恰好是线段AB,并测得AB=1.2m,已知标杆直立时的高为1.8m,求路灯的高CD的长.20.(8分)心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y随时间x(分钟)的变化规律如图所示(其中AB,BC分别为线段,CD为双曲线的一部分):(1)分别求出线段AB和曲线CD的函数关系式;(2)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?(3)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?21.(8分)如图,在△ABC中,点D,E分别是边AB和AC的中点,过点C作CF∥AB,交DE的延长线于点F,连接AF,BF.(1)求证:△ADE≌△CFE;(2)若∠AFB=90°,试判断四边形BCFD的形状,并加以证明.22.(10分)某水果店销售某种水果,原来每箱售价60元,每星期可卖200箱,为了促销,该水果店决定降价销售.市场调查反映:每降价1元,每星期可多卖20箱.已知该水果每箱的进价是40元,设该水果每箱售价x元,每星期的销售量为y箱.(1)求y与x之间的函数关系式:(2)当销售量不低于400箱时,每箱售价定为多少元时,每星期的销售利润最大,最大利润多少元?23.(10分)[归纳探究]把长为n(n为正整数)个单位的线段,切成长为1个单位的线段,允许边切边调动,最少要切多少次?我们可以先从特殊入手,通过试验、观察、类比,最后归纳、猜测得出结论.不妨假设最少能切m次,我们来探究m与n之间的关系.如图,当n=1时,最少需要切0次,即m=0.如图,当n=2时,从线段中间最少需要切1,即m=1.如图,当n=3时,第一次切1个单位长的线段,第二次继续切剩余线段1个单位长即可,最少需要切2次,即m=2.如图,当n=4时,第一次切成两根2个单位长的线段,再调动重叠切第二次即可,最少需要切2次,即m=2.如图,当n=5时,第一次切成2个单位长和3个单位长的线段.将两根线段适当调动重叠,再切二次即可,最少需要切3次,即m=3.仿照上述操作方法,请你用语言叙述,当n=16时,所需最少切制次数的方法,如此操作实验,可获得如下表格中的数据:当n=1时,m=0.当1<n≤2时,m=1.当2<n≤4时,m=2.当4<n≤8时,m=3.当8<n≤16时,m=.…根据探究请用m的代数式表示线段n的取值范围:当n=1180时,m=[类比探究]由一维的线段我们可以联想到二维的平面,类比上面问题解决的方法解决如下问题.把边长n(n为正整数)个单位的大正方形,切成边长为1个单位小正方形,允许边切边调动,最少要切多少次?不妨假设最少能切m次,我们来探究m与n之间的关系.通过实验观察:当n=1时,从行的角度分析,最少需要切0次,从列的角度分析,最少需要切0次.最少共切0,即m=0.当n=2时,从行的角度分析,最少需要切1次,从列的角度分析,最少需要切1次,最少共切2,当1<n≤2时,m=2.当n=3时,从行的角度分析,最少需要切2次,从列的角度分析,最少需要切2次,最少共切4,当2<n≤4时,m=4.…当n=8时,从行的角度分析,最少需要切3次,从列的角度分析,最少需要切3次,最少共切6,当4<n≤8时,m=6.当8<n≤16时,m=…根据探究请用m的代数式表示线段n的取值范围:[拓广探究]由二维的平面我们可以联想到三维的立体空间,类比上面问题解决的方法解决如下问题.问题(1):把棱长为4个单位长的大正方体,切成棱长为1个单位小正方体,允许边切边调动,最少要切次.问题(2):把棱长为8个单位长的大正方体,切成棱长为1个单位小正方体,允许边切边调动,最少要切次,问题(3):把棱长为n(n为正整数)个单位长的大正方体,切成边长为1个单位小正方体,允许边切边调动,最少要切次.请用m的代数式表示线段n的取值范围:.24.(12分)如图,在平行四边形ABCD中,AC⊥BC,AB=10.AC=6.动点P在线段BC上从点B出发沿BC方向以每秒1个单位长的速度匀速运动;动点Q在线段DC上从点D出发沿DC的力向以每秒1个单位长的速度匀速运动,过点P作PE⊥BC.交线段AB于点E.若P、Q两点同时出发,当其中一点到达终点时整个运动随之停止,设运动时间为t秒.(1)当t为何值时,QE∥BC?(2)设△PQE的面积为S,求出S与t的函数关系式:(3)是否存在某一时刻t,使得△PQE的面积S最大?若存在,求出此时t的值;若不存在,请说明理由.(4)是否存在某一时刻t,使得点Q在线段EP的垂直平分线上?若存在,求出此时t 的值;若不存在,请说明理由.参考答案1.C.2.A.3.B.4.D.5.D.6.D.7 D 8 B7.解:∵旋转后AC的中点恰好与D点重合,即AD=AC′=AC,∴在Rt△ACD中,∠ACD=30°,即∠DAC=60°,∴∠DAD′=60°,∴∠DAE=30°,∴∠EAC=∠ACD=30°,∴AE=CE,在Rt△ADE中,设AE=EC=x,则有DE=DC﹣EC=AB﹣EC=3﹣x,AD=BC=AB•tan30°=×3=,根据勾股定理得:x2=(3﹣x)2+()2,解得:x=2,∴EC=2,=EC•AD=,则S△AEC8.B.9..10.15.11.50(1+x)+50(1+x)2=120.12..解:设BH=a,则AH=2a,BC=5a,AB=AH+BH=3a,∴AB:BC=3a:5a=3:5,∵l1∥l2∥l3,∴==,13..解:由翻折的性质得,DF=EF,设EF=x,则AF=6﹣x,∵点E是AB的中点,∴AE=BE=×6=3,在Rt△AEF中,AE2+AF2=EF2,即32+(6﹣x)2=x2,解得x=,∴AF=6﹣=,∵∠FEG=∠D=90°,∴∠AEF+∠BEG=90°,∵∠AEF+∠AFE=90°,∴∠AFE=∠BEG,又∵∠A=∠B=90°,∴△AEF∽△BGE,∴=,即=,解得BG=4,∴tan∠EGB=.14.2715.解:如图,菱形ABCD为所作.16.解:(1)∵a=1、b=﹣5,c=2,∴△=25﹣4×1×2=17>0,则x=;(2)∵2(x﹣3)2﹣x(x﹣3)=0,∴(x﹣3)(x﹣6)=0,则x﹣3=0或x﹣6=0,解得:x=3或x=6.17.解:(1)根据题意,我们可以画出如下的树形图:或者:根据题意,我们也可以列出下表:从树形图(表)中可以看出,所有可能出现的结果共有16个,这些结果出现的可能性相等.而和为偶数的结果共有6个,所以小敏看比赛的概率P(和为偶数)==.(2)哥哥去看比赛的概率P(和为奇数)=1﹣=,因为<,所以哥哥设计的游戏规则不公平;如果规定点数之和小于等于10时则小敏(哥哥)去,点数之和大于等于11时则哥哥(小敏)去.则两人去看比赛的概率都为,那么游戏规则就是公平的.或者:如果将8张牌中的2、3、4、5四张牌给小敏,而余下的6、7、8、9四张牌给哥哥,则和为偶数或奇数的概率都为,那么游戏规则也是公平的.(只要满足两人手中点数为偶数(或奇数)的牌的张数相等即可.)18.解:如图,延长AD交FG于点E.(1分)在Rt△FCG中,tanβ=,∴CG=.在Rt△FAE中,tanα=,∴AE=.∵AE﹣CG=AE﹣DE=AD,∴﹣=AD.即﹣=AD.∴FG==115.5≈116.答:该信号发射塔顶端到地面的高度FG约是116m.19.解:设CD长为x米,∵AM⊥EC,CD⊥EC,BN⊥EC,EA=MA,∴MA∥CD∥BN,∴EC=CD=x米,∴△ABN∽△ACD,∴=,即=,解得:x=5.4.经检验,x=5.4是原方程的解,∴路灯高CD为5.4米.20.解:(1)设线段AB所在的直线的解析式为y1=k1x+20,把B(10,40)代入得,k1=2,∴y1=2x+20.设C、D所在双曲线的解析式为y2=,把C(25,40)代入得,k2=1000,∴y2=.(2)当x1=5时,y1=2×5+20=30,当x2=30时,y2==,∴y1<y2∴第30分钟注意力更集中.(3)令y1=36,∴36=2x+20,∴x1=8令y2=36,∴36=,∴x2=≈27.8∵27.8﹣8=19.8>19,∴经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目.21.证明:(1)∵在△ABC中,点D,E分别是边AB和AC的中点,∴AD=DB,AE=CE,DE∥BC,∵CF∥AB,DE=,DF=BC,∴四边形BCFD是平行四边形,DE=DF,∴BD=CF,DE=FE,∴AD=CF,在△ADE和△CFE中,,∴△ADE≌△CFE(SSS);(2)四边形BCFD是菱形,证明:连接CD,由(1)知DE=FE,AE=CE,四边形BCFD是平行四边形,在△AEF和△CED中,,∴△AEF≌△CED(SAS),∴∠AFE=∠CDE,∴AF∥CD,∴∠AFB=∠DOB,∵∠AFB=90°,∴∠DOB=90°,即AF⊥CD,∵四边形BCFD是平行四边形,∴四边形BCFD是菱形.22.解:(1)由题意可得:y=200+20(60﹣x)=﹣20x+1400(0<x<60);(2)设每星期利润为W元,W=(x﹣40)(﹣20x+1400)=﹣20(x﹣55)2+4500,∵﹣20x+1400≥400,∴x≤50,∵﹣20<0,抛物线开口向下,=4000.∴x=50时,W最大值∴每箱售价定为50元时,每星期的销售利润最大,最大利润4000元.23.解:由截取一维线段所得到的图标可知当8<n≤16时,m=4,答案是:8.然后观察左列n的值与右列m的值的关系可以得到2m﹣1<n≤2m答案是:2m﹣1<n≤2m当n=1180时,通过计算可知符合条件的m的值等于11.答案是11.熟悉了截取的过程很容易得到当n的值相等时,截取二维图形的次数是一维图形的次数的2倍,截取三维图形的次数是截取一维线段的次数的三倍.当8<n≤16时,根据截取线段时次数是4,所以截取二维图片时次数是8答案是:8.截取一维线段时用m的代数式表示线段n的取值范围:2m﹣1<n≤2m所以,截取二维图片时,m的代数式表示线段n的取值范围是:<n≤.同理,截取三维立体图形时,n为4时,要切6次,答案是:6.n为8时,要切9次,答案时9.用m的代数式表示线段n的取值范围:<n≤,答案是<n≤24.解:(1)如图1,记EQ与AC的交点为G,∵AC⊥BC,∴∠ACB=90°,在Rt△ABC中,AB=10,AC=6,根据勾股定理得,BC=8,tan B==,∵四边形ABCD是平行四边形,∴CD=AB=10,AD=BC=8,由运动知,BP=t,DQ=t,∴PC=8﹣t,CQ=10﹣t,∵PE⊥BC,∴∠BPE=90°,在Rt△BPE中,sin B=,cos B=,tan B===,∴PE=t,∵EQ∥BC,∴∠PEQ=∠BPE=90°,∴四边形CPEG是矩形,∴CG=PE=t,∵EQ∥BC,∴△CGQ∽△CAD,∴,∴.∴t=;(2)如图2,过点Q作QH⊥BC交BC的延长线于H,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠DCH=∠B,在Rt△CHQ中,sin∠QCH===,∴QH=(10﹣t),cos∠HCQ===,∴CH=(10﹣t),∴PH=PC+CH=8﹣t+(10﹣t)=16﹣t,∴S=S梯形QHPE ﹣S△QPH=[(10﹣t)+t]×(16﹣t)﹣×(16﹣t)×(10﹣t)=﹣(t﹣)2+,∵点E在线段AB上,∴点P在线段BC上,∴0<t≤8,点Q在CD上,∴0<t<10,∴0<t≤8,即:S=﹣(t﹣)2+(0<t≤8);(3)由(2)知,S=﹣(t﹣)2+(0<t≤8);∴t=时,S最大=;(4)如图3,过点Q作QM⊥PE于M,交AC于N,∵点Q在线段EP的垂直平分线上,∴PM=PE=t,同(2)的方法得,CN=(10﹣t),易知,四边形PCNM是矩形,∴PM=CN,∴t=(10﹣t),∴t=.。
每日一学:新疆维吾尔自治区乌鲁木齐市新疆2018届九年级上学期数学期末考试试卷_压轴题解答
,③ ,④
;其中正确的结论有( )
的图象如图所示,有以下四个结论:①abc=0,②
A . 1个 B . 2个 C . 3个 D . 4个
新 疆 维 吾 尔 自 治 区 乌 鲁 木 齐 市 新 疆 2018届 九 年 级 上 学 期 数 学 期 末 考 试 试 卷 _压 轴 题 解 答
~~ 第1题 ~~
每日一学:新疆维吾尔自治区乌鲁木齐市新疆2018届九年级上学期数学期末考 试试卷_压轴题解答
ห้องสมุดไป่ตู้
新 疆 维 吾 尔 自 治 区 乌 鲁 木 齐 市 新 疆 2018届 九 年 级 上 学 期 数 学 期 末 考 试 试 卷 _压 轴 题
~~ 第1题 ~~
(2018乌鲁木齐.九上期末) 已知抛物线
经过
两点.
(1) 求抛物线的解析式和顶点坐标; (2) 设点 为抛物线上一点,若 考点: 二次函数的实际应用-几何问题;
,求点 的坐标.
~~ 第2题 ~~
(2018乌鲁木齐.九上期末) 如图,在
中,
,得到
,连接 ,交 于点 ,则
与
,
,将
的周长之和为________ .
答案 绕点 顺时针旋转
~~ 第3题 ~~
(2018乌鲁木齐.九上期末) 如图,已知函数y=ax2+bx+c
答案:
解析:
~~ 第2题 ~~
答案: 解析:
~~ 第3题 ~~
答案:C
解析:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年新疆初三上学期期末数学试卷一、选择题(本大题共8小题,每小题4分,共32分,每题只有一个正确的答案,请将正确答案的序号填入下表)1.(4分)不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()A.摸出的是3个白球B.摸出的是3个黑球C.摸出的是2个白球、1个黑球D.摸出的是2个黑球、1个白球2.(4分)下列方程中,没有实数根的是()A.x2﹣2x=0B.x2﹣2x﹣1=0C.x2﹣2x+1=0D.x2﹣2x+2=0 3.(4分)如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=15°,半径为2,则弦CD的长为()A.2B.﹣1C.D.44.(4分)用配方法解方程x2﹣2x﹣1=0,配方后所得方程为()A.(x+1)2=0B.(x﹣1)2=0C.(x+1)2=2D.(x﹣1)2=2 5.(4分)关于抛物线y=x2﹣2x+1,下列说法错误的是()A.开口向上B.与x轴有一个交点C.对称轴是直线x=1D.当x>1时,y随x的增大而减小6.(4分)如图,将△ABC在平面内绕点A逆时针旋转到△AB′C′的位置,若∠BAB′=55°,则∠CAC′的度数为()A.35°B.45°C.55°D.65°7.(4分)某广场绿化工程中有一块长2千米,宽1千米的矩形空地,计划在其中修建两块相同的矩形绿地,两块绿地之间既周边留有宽度相等的人行通道(如图),并在这些人行通道铺上瓷砖,要求铺瓷砖的面积是矩形空地面积的,设人行通道的宽度为x千米,则下列方程正确的是()A.(2﹣3x)(1﹣2x)=1B.(2﹣3x)(1﹣2x)=1C.(2﹣3x)(1﹣2x)=1D.(2﹣3x)(1﹣2x)=28.(4分)如图,是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①abc<0;②b>2a;③a+b+c=0;④8a+c>0;⑤ax2+bx+c=0的两根分别为﹣3和1.其中正确的命题有()A.2个B.3个C.4个D.5个二、填空题(本大题共6小题,每小题3分,共18分,请将正确答案直接写在题后的横线上)9.(3分)已知关于x的方程x2+3x+a=0有一个根为﹣2,则a=.10.(3分)对于下列图形:①等边三角形;②矩形;③平行四边形;④菱形;⑤正八边形;⑥圆.其中既是轴对称图形,又是中心对称图形的是.(填写图形的相应编号)11.(3分)某口袋中有红色、黄色、蓝色玻璃球共72个,小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的频率为35%、25%和40%,估计口袋中黄色玻璃球有个.12.(3分)抛物线y=﹣x2+bx+c的部分图象如图所示,则关于x的一元二次方程﹣x2+bx+c=0的解为.13.(3分)60°的圆心角所对的弧长为2πcm,则此弧所在圆的半径为.14.(3分)如图,⊙O是△ABC的外接圆,直径AD=4,∠ABC=∠DAC,则AC 长为.三、解答题(本大题共8小题,共50分,解答题应写出文字说明,演算步骤.)15.(8分)解下列方程(1)x2+4x+3=0(2)3x2+10x+5=0.16.(6分)在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B (﹣4,5),C(﹣5,2).(1)画出△ABC关于原点O成中心对称的△A1B1C1;(2)写出△A1B1C1的顶点坐标;(3)求出△A1B1C1的面积.17.(6分)某家快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同,求该快递公司投递总件数的月平均增长率.18.(5分)如图,⊙C经过原点且与两坐标轴分别交于点A和点B,点A的坐标为(0,2),D为⊙C上在第一象限内的一点且∠ODB=60°.(1)求线段AB的长及⊙C的半径;(2)求B点坐标.19.(6分)某幼儿园组织亲子游戏,主持人请三位家长分别带自己的孩子参加游戏,A、B、C分别表示三位家长,他们的孩子分别对应的是a、b、c.若主持人分别从三位家长和三位孩子中各选一人参加游戏,恰好是同一家庭的成员的概率是多少.(画出树状图或列表并算出结果)20.(6分)如图,在△ABC中,∠CAB=90°,∠CBA=50°,以AB为直径作⊙O交BC于点D,点E在边AC上,且满足ED=EA.(1)求∠DOA的度数;(2)求证:直线ED与⊙O相切.21.(6分)已知二次函数y=﹣x2+2x+m.(1)如果二次函数的图象与x轴有两个交点,求m的取值范围;(2)如图,二次函数的图象经过A(3,0),与y轴交于B点,直线AB与这个二次函数图象的对称轴交于P点,求P点的坐标.22.(7分)进入冬季,某商家根据市民健康需要,代理销售一种防尘口罩,进货价为20元/包,经市场销售发现:销售单价为30元/包时,每周可售出200包,每涨价1元,就少售出5包.若供货厂家规定市场价不得低于30元/包.(1)试确定周销售量y(包)与售价x(元/包)之间的函数关系式;(2)试确定商场每周销售这种防尘口罩所获得的利润w(元)与售价x(元/包)之间的函数关系式,并直接写出售价x的范围;(3)当售价x(元/包)定为多少元时,商场每周销售这种防尘口罩所获得的利润w(元)最大?最大利润是多少?2017-2018学年新疆初三上学期期末数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题4分,共32分,每题只有一个正确的答案,请将正确答案的序号填入下表)1.(4分)不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()A.摸出的是3个白球B.摸出的是3个黑球C.摸出的是2个白球、1个黑球D.摸出的是2个黑球、1个白球【解答】解:A.摸出的是3个白球是不可能事件;B.摸出的是3个黑球是随机事件;C.摸出的是2个白球、1个黑球是随机事件;D.摸出的是2个黑球、1个白球是随机事件,故选:A.2.(4分)下列方程中,没有实数根的是()A.x2﹣2x=0B.x2﹣2x﹣1=0C.x2﹣2x+1=0D.x2﹣2x+2=0【解答】解:A、△=(﹣2)2﹣4×1×0=4>0,方程有两个不相等的实数根,所以A选项错误;B、△=(﹣2)2﹣4×1×(﹣1)=8>0,方程有两个不相等的实数根,所以B选项错误;C、△=(﹣2)2﹣4×1×1=0,方程有两个相等的实数根,所以C选项错误;D、△=(﹣2)2﹣4×1×2=﹣4<0,方程没有实数根,所以D选项正确.故选:D.3.(4分)如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=15°,半径为2,则弦CD的长为()A.2B.﹣1C.D.4【解答】解:∵⊙O的直径AB垂直于弦CD,∴CE=DE,∠CEO=90°,∵∠A=15°,∴∠COE=30°,在Rt△OCE中,OC=2,∠COE=30°,∴CE=OC=1,(直角三角形中,30度角所对的直角边是斜边的一半)∴CD=2CE=2,故选:A.4.(4分)用配方法解方程x2﹣2x﹣1=0,配方后所得方程为()A.(x+1)2=0B.(x﹣1)2=0C.(x+1)2=2D.(x﹣1)2=2【解答】解:x2﹣2x=1,x2﹣2x+1=2,(x﹣1)2=2.故选:D.5.(4分)关于抛物线y=x2﹣2x+1,下列说法错误的是()A.开口向上B.与x轴有一个交点C.对称轴是直线x=1D.当x>1时,y随x的增大而减小【解答】解:∵y=x2﹣2x+1=(x﹣1)2,∴抛物线开口向上,对称轴为x=1,当x>1时,y随x的增大而增大,∴A、C正确,D不正确;令y=0可得(x﹣1)2=0,该方程有两个相等的实数根,∴抛物线与x轴有一个交点,∴B正确;故选:D.6.(4分)如图,将△ABC在平面内绕点A逆时针旋转到△AB′C′的位置,若∠BAB′=55°,则∠CAC′的度数为()A.35°B.45°C.55°D.65°【解答】解:因为将△ABC在平面内绕点A逆时针旋转到△AB′C′的位置,若∠BAB′=55°,所以∠CAC′的度数为55°,故选:C.7.(4分)某广场绿化工程中有一块长2千米,宽1千米的矩形空地,计划在其中修建两块相同的矩形绿地,两块绿地之间既周边留有宽度相等的人行通道(如图),并在这些人行通道铺上瓷砖,要求铺瓷砖的面积是矩形空地面积的,设人行通道的宽度为x千米,则下列方程正确的是()A.(2﹣3x)(1﹣2x)=1B.(2﹣3x)(1﹣2x)=1C.(2﹣3x)(1﹣2x)=1D.(2﹣3x)(1﹣2x)=2【解答】解:设人行通道的宽度为x千米,则矩形绿地的长为:(2﹣3x),宽为(1﹣2x),由题意可列方程:2×(2﹣3x)(1﹣2x)=×2×1,即:(2﹣3x)(1﹣2x)=1,故选:A.8.(4分)如图,是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①abc<0;②b>2a;③a+b+c=0;④8a+c>0;⑤ax2+bx+c=0的两根分别为﹣3和1.其中正确的命题有()A.2个B.3个C.4个D.5个【解答】解:①∵开口向上,∴a>0,对称轴在y轴的左侧,b>0,抛物线与y 轴交于负半轴,c<0,∴abc<0∴①正确;②﹣=﹣1,b=2a,②错误;③当x=1时,y=0,∴a+b+c=0,③正确;④当x=2时,y>0,∴4a+2b+c>0,∴8a+c>0,④正确;⑤∵对称轴为x=﹣1,抛物线与x轴的交点坐标分别为(﹣3,0),(1,0),∴ax2+bx+c=0的两根分别为﹣3和1,⑤正确故选:C.二、填空题(本大题共6小题,每小题3分,共18分,请将正确答案直接写在题后的横线上)9.(3分)已知关于x的方程x2+3x+a=0有一个根为﹣2,则a=2.【解答】解:把x=﹣2代入x2+3x+a=0得4﹣6+a=0,解得a=2.故答案为2.10.(3分)对于下列图形:①等边三角形;②矩形;③平行四边形;④菱形;⑤正八边形;⑥圆.其中既是轴对称图形,又是中心对称图形的是②④⑤⑥.(填写图形的相应编号)【解答】解:①是轴对称图形,不是中心对称图形,不符合题意;②是轴对称图形,也是中心对称图形,符合题意;③是中心对称图形,不是轴对称图形,不符合题意;④是轴对称图形,也是中心对称图形,符合题意;⑤是轴对称图形,也是中心对称图形,符合题意.⑥是轴对称图形,也是中心对称图形,符合题意;故答案为:②④⑤⑥.11.(3分)某口袋中有红色、黄色、蓝色玻璃球共72个,小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的频率为35%、25%和40%,估计口袋中黄色玻璃球有18个.【解答】解:∵摸到红球、黄球、蓝球的频率为35%、25%和40%,∴摸到黄球的概率为0.25,故口袋中黄色玻璃球有0.25×72=18(个).故答案为:18.12.(3分)抛物线y=﹣x2+bx+c的部分图象如图所示,则关于x的一元二次方程﹣x2+bx+c=0的解为x1=1,x2=﹣3.【解答】解:观察图象可知,抛物线y=﹣x2+bx+c与x轴的一个交点为(1,0),对称轴为x=﹣1,∴抛物线与x轴的另一交点坐标为(﹣3,0),∴一元二次方程2x2﹣4x+m=0的解为x1=1,x2=﹣3.故本题答案为:x1=1,x2=﹣3.13.(3分)60°的圆心角所对的弧长为2πcm,则此弧所在圆的半径为6cm.【解答】解:∵l=,∴r=═=6cm,故答案为6cm.14.(3分)如图,⊙O是△ABC的外接圆,直径AD=4,∠ABC=∠DAC,则AC 长为2.【解答】解:连接CD,如图所示:∵∠B=∠DAC,∴,∴AC=CD,∵AD为直径,∴∠ACD=90°,在Rt△ACD中,AD=4,∴AC=CD=AD=×4=2,故答案为:2.三、解答题(本大题共8小题,共50分,解答题应写出文字说明,演算步骤.)15.(8分)解下列方程(1)x2+4x+3=0(2)3x2+10x+5=0.【解答】解:(1)因式分解,得(x+1)(x+3)=0,于是,得x+1=0或x+3=0,解得x1=﹣1,x2=﹣3;(2)a=3,b=10,c=5,△=b2﹣4ac=100﹣4×3×5=40>0,x==,x1=,x2=.16.(6分)在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B (﹣4,5),C(﹣5,2).(1)画出△ABC关于原点O成中心对称的△A1B1C1;(2)写出△A1B1C1的顶点坐标;(3)求出△A1B1C1的面积.【解答】解:(1)如图所示,△A1B1C1即为所求;(2)点A1(2,﹣1)、B1(4,﹣5)、C1(5,﹣2);=3×4﹣×1×3﹣×2×4﹣×1×3=5.(3)S△A1B1C117.(6分)某家快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同,求该快递公司投递总件数的月平均增长率.【解答】解:设该快递公司投递总件数的月平均增长率为x,根据题意得:10(1+x)2=12.1,解得:x1=0.1,x2=﹣2.1(不合题意舍去).答:该快递公司投递总件数的月平均增长率为10%;18.(5分)如图,⊙C经过原点且与两坐标轴分别交于点A和点B,点A的坐标为(0,2),D为⊙C上在第一象限内的一点且∠ODB=60°.(1)求线段AB的长及⊙C的半径;(2)求B点坐标.【解答】解:(1)连接AB;∵∠ODB=∠OAB,∠ODB=60°,∴∠OAB=60°,∵∠AOB是直角,∴AB是⊙C的直径,∠OBA=30°;∴AB=2OA=4,∴⊙C的半径r=2;(2)在Rt△OAB中,由勾股定理得:OB2+OA2=AB2,∴OB=,∴B的坐标为:(,0).19.(6分)某幼儿园组织亲子游戏,主持人请三位家长分别带自己的孩子参加游戏,A、B、C分别表示三位家长,他们的孩子分别对应的是a、b、c.若主持人分别从三位家长和三位孩子中各选一人参加游戏,恰好是同一家庭的成员的概率是多少.(画出树状图或列表并算出结果)【解答】解:由题意可得,∴恰好是同一家庭的成员的概率是:即恰好是同一家庭的成员的概率是.20.(6分)如图,在△ABC中,∠CAB=90°,∠CBA=50°,以AB为直径作⊙O交BC于点D,点E在边AC上,且满足ED=EA.(1)求∠DOA的度数;(2)求证:直线ED与⊙O相切.【解答】(1)解;∵∠DBA=50°,∴∠DOA=2∠DBA=100°,(2)证明:连接OE.在△EAO与△EDO中,,∴△EAO≌△EDO,∴∠EDO=∠EAO,∵∠BAC=90°,∴∠EDO=90°,∴DE与⊙O相切.21.(6分)已知二次函数y=﹣x2+2x+m.(1)如果二次函数的图象与x轴有两个交点,求m的取值范围;(2)如图,二次函数的图象经过A(3,0),与y轴交于B点,直线AB与这个二次函数图象的对称轴交于P点,求P点的坐标.【解答】解:(1)根据题意知,22﹣4×(﹣1)×m>0,解得:m>﹣1;(2)将点A(3,0)代入y=﹣x2+2x+m,得:﹣9+6+m=0,解得:m=3,∴抛物线解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4,则抛物线的对称轴为直线x=1,当x=0时,y=3,即点B(0,3),令直线AB解析式为y=kx+b,将点A(3,0)、B(0,3)代入,得:,解得:,∴直线AB的解析式为y=﹣x+3,由可得,∴P点的坐标为(1,2).22.(7分)进入冬季,某商家根据市民健康需要,代理销售一种防尘口罩,进货价为20元/包,经市场销售发现:销售单价为30元/包时,每周可售出200包,每涨价1元,就少售出5包.若供货厂家规定市场价不得低于30元/包.(1)试确定周销售量y(包)与售价x(元/包)之间的函数关系式;(2)试确定商场每周销售这种防尘口罩所获得的利润w(元)与售价x(元/包)之间的函数关系式,并直接写出售价x的范围;(3)当售价x(元/包)定为多少元时,商场每周销售这种防尘口罩所获得的利润w(元)最大?最大利润是多少?【解答】解:(1)由题意可得,y=200﹣(x﹣30)×5=﹣5x+350即周销售量y(包)与售价x(元/包)之间的函数关系式是:y=﹣5x+350;(2)由题意可得,w=(x﹣20)×(﹣5x+350)=﹣5x2+450x﹣7000(30≤x≤70),即商场每周销售这种防尘口罩所获得的利润w(元)与售价x(元/包)之间的函数关系式是:w=﹣5x2+450x﹣7000(30≤x≤40);(3)∵w=﹣5x2+450x﹣7000=﹣5(x﹣45)2+3125∵二次项系数﹣5<0,∴x=45时,w取得最大值,最大值为3125,即当售价x(元/包)定为4,5元时,商场每周销售这种防尘口罩所获得的利润w (元)最大,最大利润是3125元.附加:初中数学几何模型【模型一】“一线三等角”模型:图形特征: 60°60°60° 45°45°45°运用举例: 1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标; x yB C AO2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .ls 4s 3s 2s 13213. 如图,Rt△ABC中,∠BAC=90°,AB=AC=2,点D在BC上运动(不与点B,C重合),过D作∠ADE=45°,DE交AC于E.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式,并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.EB4.如图,已知直线112y x=+与y轴交于点A,与x轴交于点D,抛物线212y x bx c=++与直线交于A、E两点,与x轴交于B、C两点,且B点坐标为(1,0)。