完整版)三角形知识点总结
直角三角形知识点总结

直角三角形知识点总结直角三角形是一种特殊的三角形,其中包含一个内角为90度的角。
本文将对直角三角形的定义、性质及相关定理进行总结。
一、直角三角形的定义和性质1. 定义:直角三角形是指其中一个角为90度的三角形。
2. 性质:(1) 直角三角形的两条边相互垂直。
(2) 直角三角形的两条边叫做直角边,另一条边叫做斜边。
(3) 直角三角形的斜边是直角边的最长边。
二、直角三角形的相关定理1. 勾股定理:直角三角形的任意两条直角边的平方和等于斜边的平方。
设直角三角形的两条直角边分别为a和b,斜边为c,则有:a² + b² = c²2. 相关角定理:(1) 正弦定理:在直角三角形中,以直角边和斜边为参照,边长之间的比例关系如下:正弦定理可表示为:sinA = a / c,sinB = b / c(2) 余弦定理:在直角三角形中,以直角边和斜边为参照,利用余弦定理可以求得直角边之间的夹角大小关系,以及直角边与斜边的夹角大小关系:余弦定理可表示为:cosA = b / c,cosB = a / c3. 边长比例定理:在直角三角形中,直角边与斜边的长度之比为根号2与1的比值:a / c = 1 / √2,b /c = 1 / √24. 特殊直角三角形:(1) 等腰直角三角形:两条直角边相等的直角三角形。
特殊性质是两条直角边的边长相等。
(2) 30度-60度-90度特殊直角三角形:其中一个角为直角,另外两个角为30度和60度。
特殊性质是斜边的长度是直角边的两倍,直角边之间的长度比为1: √3 : 2。
(3) 45度-45度-90度特殊直角三角形:其中一个角为直角,另外两个角为45度。
特殊性质是斜边的长度是直角边的根号2倍,直角边之间的长度比为1 : 1 : √2。
总结:本文总结了直角三角形的定义、性质以及相关定理。
通过了解直角三角形的特点和定理,我们可以在求解相关问题时依据这些知识点进行推导和计算。
三角形的边知识点总结

三角形的边知识点总结一、三角形边的基本概念。
1. 定义。
- 由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
这三条线段叫做三角形的边。
2. 表示方法。
- 三角形用符号“△”表示,三角形ABC记作“△ABC”,其三条边分别为AB、BC、CA(或a、b、c,通常用小写字母表示边,其中a对应BC,b对应AC,c对应AB)。
二、三角形边的关系。
1. 三角形三边关系定理。
- 三角形两边之和大于第三边。
例如在△ABC中,AB + BC>AC,AB+AC > BC,BC + AC>AB。
- 理论依据:两点之间线段最短。
因为如果两边之和不大于第三边,就无法构成三角形,这三条线段就会在同一条直线上或者无法首尾相接。
2. 三角形三边关系推论。
- 三角形两边之差小于第三边。
在△ABC中,AB - BC<AC,AB - AC<BC,BC - AC<AB。
- 这个推论可以由三边关系定理推导得出。
例如,由AB+BC > AC可得AC -BC<AB,同时AC - AB < BC。
3. 判断三条线段能否构成三角形。
- 只需要判断较短的两条线段之和是否大于最长的线段。
如果大于,则这三条线段可以构成三角形;如果不大于,则不能构成三角形。
例如,三条线段长分别为3、4、5,因为3 + 4>5,所以能构成三角形;若三条线段长为1、2、4,因为1+2<4,所以不能构成三角形。
三、特殊三角形的边的性质。
1. 等腰三角形。
- 定义:有两边相等的三角形叫做等腰三角形。
相等的两边叫做腰,另一边叫做底边。
- 性质:两腰相等,即AB = AC(在等腰△ABC中,AB、AC为腰)。
等腰三角形的两腰之和大于底边,两腰之差小于底边。
2. 等边三角形。
- 定义:三边都相等的三角形叫做等边三角形。
- 性质:三条边都相等,即AB = BC = AC。
等边三角形是特殊的等腰三角形,它满足等腰三角形边的一切性质,并且它的任意两边之和是第三边的2倍。
(完整版)初中三角形知识点总结

图形的初步认识:三角形考点一、三角形1、三角形的三边关系定理及推论(1)三角形三边关系定理:三角形的两边之和大于第三边。
推论:三角形的两边之差小于第三边。
2、三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°。
推论:①直角三角形的两个锐角互余。
②三角形的一个外角等于和它不相邻的来两个内角的和。
③三角形的一个外角大于任何一个和它不相邻的内角。
注:在同一个三角形中:等角平等边;等边平等角;大角对大边;大边对大角。
4、三角形的面积三角形的面积 = 1×底×高2考点二、全等三角形1、全等三角形的观点能够完整重合的两个三角形叫做全等三角形。
2、三角形全等的判断三角形全等的判断定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“ SAS”)(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ ASA”)(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“ SSS”)。
(4)角角边定理:有两角和一边对应相等的两个三角形全等(可简写成“角角边”或“ AAS”)。
直角三角形全等的判断:关于特别的直角三角形,判断它们全等时,还有 HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“ HL”)3、全等变换只改变图形的地点,不改变其形状大小的图形变换叫做全等变换。
全等变换包含一下三种:(1)平移变换:把图形沿某条直线平行挪动的变换叫做平移变换。
(2)对称变换:将图形沿某直线翻折 180°,这类变换叫做对称变换。
(3)旋转变换:将图形绕某点旋转必定的角度到另一个地点,这类变换叫做旋转变换。
考点三、等腰三角形1、等腰三角形的性质(1)等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边平等角)推论 1:等腰三角形顶角均分线均分底边并且垂直于底边。
全等三角形知识点归纳

全等三角形知识点归纳全等三角形是初中数学中的重要内容,它对于解决几何问题有着关键作用。
下面就来对全等三角形的相关知识点进行一个全面的归纳。
一、全等三角形的定义能够完全重合的两个三角形叫做全等三角形。
全等用符号“≌”表示,读作“全等于”。
二、全等三角形的性质1、全等三角形的对应边相等。
也就是说,如果两个三角形全等,那么它们相对应的边的长度是一样的。
2、全等三角形的对应角相等。
对应角的度数完全相同。
3、全等三角形的周长相等。
因为对应边相等,所以三条边相加的总和也相等。
4、全等三角形的面积相等。
由于形状和大小完全相同,所占的空间大小也就一样。
三、全等三角形的判定方法1、“边边边”(SSS):三边对应相等的两个三角形全等。
比如有三角形 ABC 和三角形 DEF,如果 AB = DE,BC = EF,AC = DF,那么三角形 ABC ≌三角形 DEF。
2、“边角边”(SAS):两边和它们的夹角对应相等的两个三角形全等。
例如在三角形 ABC 和三角形 DEF 中,AB = DE,∠A =∠D,AC = DF,那么这两个三角形全等。
3、“角边角”(ASA):两角和它们的夹边对应相等的两个三角形全等。
假设三角形 ABC 和三角形 DEF 中,∠A =∠D,AB = DE,∠B =∠E,那么三角形 ABC ≌三角形 DEF。
4、“角角边”(AAS):两角和其中一角的对边对应相等的两个三角形全等。
比如三角形 ABC 和三角形 DEF 中,∠A =∠D,∠B =∠E,BC = EF,这两个三角形就是全等的。
5、“斜边、直角边”(HL):斜边和一条直角边对应相等的两个直角三角形全等。
在直角三角形 ABC 和直角三角形 DEF 中,如果斜边 AC =斜边DF,直角边 BC =直角边 EF,那么这两个直角三角形全等。
四、寻找全等三角形的对应边和对应角的方法1、有公共边的,公共边是对应边。
例如三角形 ABC 和三角形 ABD,AB 就是两个三角形的公共边,是对应边。
三角形知识点复习总结

三角形复习1.三角形的定义:由不在同一亶线上的三条线段首尾顺次相接组成的图形叫做三角形.三角形有三条边,三个内角,三个顶点•组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内 角;相邻两边的公共端点是三角形的顶点,三角形ABC 用符号表示为△ ABC,三角形ABC 的边AB 可用边AB 所对的 角C 的小写字母C 表示,AC 叮用b 表示,BC 町用a 表示.注意:(1)三条线段要不在同一直线上,且首尾顺次相接:(2) 三角形是一个封闭的图形:(3) A ABC 是三角形ABC 的符号标记,单独的△没有意义•2.三角形的分类:(1)按边分类: (2)按角分类:I 等边三角形不等边三勿形直角三欽形锐角三角形钝角三角形3. 三角形的主要线段的定义:(1)三角形的中线 三角形中,连结一个顶点和它对边中点的线段. 表示法J 是厶ABC 的BC 匕的中线.-DC 巧 BC.注意:①三角形的中线是线段:② 三角形三条中线全在三角形的内部: ③ 三角形三条中线交于三角形内部一点: ④ 中线把三角形分成两个而积相等的三角形.<2)三角形的角平分线 三角形一个内角的平分线匂它的对边相交,这个角顶点与交点之间的线段 表示法J 是AABC 的ZBAC 的平分线.等腰三角形底边和腰不相等的等腰三角形三角形AD C注意:①三角形的角平分线是线段:② 三角形三条角平分线全在三角形的内部; ③ 三角形三条角平分线交于三角形内部一点: ④ 用角器画三角形的角平分线.(3) 三角形的高 从三角形的一个顶点向它的对边所在的宜线作垂线,顶点和垂足之间的线段.表示法J 是A ABC 的BC 上的高线. 丄BC 于D.3. Z ADB=Z ADC=90\注意:①三角形的高是线段:② 锐角三角形三条高全在三角形的内部,直角三角形有两条高是边,钝角三角形有两条高在形外; ③ 三角形三条高所在直线交于一点•4. 三角形的主要线段的表示法: 三角形的角平分线的表示法:如图1.根据具体情况使用以下任意一种方式表示:① AD 是ABC 的角平分线: ② AD 平分BAC,交BC 于D :③ 如果人D 是ABC 的角平分线,那么DAU 丄BAC.2⑵三角形的中线表示法:根据具体情况使用以下任意一种方式表示: 人BC 的中线:人BC 中BC 边上的中线:(3) 三角线的高的表不法J如图2,根据具体情况,使用以下任意一种方式表示: ① AM 是A8C 的高:② AM 是A8C 中BC 边上的高:③ -◎ 如果AM 是 ABC 中BC 边上高,那么AM fiC,垂足是E; ⑤如果AM 是 人BC 中BC 边上的高,那么 &M8=人MU90 .5. 在画三角形的三条角平分线,三条中线,三条高时应注意:(1) 如图3,三角形三条角平分线交于一点,交点都在三角形内部. (2) 如图4.三角形的三条中线交点一点,交点都在三角形内部.如图567,三角形的三条高交于一点,锐角三角形的三条高的交点在三角形内部, 钝角三角形的三条高的交点在三角形的外部•直角三角形的三条高的交点在直角三角如图1, ①Af 是③如果处是赵的中纯那么严 AD C CB图156•三角形的三边关系三角形的任意两边之和大于第三边;任意两边之差小于第三边. 注意:(1)三边关系的依据是:两点之间线段是短;(2)用成三角形的条件是任意两边之和大于第三边.7.三角形的角与角之间的关系: (:L)三角形三个内角的和等于180 ;(2) 三角形的一个外角等于和它不相邻的两个内角的和: (3) 三角形的一个外角大于任何一个和它不相邻的内角. (4)直角三角形的两个锐角互余.三角形的内角和;4^理宦理:三角形的内角和等于180。
关于三角形的知识点总结

关于三角形的知识点总结一、三角形的定义三角形是由不在同一直线上的三条线段首尾顺次相接所组成的封闭图形。
二、三角形的分类1、按角分类11 锐角三角形:三个角都小于 90 度的三角形。
12 直角三角形:有一个角等于 90 度的三角形。
13 钝角三角形:有一个角大于 90 度小于 180 度的三角形。
2、按边分类21 不等边三角形:三条边都不相等的三角形。
22 等腰三角形:有两条边相等的三角形。
221 等边三角形:三条边都相等的三角形,也称为正三角形。
三、三角形的性质1、三角形内角和为 180 度。
2、三角形的任意两边之和大于第三边,任意两边之差小于第三边。
四、三角形的高、中线和角平分线1、三角形的高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高。
2、三角形的中线:连接三角形的一个顶点和它所对边的中点的线段叫做三角形的中线。
3、三角形的角平分线:三角形一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
五、三角形的全等1、全等三角形的定义:能够完全重合的两个三角形叫做全等三角形。
2、全等三角形的性质:全等三角形的对应边相等,对应角相等。
3、全等三角形的判定方法31 “边边边”(SSS):三边对应相等的两个三角形全等。
32 “边角边”(SAS):两边和它们的夹角对应相等的两个三角形全等。
33 “角边角”(ASA):两角和它们的夹边对应相等的两个三角形全等。
34 “角角边”(AAS):两角和其中一角的对边对应相等的两个三角形全等。
35 “斜边、直角边”(HL):斜边和一条直角边对应相等的两个直角三角形全等。
六、三角形的相似1、相似三角形的定义:对应角相等,对应边成比例的两个三角形叫做相似三角形。
2、相似三角形的性质21 相似三角形的对应角相等,对应边成比例。
22 相似三角形的对应高的比,对应中线的比与对应角平分线的比都等于相似比。
23 相似三角形周长的比等于相似比。
三角形知识点总结完

三角形知识点全面总结1、三角形全等的性质及判定全等三角形的对应边相等,对应角也相等判定:SSS、SAS、ASA、AAS、HL (RtA^RtA)2、等腰三角形的判定及性质性质:①两腰相等②等边对等角(即“等腰三角形的两个底角相等”)③三线合一(即“等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合”)判定:①有两边相等的三角形是等腰三角形②有两个角相等的三角形是等腰三角形(等角对等边)结论总结:等腰三角形底边上的任意一点到两腰的距离之和等于一腰【即:DE+DF=CP,(D为BC上的任意一点)】3、等边三角形的性质及判定定理性质:①三条边都相等②三个角都相等,并且每个角都等于60度③三线合一(即“等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合”)④等边三角形是轴对称图形,有3条对称轴。
判定:①三条边都相等的三角形是等边三角形②三个角都相等的三角形是等边三角 形。
③有一个角是60度的等腰三角形是等边三角形。
结论总结:①高二亘边【即: AD =巨AB 】 2 2②面积二三3边2【即:S=三3AB 2】4 A ABC 4 4、直角三角形的性质及判定 性质:①两锐角互余②勾股定理③30°角所对的直角边等于斜边的一半。
④斜边中 线等于斜边一半判定:①有一个内角是直角的三角形是直角三角形②勾股定理的逆定理(即“如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
”)5、线段的垂直平分线性质:线段垂直平分线上的点到这条线段两个端点的距离相等。
判定:①定义法②到一条线段两个端点距离相等的点在这条线段的垂直平分线上。
(2)三角形三边的垂直平分线的性质③一边中线等于这边一半的三角形是直角三角形结论总结:直角三角形斜边上的高二 直角边的乘积 斜边(1)线段垂直平分线的性质及判定【即:三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。
(3)如何用尺规作图法作线段的垂直平分线:分别以线段的两个端点人、B 为圆心, 以大于AB 的一半长为半径作弧,两弧交于点乂、N ;作直线MN ,则直线MN 就是线段 AB 的垂直平分线。
全等三角形知识点总结

全等三角形知识点总结
定义:全等三角形是指两个三角形在形状和大小上完全相同,即经过翻转、平移、旋转后,能够完全重合。
性质:全等三角形具有以下性质:
对应角相等:全等三角形的对应角相等。
对应边相等:全等三角形的对应边相等。
对应顶点相等:全等三角形的对应顶点相等。
对应边上的高对应相等:全等三角形的对应边上的高对应相等。
对应角的角平分线相等:全等三角形的对应角的角平分线相等。
对应边上的中线相等:全等三角形的对应边上的中线相等。
面积和周长相等:全等三角形的面积和周长相等。
对应角的三角函数值相等:全等三角形的对应角的三角函数值相等。
判定方法:判定两个三角形是否全等,可以使用以下五种方法:SSS(边边边):如果两个三角形的三边分别相等,则这两个三角形全等。
SAS(边角边):如果两个三角形的两边和它们之间的夹角分别相等,则这两个三角形全等。
ASA(角边角):如果两个三角形的两角和它们之间的夹边分别相等,则这两个三角形全等。
AAS(角角边):如果两个三角形的两个角和其中一个角的对边分别相等,则这两个三角形全等。
HL(斜边、直角边):如果两个直角三角形的一条斜边和一条直角边分别相等,则这两个三角形全等。
总之,全等三角形是几何学中的重要概念,掌握其定义、性质和判定方法对于解决几何问题具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
完整版)三角形知识点总结
三角形知识点总结
三角形是由不在同一直线上的三条线段首尾顺次相接组成的图形,有三条边,三个内角和三个顶点。
组成三角形的线段称为三角形的边,相邻两边所组成的角称为三角形的内角,相邻两边的公共端点是三角形的顶点。
三角形用符号表示为△ABC,其中三个顶点用大写字母A、B、C表示,XXX可用边AB所对的角C的小写字母c表示,AC可用b表示,BC可用a表示。
需要注意的是,三条线段要不在同一直线上,且首尾顺次相接。
单独的△没有意义。
根据边和角的不同,三角形可以分为等腰三角形、等边三角形和不等边三角形,以及锐角三角形、直角三角形和钝角三角形。
三角形的主要线段包括中线、角平分线、高和中垂线。
三角形的中线是连结一个顶点和它对边中点的线段,三角形的三
条中线全在三角形的内部且交于三角形内部一点(重心),中线把三角形分成两个面积相等的三角形。
角平分线是一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段,三角形的角平分线全在三角形的内部且交于三角形内部一点(内心),角平分线上的点到角的两边距离相等。
三角形的高是从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段,锐角三角形的三条高的交点在三角形内部,钝角三角形的三条高的交点在三角形的外部,直角三角形的三条高的交点在直角顶点上。
三角形的三条高所在直线交于一点(垂心)。
三角形的中垂线是过三角形一条边中点所做的垂直于该条边的线段,三角形的三条中垂线交于一点(外心)。
总之,三角形的基础知识包括定义、表示和分类,而主要线段包括中线、角平分线、高和中垂线。
理解和掌握这些知识点对于学好三角形及其相关知识非常重要。
的概念和性质
定义:三条边都相等的三角形叫做等边三角形。
性质:等边三角形的三个内角均为60度,也是等腰三角形。
5、三角形的不等式定理
三角形的任意两边之和大于第三边,任意两边之差小于第三边。
注意:这个定理是判断一个三角形是否存在的基本条件,也是判断三条线段能否组成三角形的依据。
6、三角形角的关系
三角形三个内角的和等于180度,一个外角等于不相邻两个内角的和,一个外角大于不相邻任何一个内角。
直角三角形的两个锐角互余。
7、多边形的概念和性质
多边形是由一些线段首尾相接组成的图形,对角线是连接不相邻顶点的线段。
正多边形的各边和各角均相等。
多边形的内角和为(n-2)*180度,外角和为360度。
8、等腰三角形的概念和性质
等腰三角形有两边相等,顶角平分线、底边上的高线、底边上的中线互相集合。
一个三角形有两个角相等,则这两个角所对的边也相等,即等角对等边。
9、等边三角形的概念和性质
等边三角形的三个内角均为60度,也是等腰三角形。
10、三角形的稳定性
三角形的三边长确定,则三角形的形状就唯一确定,这叫做三角形的稳定性。
等边三角形是三边都相等的三角形,它也是等腰三角形的特殊情况,其中底边等于腰。
等边三角形的三条边都相等,每个角都等于60度。
可以判定各边或角都相等的三角形是等边
三角形,或者有一个角等于60度的等腰三角形也是等边三角形。
另外,等边三角形的内心、外心、垂心和重心重合于一点。
其面积等于边长a的平方根的三分之一乘以a的平方。
直角三角形是有一个角为90度的三角形,其中直角相邻
的两条边叫做直角边,而直角所对的边称为斜边或弦。
如果两条直角边长度不同,那么短的那条边叫做勾,长的那条边叫做股。
直角三角形可以分为普通的和等腰的两种情况。
等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,包括稳定性、两直角边相等、直角夹着锐角45度、斜边上中线角平
分线垂线三线合一等。
斜边上的高等于外接圆的半径R。
直角三角形有一些特殊的性质。
其中最著名的是勾股定理,即直角三角形两直角边的平方和等于斜边的平方。
另外,两个
锐角互余,斜边上的中线等于斜边的一半,直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。
还有射影定理和直角三角形斜边中线定理等。
如果有一个锐角等于30度,那么它
所对的直角边等于斜边的一半。
反之,如果一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30度。
首先,取AB中点D,连接CD。
根据直角三角形斜边中
线定理可知CD=BD,因此△BCD是等边三角形。
因为有一个
角是60°的等腰三角形是等边三角形,所以XXX。
接下来,
证明定理的后半部分。
在Rt△ABC中,∠ACB=90°,
BC=AB/2,那么∠A=30°。
取AB中点D,连接CD。
那么
CD=BD=AB/2,又因为BC=AB/2,所以BC=CD=BD,因此
∠B=60°,进而得出∠A=30°。
其次,根据勾股定理,如果直角三角形两直角边分别为a,b,斜边为c,那么a +b =c,即直角三角形两直角边长的平方
和等于斜边长的平方。
如果三角形的三条边a,b,c满足a +b =c,那么这个三角形是直角三角形,称勾股定理的逆定理。
最后,全等三角形指两个全等的三角形,它们的三条边及三个角都对应相等。
全等三角形的性质包括对应角相等、对应
边相等、对应顶点能够完全重合、对应边上的高对应相等、对应角的角平分线相等、对应边上的中线相等以及面积和周长相等。
全等三角形的对应角的三角函数值相等。
全等三角形的判定有五种方法:
1.SSS(边边边):三边对应相等的三角形是全等三角形。
2.SAS(边角边):两边及其夹角对应相等的三角形是全
等三角形。
3.ASA(角边角):两角及其夹边对应相等的三角形是全
等三角形。
4.AAS(角角边):两角及其一角的对边对应相等的三角
形是全等三角形。
5.HL(斜边、直角边):在一对直角三角形中,斜边及
另一条直角边相等。
不能验证为全等三角形的方法有AAA
(角角角)和SSA(边边角)。
相似三角形指的是三个角对应相等、三条边对应成比例的两个三角形。
相似三角形的判定有六种方法:
1.平行于三角形一边的直线截其它两边所在的直线,截得
的三角形与原三角形相似。
2.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似(AA)。
3.如果两个三角形的两组对应边成比例,并且对应的夹角相等,那么这两个三角形相似(SAS)。
4.如果两个三角形的三组对应边成比例,那么这两个三角形相似(SSS)。
5.两个三角形三边对应平行,则两个三角形相似。
6.如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似(HL)。
全等三角形是特殊的相似三角形,相似比为1:1.
任意两个等腰三角形,如果其中的一个顶角或底角相等,那么这两个三角形相似。
同样地,两个等边三角形,三个内角都是60度,且边边相等,因此它们也相似。
直角三角形被斜边上的高分成的两个直角三角形和原三角形,由于斜边的高形成两个直角,再加上一个公共的角,所以它们相似。
相似三角形的对应角相等,对应边成正比例。
一切对应线段(如对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。
相似三角形周长的比等于相似比。
相似三角形面积的比等于相似比的平方。
相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方。
若a/b=b/c,即b²=ac,b叫做a,c的比例
中项。
a/b=c/d等同于ad=bc。
这些性质定理适用于不必在同一平面内的三角形。
推论一:腰和底对应成比例的两个等腰三角形相似。
推论二:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。
推论三:如果一个三角形的两边和三角形任意一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。
在直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。
每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。
例如:在Rt△ABC中,∠BAC=90°,AD是斜
边BC上的高,则有射影定理如下:(1)(AD)^2=BD·DC,
(2)(AB)^2=BD·BC,(3)(AC)^2=CD·BC。
等积式(4)ABXAC=BCXAD(可用面积来证明)。