最短路径问题dijkstra求解过程
dijkstra算法步骤例题

dijkstra算法步骤例题Dijkstra算法是解决单源最短路径问题的常用算法。
其思路是通过累计最短路径来逐渐扩展到所有节点。
Dijkstra算法的基本流程如下:1. 创建一个空堆和一个空seen集合。
堆中包含每个节点到起始节点的距离值和节点本身。
2. 将起始节点插入堆中,并将其距离值设为0。
3. 当堆不为空时,取出堆中距离值最小的节点。
如果此节点在seen中,跳过。
否则,将其标记为seen,并计算其邻居节点到起始节点的距离值。
如果邻居节点的距离值未被计算过或新距离值比已计算的距离值小,更新其距离值。
最后,将其加入堆中以备下一次取最小距离值使用。
4. 重复上述步骤3,直至堆为空或者所有节点距离值都被计算。
下面通过一个例子来详细解释Dijkstra算法的具体实现过程:假设我们有如下图所示的一个简单的有向加权图,其中每个节点代表一个城市,每条有向边代表两个城市之间的道路,其权重表示两座城市之间的距离。
设起点为A,我们使用Dijkstra算法来求出从A到图中其余各个节点的最短距离和路径。
具体步骤如下:1. 创建空的distance字典保存每个节点到起点A的距离,创建空的parents字典保存最短路径上的每个节点的前一个节点,创建空的visited集合保存已经访问过的节点,创建初始堆,将A压入堆中,距离设置为0。
```distance = {A: 0}parents = {A: None}visited = set()heap = [(0, A)]```2. 当堆不为空时,取出堆中最小距离值对应的节点,并加入visited中。
```while heap:(curr_dist, curr_node) = heapq.heappop(heap)if curr_node in visited:continuevisited.add(curr_node)```3. 对于当前节点的每个邻居,计算其到起点的距离值并更新distance和parents。
Dijkstra算法原理详细讲解

Dijkstra算法原理详细讲解
Dijkstra算法是图论中的一种贪心算法,用于求解最短路径问题。
该算法的贪心策略是:每次选择当前距离起点最近的节点作为中间节点,并更新起点到其它节点的距离。
通过不断选择距离起点最近的节点,并逐步更新起点到各个节点的距离,最终得到起点到终点的最短路径。
Dijkstra算法的具体实现包括以下几个步骤:
1. 初始化:将起点到各个节点的距离记为无穷大或者一个较大的值,将起点到自己的距离记为0。
2. 选择当前距离起点最近的节点作为中间节点。
这个过程可以通过维护一个距离起点最近的节点集合来实现,初始时集合中只包含起点。
3. 更新起点到与中间节点相邻的节点的距离,即对于每个与中间节点相邻的节点,如果从起点到中间节点的距离加上中间节点到该节点的距离小于起点到该节点的距离,则更新起点到该节点的距离为从起点到中间节点的距离加上中间节点到该节点的距离。
4. 重复步骤2和步骤3,直到起点到终点的距离不再更新。
5. 最终得到起点到终点的最短路径。
Dijkstra算法的时间复杂度为O(N^2),其中N为节点的数目。
如果使用优先队列来维护距离起点最近的节点集合,则算法的时间复杂度可以降为O(NlogN),但是实际应用中优先队列的实现可能较为复杂。
Dijkstra算法可以用于有向图和无向图,但是不能处理带有负权边的图。
如果图中存在负权边,则可以使用Bellman-Ford算法来求解最短路径。
最短路径dijkstra算法流程

最短路径dijkstra算法流程最短路径算法是计算在带权有向图或者无向图中起点到所有其他点最短路径的一种算法,其中最短路径指的是边权值之和最少的路径。
目前最常用的算法是Dijkstra算法,它是由荷兰计算机科学家Edsger W. Dijkstra于1959年提出的。
下面将介绍Dijkstra算法的流程。
1. 初始化首先,需要将起点到每个点的最短距离都初始化为无穷大,除了起点自己的最短距离为0。
其中,起点是指算法的起点节点。
同时,需要创建一个集合S,用于记录已经确定了最短距离的点。
2. 找出未确定最短路径的节点中最小的距离,并将其标记为已确定最短路径在第一步中,只有起点节点的最短距离是确定的。
接下来,在集合S中找出剩余未确定最短路径的节点中距离最小的节点u,并将其标记为已经确定了最短路径。
在第一次执行该步骤时,节点u即为起点节点。
3. 更新最短距离将节点u所有邻居的距离进行更新。
假设节点v是节点u的邻居,其距离为d(u,v),则:如果 d(u,v) + dist(u) < dist(v),则更新节点v的最短距离为d(u,v) + dist(u),其中dist(u)表示起点节点到节点u的最短距离。
重复执行上述步骤,直到集合S中包含所有节点。
4. 输出每个节点的最短距离执行完第三步之后,每个节点的最短距离都已经确定。
此时,可以输出每个节点的最短距离。
以上就是Dijkstra算法的流程。
此外,这个算法还可以通过堆优化来提高效率。
具体来说,可以将还未确定最短距离的节点按照距离从小到大存储在堆中,每次取出堆中距离最小的节点。
(这部分由于是在原算法的基础之上的优化模型,所以该模型不友好于百科网站的格式要求,如果您有需要,也可以决定不包括,并以此作为描述结尾)总的来说,Dijkstra算法是求解最短路径问题的有效方法之一。
它适用于只有正权边的有向或者无向图,并且能够计算出起点到所有其他节点的最短路径。
因此,它可以用于路线规划、制订地图等应用情景中。
dijkstra算法步骤例题表格

Dijkstra算法是一种用于计算图中从一个顶点到其他所有顶点的最短路径的算法。
它由荷兰计算机科学家艾兹赫尔·戴克斯特拉于1956年提出。
Dijkstra算法的基本思想是通过不断更新起始顶点到其他顶点的最短路径长度,逐步找到最短路径。
以下将详细介绍Dijkstra算法的步骤,并给出一个例题和表格供读者参考。
一、算法步骤1. 初始化- 设置起始顶点的最短路径为0,其余顶点的最短路径为无穷大。
- 将起始顶点加入已访问的顶点集合。
2. 更新- 从未访问的顶点中选择离起始顶点最近的顶点,将其加入已访问的顶点集合。
- 更新起始顶点到其他顶点的最短路径长度,如果经过新加入的顶点到其他顶点的路径长度小于当前已知的最短路径长度,则更新最短路径长度。
3. 重复更新直到所有顶点都被访问过。
二、算法实例为了更好地理解Dijkstra算法的具体应用步骤,我们通过一个实际的例题来演示算法的执行过程。
假设有以下带权重的图,起始顶点为A:顶点 A B C D EA 0 3 4 ∞ ∞B ∞ 0 ∞ 1 7C ∞ 4 0 2 ∞D ∞ ∞ ∞ 0 5E ∞ ∞ ∞ ∞ 0表中每个元素表示从对应顶点到其它顶点的边的权重,"∞"表示没有直接相连的边。
我们按照Dijkstra算法的步骤来计算从顶点A到其他顶点的最短路径长度。
1. 初始化起始顶点为A,初始化A到各顶点的最短路径长度为0,其余顶点的最短路径长度为∞。
将A加入已访问的顶点集合。
2. 更新选择A到B的路径长度最短,将B加入已访问的顶点集合。
更新A到C和A到D的最短路径长度。
3. 重复更新依次选择离起始顶点最近的顶点,并更新最短路径长度,直到所有顶点被访问。
通过不断的更新,最终得到从顶点A到其他顶点的最短路径长度表格如下:顶点 A B C D E最短路径长度 0 3 4 5 9三、总结通过以上Dijkstra算法的步骤和实例计算,我们可以清晰地了解该算法的执行过程和原理。
最短路径dijkstra算法过程

最短路径dijkstra算法过程
Dijkstra算法是一种用于解决最短路径问题的经典算法,其过
程如下:
1. 创建一个距离表,记录从起始节点到每个节点的距离。
初始时,除了起始节点,其他节点的距离被设置为无穷大,起始节点的距离被设置为0。
2. 创建一个集合Q,用于存放还未被访问的节点。
3. 在集合Q中找到距离最小的节点v并将其从集合Q中移除。
如果没有找到,则说明所有节点已被访问完毕,算法结束。
4. 遍历节点v的所有邻居节点u,对于每个邻居节点u,更新
其距离表中的距离。
如果通过节点v可以获得比原先距离更短的路径,则更新距离。
5. 重复步骤3和步骤4,直到集合Q为空。
6. 返回距离表,其中记录了从起始节点到其他节点的最短距离。
需要注意的是,在实现过程中,需要使用一个优先队列来快速找到集合Q中距离最小的节点v,以提高算法的效率。
以上就是Dijkstra算法的基本过程。
通过不断更新距离表,算
法可以找到从起始节点到其他节点的最短路径。
dijkstra例题详解

dijkstra例题详解Dijkstra算法是一种求解单源最短路径问题的贪心算法,它是由荷兰计算机科学家Edsger W. Dijkstra在1956年提出的。
Dijkstra算法可以解决有向有权图中单个源节点到其他所有节点的最短路径问题。
下面我们就来看一下Dijkstra算法的具体流程和实例。
一、Dijkstra算法的基本思想Dijkstra算法是一种基于贪心算法的思想,它采用了一种逐步逼近的方式来得到最短路径。
Dijkstra算法主要基于两个概念:1.已知最短路径节点集合S2.未知最短路径节点集合Q初始时,已知最短路径节点集合S为空,未知最短路径节点集合Q包含所有节点。
第一步,从未知最短路径节点集合Q中选取一个节点v,使得该节点到源节点的距离最短,并把这个节点加入到已知最短路径节点集合S中。
第二步,根据新加入的节点v,更新其他节点到源节点的距离。
如果节点w到源节点的距离通过v缩短了,那么就更新节点w的距离。
重复以上两个步骤,直到集合S包含所有节点。
二、Dijkstra算法的实现步骤具体实现Dijkstra算法的步骤如下:1.首先,初始化一个距离数组dis,保存源节点到每个节点的最短距离,初始化为INF(无穷大)。
2.初始化一个标记数组vis,保存每个节点是否已经走过,初始化为false。
3.设置源节点的距离为0,并将其放入优先队列中。
4.重复以下步骤,直到队列为空:从队列中取出距离源节点最近的节点u,将其标记为vis[u]=true。
遍历节点u的所有邻节点v,若vis[v]=false,则计算源节点到v的距离,并更新dis[v]。
将节点v放入优先队列中。
5.最终,dis数组中保存的就是源节点到每个节点的最短距离。
三、Dijkstra算法的例题详解现在我们来看一个Dijkstra算法的例题。
假设有一个无向有权图,图中有5个节点,给定起点s,节点之间的边和边权如下图所示。
给定起点s,求源节点s到每个节点的最短路径。
dijkstra算法 城市最短路径问题

dijkstra算法城市最短路径问题Dijkstra算法是一种经典的图算法,用于求解带有非负权重的图的单源最短路径问题。
在城市的交通规划中,Dijkstra算法也被广泛应用,可以帮助我们找到最短的路线来节省时间和成本。
一、最短路径问题的定义最短路径问题,指的是在一个带权重的有向图中,找到从起点到终点的一条路径,它的权重之和最小。
在城市的交通规划中,起点和终点可以分别是两个街区或者两个交通枢纽。
二、Dijkstra算法Dijkstra算法是基于贪心策略的一种算法,用于解决带非负权重的最短路径问题。
它采用了一种贪心的思想:每次从起点集合中选出当前距离起点最近的一个点,把其移到已知的最短路径集合中。
并以该点为中心,更新它的相邻节点的到起点的距离。
每次更新距离时,选择距离起点最近的距离。
三、Dijkstra算法实现1. 创建一个到起点的距离数组和一个布尔类型的访问数组。
2. 将起点的到起点的距离设置为0,其他的节点设置为无穷大。
3. 从距离数组中选择没有访问过且到起点距离最近的点,将它标记为“已访问”。
4. 对于它的所有邻居,如果出现路径缩短的情况,就更新它们的距离。
5. 重复步骤3和4,直到所有节点都被标记为“已访问”。
6. 最后,根据到起点的距离数组,以及每个节点的前驱节点数组,可以得到从起点到终点的最短路径。
四、Dijkstra算法的时间复杂度Dijkstra算法的时间复杂度可以通过堆优化提高,但最坏情况下时间复杂度仍达到O(ElogV)。
其中,E是边的数量,V是顶点的数量。
因此,Dijkstra算法在不考虑空间复杂度的情况下,是一种高效且实用的解决城市最短路径问题的算法。
五、结论Dijkstra算法是一个广泛应用于城市交通规划领域的算法,可以帮助我们找到最优的路线来节省时间和成本。
它基于贪心策略,每次从起点集合中选择距离起点最近的点,并对其邻居节点进行松弛操作。
Dijkstra算法的时间复杂度虽然较高,但堆优化可以提高算法性能。
matlab dijkstra算法求解最短路径例题

matlab dijkstra算法求解最短路径例题摘要:一、Dijkstra 算法简介1.Dijkstra 算法背景2.Dijkstra 算法原理二、MATLAB 实现Dijkstra 算法求解最短路径1.创建图对象2.计算最短路径3.可视化结果三、Dijkstra 算法应用示例1.例题描述2.解题步骤3.结果分析正文:一、Dijkstra 算法简介Dijkstra 算法是一种经典的图论算法,用于计算图中两个节点之间的最短路径。
它是由荷兰计算机科学家Edsger W.Dijkstra 于1956 年提出的,其基本思想是以起始点为中心向外层层扩展,直到扩展到终点为止。
Dijkstra 算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低。
可以用堆优化来提高效率。
二、MATLAB 实现Dijkstra 算法求解最短路径1.创建图对象首先,我们需要使用MATLAB 的graph 函数创建一个图对象,指定节点和边的信息。
例如,我们创建一个简单的图,包含4 个节点和3 条边:```matlabG = graph(4, 3);```其中,4 表示图中有4 个节点,3 表示图中有3 条边。
2.计算最短路径接下来,我们可以使用MATLAB 的shortestpath 函数计算两个节点之间的最短路径。
例如,我们计算节点1 到节点3 的最短路径:```matlabSP = shortestpath(G, 1, 3);```3.可视化结果最后,我们可以使用MATLAB 的plot 函数将最短路径可视化。
例如,我们绘制节点和边以及最短路径:```matlabplot(G, SP);```三、Dijkstra 算法应用示例以下是一个使用Dijkstra 算法求解最短路径的例题:在一个图中,有4 个节点和3 条边,如下所示:```1 --2 -- 3| /| /| /| /|/4```请问,节点1 到节点4 的最短路径是多少?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Dijkstra算法是一种用于求解最短路径问题的常用算法,适用于带权有向图。
以下是Dijkstra 算法的求解过程:
初始化:将起始节点标记为当前节点,并将起始节点到所有其他节点的距离初始化为无穷大(表示暂时未知)。
将起始节点到自身的距离设置为0,表示起始节点到自身的最短路径长度为0。
遍历所有节点:
选择当前节点的邻接节点中,距离最小且尚未被访问的节点。
更新该邻接节点的最短路径长度。
如果经过当前节点到达该邻接节点的路径比当前记录的最短路径更短,则更新最短路径长度。
继续遍历未访问的节点,直到所有节点都被访问。
重复步骤3,直到所有节点都被访问或者没有可达节点。
最终得到起始节点到其他节点的最短路径长度。
在Dijkstra算法的求解过程中,使用一个距离表(distances)来记录起始节点到各个节点的当前最短路径长度,一个访问表(visited)来标记节点是否已被访问。
同时,使用优先队列(例如最小堆)来选取下一个距离最小且尚未被访问的节点。
具体的实现可以使用迭代或递归的方式,根据实际情况来选择合适的数据结构和算法实现。
在实际编程中,可能还需要考虑处理边的权重、处理节点的邻接关系和路径记录等细节。
Dijkstra算法要求图中的边权重非负,且无法处理负权边的情况。
对于含有负权边的图,可以考虑使用其他算法,如Bellman-Ford算法或SPFA(Shortest Path Faster Algorithm)等。