直线的点斜式和斜截式方程一等奖说课稿3篇
直线的点斜式方程说课稿

直线的点斜式方程说课稿新课标指出,学生是教学的主体。
教师要以学生活动为主线。
在原有知识的基础上,构建新的知识体系。
本次说课包括五部分:说教材、说教法、说学法、说教学程序和说板书。
说教材教材地位、作用从整体来看,直线方程初步体现了解析几何的实质——用代数的知识来研究几何问题。
从集合与对应的角度构建了平面上的直线与二元一次方程的一一对应关系,是学习解析几何的基础。
从本节来看,直线的点斜式方程是推导其它直线方程的基础,在直线方程中占有重要地位。
它是学习直线方程知识的第一课时,是学生们首次在方程与图像间建立起具体关系。
学习直线的点斜式方程迈出了探究解析几何学知识的第一步,对后续直线与直线的位置关系、直线与圆的位置关系等内容的学习,无论是思想上还是方法上都有着积极的意义。
二、教学目标1、知识与技能(知识目标):掌握点斜式和斜截式方程的推导过程,并能根据条件熟练求出直线的点斜式方程和斜截式方程。
2、过程与方法(能力目标): 初步形成用代数方法解决几何问题的能力,体会数形结合的思想。
3、情感态度与价值观(情感目标):使学生学会认识事物的特殊性与一般性之间的关系。
培养学生勇于提问,善于探索的思维品质。
三、教学重点与难点重点:(1)直线方程点斜式、斜截式方程的推导(2)由已知条件求直线方程。
难点:直线点斜式方程的推导说教法1、学情分析:高一学生思维活跃,求知欲强,具有一定直观感知能力,也具有一次函数的概念、图象和直线的斜率等知识储备,但在用代数方法解决几何问题的思维转换上有所欠缺,同时其抽象思维能力和语言表达能力有待提高,因此在概念的推导过程中可能会比较困难。
2、教学方法:遵循“教师的主导作用和学生的主体地位相统一的教学规律”,本节课我采用“诱思探究教学法”教学。
通过教师点拨,启发学生自主探究来达到对知识的发现和接受。
说学法本节课所面对的是高一年级的学生,这个年龄段的学生思维活跃,求知欲强,但思维习惯还有待教师引导。
《直线方程的五种形式省公开课获奖课件说课比赛一等奖课件

1、设A、B是x轴上旳两点,点P旳横坐标为2,且
│PA│=│PB│,若直线PA旳方程为x-y+1=0,则直线
PB旳方程是—
x+y-5=0
2、求过点A(5,2)且在两坐标轴上截距互为相反数 旳直线方程
3、已知直线L: x y 1
m 4m
1)若直线旳斜率是2,求m旳值
2)若直线l与两坐标轴旳正半轴围成三角形旳 面积最大,求此直线旳方程
y0 x0 5 0 4 0
y 5x 4
措施小结已知两点坐标,求直线方程旳措施:
y=kx+b(k<0,b<0
课堂练习
(1)若直线 x=1 的倾斜角为 ,则
A.等于 0
B.等于 4
C.等于 2
D.不存在
(2)如右图,直线 l1 , l2 , l3 的斜率分别为 k1, k2 , k3 ,则
A. k1 k2 k3
B. k3 k1 k2
C. k3 k2 k1
D. k1 k3 k2
(x1≠x2, y1≠y2 ),求经过这两点旳直线方程?
k y2 y1 x2 x1
代入y y0 k(x x0 )得
y
P1(x1,l y1)【注意y】 当y1 直yx线22 没xy斜11 (率x 或x1斜) 率为0时,
P2(x2,y2)
不能用两点式来表达;
x
两点式:y y1 y2 y1
(2) 斜率是-2,在y轴上旳截距是4;
答案: y -2x 4
2.两点式:已知直线 l 经过点p1(x1, y1)和p2 (x2 y2 ) (x1≠x2)求直线 l旳方程.
y y1 x x1 y2 y1 x2 x1 这个方程是由直线上两点拟定旳,叫做 直线方程旳两点式。
《第1课时直线的点斜式方程与斜截式方程》教学设计

《第1课时直线的点斜式方程与斜截式方程》教学设计一、问题引入请同学们思考:1.在直角坐标系内确定一条直线,需要几个条件?2.求直线斜率的方法有哪些?3.已知直线l 的斜率k ,且直线l 经过点()000,P x y ,如何求直线l 的方程?设计意图:引导学生复习旧知,提出问题,引入新课题.二、探索研究(一)直线的点斜式方程1.循序渐进:思考1:设12,l l 是平面直角坐标系中的直线,分别判断满足下列条件的12,l l 是否唯一.如果唯一,作出相应的直线,并思考直线上任意一点的坐标(,)x y 应该满足什么条件.(1)已知1l 的斜率不存在;(2)已知1l 的斜率不存在且1l 过点(2,1)A -;(3)已知2l 的斜率为3;(4)已知2l 的斜率为3且2l 过点(1,2)B .教师提出问题,学生分组进行思考讨论,教师让学生行口答,并给予点评.教师:不难看出,满足条件(1)的直线1l 有无数条,但满足条件(2)的直线1l 是唯一的,如图所示.此时若(,)x y 为直线1l 上的点,则必有2x =-;另外,任意横坐为2-的点,一定都在直线1l 上.满足条件(3)的直线2l ,只要倾斜角为60︒即可,因此2l 也有无数条.满足条件(4)的直线2l 是唯一的,如图(2)所示.此时若(,)P x y 为直线2l 上不同于B 的点,则BP k即21y x -=-,化简可得21),y x -=-容易验证,(1,2)B 的坐标也能使上式成立,因此直线2l 上的点都使得上式成立;另外,如果,x y 能使得上式成立,即要么(,)P x y 就是点(1,2)B ,要么BP k =也就是说,点P 一定在直线2l 上.思考2:(2)中直线1l 上点的坐标与方程2x =-的解有什么关系?(4)中直线2l 上点的坐标与方程2y -=1)x -的解有什么关系?由此你能得出什么结论?教师提出问题,学生进行思考,教师让同学回答,并给出一般结论.教师:一般地,如果直线l 上点的坐标都是方程(F x ,)0y =的解,而且以方程(,)0F x y =的解为坐标的点都在直线l 上,则称(,)0F x y =为直线l 的方程,而直线l 称为方程(,)0F x y =的直线.此时,为了简单起见,“直线l ”也可说成“直线(,)0F x y =”,并记作:(,)0l F x y =.思考3:设点()000,P x y 为直线l 上一定点,而且知道的l 斜率信息,我们怎样得到直线l 的方程?教师提出问题,学生进行思考讨论并进行回答.教师:(1)如果直线l 的斜率不存在,则直线l 的方程为0.x x =(2)如果直线l 的斜率存在且为k ,设(,)P x y 为直线l 上不同于0P 的点,则0P P k k =,即00y y k x x -=-,化简可得 ()00y y k x x -=-.①而且()000,P x y 的坐标也能使上式成立;另外,如果,x y 能使得上式成立,则要么(,)P x y 就是点()000,P x y ,要么0P Pk k =,也就是说,点P 一定在直线l 上,从而①就是直线l 的方程.因为方程①由直线上一点和直线的斜率确定,所以通常称为直线的点斜式方程.思考4:你能用方向向量来推导直线的点斜式方程吗?教师提出问题,学生进行思考讨论并进行回答.教师:直线的点斜式方程还可以用方向向量来得到:如果已知()000,P x y 是直线l 上一点,而且l 的斜率为k ,则直线的一个方向向量为(1,)a k =;另一方面,设(P x ,y )为平面直角坐标系中任意一点,则P 在直线l 上的充要条件是0P P 与a 共线,又因为()000,P P x x y y =--,所以()00y y k x x -=-.思考5:直线的点斜式方程能否表示坐标平面上的所有直线呢?引导学生分组讨论,然后说明理由,使学生掌握直线的点斜式方程的适用范围.教师:归纳总结:1.点斜式方程的局限性:只能表示斜率存在的直线,不能表示与x 轴垂直的直线.2.经过点()000,P x y 的直线有无数条,可分成两类:①斜率存在的直线(如图),方程为()00y y k x x -=-;斜率不存在的直线(如图):0x x =.(二)直线的斜截式方程思考6:已知直线l 的斜率为k ,且与y 轴的交点为(0,b),求直线l 的方程.学生独立求出直线l 的方程:y kx b =+.②在此基础上,教师给出截距的概念,引导学生分析方程②由哪两个条件确定,让学生理解斜截式方程概念的内涵.教师:一般地,当直线l 既不是x 轴也不是y 轴时:若l 与x 轴的交点为(,0)a ,则称l 在x 轴上的截距为a ;若l 与y 轴的交点为(0,)b ,则称l 在y 轴上的截距为b .一条直线在y 轴上的截距简称为截距.方程y kx b =+由直线的斜率和截距确定,因此通常称为直线的斜截式方程.思考7:观察方程y kx b =+,它的形式具有什么特点?直线y kx b =+在y 轴上的截距是什么? 使学生理解“截距”与“距离”两个概念的区别.教师:从直线的截距式方程y kx b =+,可以方便地看出直线的斜率k 和截距b .思考8:你如何从直线方程的角度认识一次函数y=kx b+?直线方程中k和b的几何意义是什么?你能说出一次函数21,3,3=-==-+的截距吗?y x y x y x使学生进一步加深对直线截距式方程的认识和理解.三、应用举例(一)点斜式方程应用举例例1 已知直线l经过点P,且l的斜率为k,分别根据下列条件求直线l的方程:(1)(0,3),2P k=-.P k=;(2)(1,0),3解(1)根据已知可得直线l的点斜式方程为-=⨯-32(0)y x化简得23=+.y x(2)根据已知可得直线l的点斜式方程为0y x=-+.-⨯-,化简得33y-=(3)(1)x教师可以找两个同学上黑板完成,其他同学在练习本上完成,完成后教师进行讲解.(二)斜截式方程应用举例例2 已知直线l经过点(2,3)P-,且l的倾斜角为45︒,求直线l的方程,并求直线l的截距.解因为直线l的斜率tan451k=︒=,所以可知直线l的方程为-=⨯--,31[(2)]y x即5=+.因此直线l的截距为5.y x学生思考讨论并上台讲解,教师给予点评.四、小结归纳教师引导学生概括:(1)本节课我们学习了哪些知识点?(2)直线方程的点斜式、斜截式的特点和适用范围是什么?(3)求一条直线的方程,要知道什么条件?五、课后作业教材第85页练习A第1~4题.板书设计教学研讨本节内容由8个思考问题构成,每个思考问题要给学生充分的讨论探究时间,这样设计有助于学生自主学习能力的提高.对于例题,这里选择了教材上的例题,数量和难度都有些不足,建议教师可以再安排一些难度较大的例题.。
直线的点斜式方程说课稿.docx

直线的点斜式方程说课稿新课标指出,学生是教学的主体。
教师要以学生活动为主线。
在原有知识的基础上,构建新的知识体系。
本次说课包括五部分:说教材、说教法、说学法、说教学程序和说板书。
说教材教材地位、作用从整体来看,直线方程初步体现了解析几何的实质——用代数的知识来研究几何问题。
从集合与对应的角度构建了平面上的直线与二元一次方程的一一对应关系,是学习解析几何的基础。
从本节来看,直线的点斜式方程是推导其它直线方程的基础,在直线方程中占有重要地位。
它是学习直线方程知识的第一课时,是学生们首次在方程与图像间建立起具体关系。
学习直线的点斜式方程迈出了探究解析几何学知识的第一步,对后续直线与直线的位置关系、直线与圆的位置关系等内容的学习,无论是思想上还是方法上都有着积极的意义。
二、教学目标1、知识与技能(知识目标):掌握点斜式和斜截式方程的推导过程,并能根据条件熟练求出直线的点斜式方程和斜截式方程。
2、过程与方法(能力目标) : 初步形成用代数方法解决几何问题的能力,体会数形结合的思想。
3、情感态度与价值观(情感目标):使学生学会认识事物的特殊性与一般性之间的关系。
培养学生勇于提问,善于探索的思维品质。
三、教学重点与难点重点:(1)直线方程点斜式、斜截式方程的推导(2)由已知条件求直线方程。
难点:直线点斜式方程的推导说教法1、学情分析 :高一学生思维活跃,求知欲强,具有一定直观感知能力,也具有一次函数的概念、图象和直线的斜率等知识储备,但在用代数方法解决几何问题的思维转换上有所欠缺,同时其抽象思维能力和语言表达能力有待提高,因此在概念的推导过程中可能会比较困难。
2、教学方法:遵循“教师的主导作用和学生的主体地位相统一的教学规律”,本节课我采用“诱思探究教学法”教学。
通过教师点拨,启发学生自主探究来达到对知识的发现和接受。
说学法本节课所面对的是高一年级的学生,这个年龄段的学生思维活跃,求知欲强,但思维习惯还有待教师引导。
直线的点斜式方程说课稿

直线的点斜式方程说课稿新课标指出,学生是教学的主体。
教师要以学生活动为主线。
在原有知识的基础上,构建新的知识体系。
本次说课包括五部分:说教材、说教法、说学法、说教学程序和说板书。
说教材教材地位、作用从整体来看,直线方程初步体现了解析几何的实质——用代数的知识来研究几何问题。
从集合与对应的角度构建了平面上的直线与二元一次方程的一一对应关系,是学习解析几何的基础。
从本节来看,直线的点斜式方程是推导其它直线方程的基础,在直线方程中占有重要地位。
它是学习直线方程知识的第一课时,是学生们首次在方程与图像间建立起具体关系。
学习直线的点斜式方程迈出了探究解析几何学知识的第一步,对后续直线与直线的位置关系、直线与圆的位置关系等内容的学习,无论是思想上还是方法上都有着积极的意义。
二、教学目标1、知识与技能(知识目标):掌握点斜式和斜截式方程的推导过程,并能根据条件熟练求出直线的点斜式方程和斜截式方程。
2、过程与方法(能力目标): 初步形成用代数方法解决几何问题的能力,体会数形结合的思想。
3、情感态度与价值观(情感目标):使学生学会认识事物的特殊性与一般性之间的关系。
培养学生勇于提问,善于探索的思维品质。
三、教学重点与难点重点:(1)直线方程点斜式、斜截式方程的推导(2)由已知条件求直线方程。
难点:直线点斜式方程的推导说教法1、学情分析:高一学生思维活跃,求知欲强,具有一定直观感知能力,也具有一次函数的概念、图象和直线的斜率等知识储备,但在用代数方法解决几何问题的思维转换上有所欠缺,同时其抽象思维能力和语言表达能力有待提高,因此在概念的推导过程中可能会比较困难。
2、教学方法:遵循“教师的主导作用和学生的主体地位相统一的教学规律”,本节课我采用“诱思探究教学法”教学。
通过教师点拨,启发学生自主探究来达到对知识的发现和接受。
说学法本节课所面对的是高一年级的学生,这个年龄段的学生思维活跃,求知欲强,但思维习惯还有待教师引导。
直线的点斜式方程说课稿

直线的点斜式方程说课稿各位老师,大家好!我是10级数学本科(2)班的秦静宜。
今天,我说课的题目是直线的点斜式方程。
首先,我对本教材进行简要分析。
一、教学分析直线的点斜式方程是人教版高中新课标数学必修2第三章第二节第一课时的内容,从本节来看,直线的点斜式方程是其他方程的基础,在直线方程中占有重要位置。
同时,同学们将迈出探究几何学知识的第一步,在“数”和“形”之间建立联系。
二、教学目标按照《新课程标准》的要求,根据对上述教材的分析,确定本节课的教学目标。
1、知识与技能目标(1)理解直线的点斜式方程与斜截式方程的概念。
(2)掌握直线的点斜式方程与斜截式方程及其推导过程。
(3)会应用直线的点斜式方程和斜截式方程2、过程与方法目标(1)在复习“已知直角坐标系内确定直线的几何要素——直线上的一点和直线的斜率”和斜率公式的基础上,通过师生探讨,得出直线的点斜式方程。
(2)增强学生的逻辑思维能力和空间想象力。
3、情感、态度、价值观目标(1)通过让学生体会直线的斜截式方程与一次函数的关系;进一步培养学生数形结合的思想。
(2)进一步培养学生追求新知的精神。
三、重点与难点重点:直线的点斜式方程和斜截式方程难点:直线的点斜式方程和斜截式方程的应用四、教学方法1、学情分析(1)生理特点:本节课所面对的是高一学生,这个年龄段的学生思维活跃,且高中阶段是智力发展的关键年龄。
(2)心理特点:有较强的求知欲,但思维习惯还需教室的指导,在概念的推导过程中可能会比较困难。
(3)认知障碍:学生具有一定直观能力,也具备一次函数和直线的斜率等知识,但未尝试过用代数方法解决几何问题。
2、教学学法本节课采用“启发式”的教学方法,通过教师的点拨,是学生自主探究问题,是能力与知识的有机形成,使学生在解决问题的同时形成方法。
五、教学过程1、创设情境回顾上一节课学习的内容,直角坐标系内确定一条直线的几何要素,直线上的一点和直线的倾斜角(斜率)可以确定一条直线。
直线的点斜式方程的说课稿

直线的点斜式方程的说课稿陈龙清各位老师,大家好!我是09数学本科(1)班的陈龙清.今天,我说课的题目是直线的点斜式方程.首先,我对本教材进行简要的分析:一、教材分析《直线的点斜式方程》是人教版普通高中数学必修2第三章第2节第二节第一课时的内容. 从整体来看,直线方程初步体现了解析几何的实质——用代数的知识来研究几何问题。
从集合与对应的角度构建了平面上的直线与二元一次方程的一一对应关系,是学习解析几何的基础。
从本节来看,直线的点斜式方程是推导其它直线方程的基础,在直线方程中占有重要地位。
二、教学目标按照《新课程标准》的要求,根据上述对教材的分析,我确定本节课的教学目标是:1.知识与技能目标:掌握直线方程的点斜式,斜截式方程;理解直线的斜截式方程与一次函数的关系.2.方法与过程目标:在已知直角坐标系内确定一条直线的几何要素——直线上的一点和直线的倾斜角的基础上,通过师生探讨,得出直线的点斜式方程;学生通过对比理解“截距”与“距离”的区别.3.情感态度价值观目标:通过让学生体会直线的斜截式方程与一次函数的关系,进一步培养学生数形结合的思想,渗透数学中普遍存在相互联系,相互转化等观点,使学生能用联系的观点看问题.三、重点与难点重点:根据上述对教材的分析以及确定的教学目标,我确定本节课的教学重点为:直线的点斜式方程与斜截式方程.难点:考虑到学生已有的知识基础与认知能力,我确定教学难点为直线的点斜式方程与斜截式方程的应用.关键:学好本节课的关键是掌握直线的点斜式方程的推导.四、教学方法接下来,我对学情进行分析,然后谈谈我的教学方法.1.学情分析(1)生理特点:高中阶段是智力发展的关键年龄,学生逻辑思维从经验型逐步走向理论型发展,观察能力、记忆能力和想象能力也随之迅速发展.(2)心理特点:高中学生虽有好奇,好表现的因素,更有知道原理、明白方法的理性愿望,希望平等交流研讨,厌烦空洞的说教.(3)认知障碍:有的学生遗忘了学过的知识,有的学生想象能力与提炼能力较差.分析根据上面的分析,从高中生的心理特点和认知水平出发,结合本班学生的实际情况与认知障碍,按照突出重点,突破难点,本节课采用学生广泛参与,师生共同探究的教学模式,运用启发式教学法指导学生学习。
直线的点斜式方程 说课稿 教案 教学设计

直线的点斜式方程●三维目标1.知识与技能(1)理解直线方程的点斜式、斜截式的形式特点和适用范围.(2)能正确利用直线的点斜式、斜截式公式求直线方程.(3)体会直线的斜截式方程与一次函数的关系.2.过程与方法(1)在已知直角坐标系内确定一条直线的几何要素——直线上的一点和直线的倾斜角的基础上,通过师生探讨,得出直线的点斜式方程.(2)学生通过对比,理解“截距”与“距离”的区别.3.情感、态度与价值观通过让学生体会直线的斜截式方程与一次函数的关系,进一步培养学生数形结合的思想,渗透数学中普遍存在相互联系、相互转化等观点,使学生能用联系的观点看问题.●重点难点重点:直线的点斜式方程和斜截式方程.难点:直线的点斜式方程和斜截式方程的应用.重难点突破:以“直角坐标系内确定一条直线的几何要素”为切入点,先由学生自主导出“过某一定点的直线方程”,再通过组内分析、交流,找出所求方程的差异,明其原因,最终达成共识,得出直线的点斜式的形式及适用前提,最后通过题组训练,采用师生互动、讲练结合的方式,引出斜截式方程,并通过多媒体演示“截距”与“距离”的异同,化解难点.●教学建议解析几何的实质是“用代数的知识来研究几何问题”,而直线方程恰恰体现了这种思想.由于直线的点斜式方程是推导其他直线方程的基础,在直线方程中占有重要地位.故本节课易采用“启发式”的教学方法,从学生原有的知识和能力出发,寻找过某一定点的直线方程的求解方法.鉴于学生在“数”和“形”之间转换的难度,教师可引导学生通过合作、交流等方式,对难点予以突破;可通过多媒体直观演示,让学生明确点斜式方程和斜截式方程的适用条件.对于斜截式方程,明确以下三点:(1)它是点斜式方程的特殊形式;(2)讲清“截距”的概念;(3)了解其与一次函数的关系,其他问题不必扩充太多.由于点斜式方程是学习其他方程的前提,故教师可适当的补充教学案例,让学生在训练中进一步感知解析法的思想.●教学流程创设问题情境,引出问题:过某一定点的直线方程,如何求解?⇒通过引导学生回忆直线的斜率公式,找出求“过某一定点的直线方程”的方法.⇒通过引导学生回答所提问题理解直线的点斜式方程及斜截式方程的适用条件.⇒通过例1及其变式训练,使学生掌握直线的点斜式方程的求法.⇒通过例2及其变式训练,使学生掌握直线的斜截式方程的求法.⇒课标解读1.了解直线方程的点斜式的推导过程.(难点)2.掌握直线方程的点斜式并会应用.(重点)3.掌握直线方程的斜截式,了解截距的概念.(重点、易错点)直线的点斜式方程1.已知直线l经过点P0(x0,y0),且斜率为k,设点P(x,y)是直线l上不同于点P0的任意一点,那么x,y应满足什么关系?【提示】y-y0=k(x-x0).2.经过点P0(x0,y0)且斜率不存在的直线l如何表示?【提示】x=x0.方程y-y0=k(x-x0)由直线上一定点P0(x0,y0)及斜率k确定,我们把这个方程称为直线的点斜式方程,简称点斜式,适用于斜率存在的直线.直线的斜截式方程经过定点(0,b)且斜率为k的直线l的方程如何表示?【提示】y=kx+b.1.直线l在y轴上的截距直线与y轴的交点(0,b)的纵坐标b称为直线在y轴上的截距.2.直线的斜截式方程方程y=kx+b由直线的斜率k和它在y轴上的截距b确定,我们称这个方程为直线的斜截式方程,简称为斜截式.适用范围是斜率存在的直线.直线的点斜式方程(1)经过点A(2,5),斜率是4;(2)经过点B(2,3),倾斜角是45°;(3)经过点C(-1,-1),与x轴平行;(4)经过点D(1,1),与x轴垂直.【思路探究】注意斜率是否存在.若存在,方程为y-y0=k(x-x0);若不存在,方程为x=x0.【自主解答】(1)由点斜式方程可知,所求直线的方程为y-5=4(x-2),即4x-y-3=0.(2)∵直线的倾斜角为45°,∴此直线的斜率k=tan 45°=1,∴直线的点斜式方程为y-3=x-2,即x-y+1=0.(3)∵直线与x轴平行,∴倾斜角为0°,斜率k=0,∴直线方程为y+1=0×(x+1),即y=-1.(4)∵直线与x轴垂直,斜率不存在,故不能用点斜式表示这条直线的方程,由于直线所有点的横坐标都是1,故这条直线方程为x=1.求直线的点斜式方程,步骤如下:根据条件写出下列各题中的直线方程.(1)经过点A(1,2),斜率为2;(2)经过点B(-1,4),倾斜角为135°;(3)经过点C(4,2),倾斜角为90°;(4)经过坐标原点,倾斜角为60°.【解】(1)由直线方程的点斜式可得,所求直线的方程为y-2=2(x-1),即2x-y=0.(2)由题意可知,直线的斜率k=tan 135°=-1,所以直线的点斜式方程为y-4=-(x+1),即x+y-3=0.(3)由题意可知,直线的斜率不存在,且直线经过点C(4,2),所以直线的方程为x=4.(4)由题意可知,直线的斜率k=tan 60°=3,所以直线的点斜式方程为y=3x.直线的斜截式方程根据条件写出下列直线的斜截式方程.(1)斜率为2,在y轴上的截距是5;(2)倾斜角为150°,在y轴上的截距是-2;(3)倾斜角为60°,与y轴的交点到坐标原点的距离为3.【思路探究】确定直线的斜率k―→确定直线在y轴上的截距b―→得方程y=kx+b【自主解答】(1)由直线方程的斜截式方程可知,所求直线方程为y=2x+5.(2)∵倾斜角α=150°,∴斜率k=tan 150°=-3 3.由斜截式可得方程为y=-33x-2.(3)∵直线的倾斜角为60°,∴其斜率k=tan 60°=3,∵直线与y轴的交点到原点的距离为3,∴直线在y轴上的截距b=3或b=-3.∴所求直线方程为y=3x+3或y=3x-3.1.本题(3)在求解过程中,常因混淆截距与距离的概念,而漏掉解“y=3x-3”.2.截距是直线与x轴(或y轴)交点的横(或纵)坐标,它是个数值,可正、可负、可为零.直线l与直线l1:y=2x+6在y轴上有相同的截距,且l的斜率与l1的斜率互为相反数,求直线l的方程.【解】由直线l1的方程可知它的斜率为2,它在y轴上的截距为6,所以直线l的斜率为-2,在y轴上的截距为6.由斜截式可得直线l的方程为y=-2x+6.平行与垂直的应用 当a 为何值时,直线l 1:y =-x +2a 与直线l 2:y =(a 2-2)x +2(1)平行?(2)垂直?【思路探究】 已知两直线的方程,且方程中含有参数,可利用l 1∥l 2⇔k 1=k 2且b 1≠b 2,;l 1⊥l 2⇔k 1·k 2=-1求解.【自主解答】 (1)要使l 1∥l 2,则需满足{ a 2-2=-1,2a ≠2,解得a =-1.故当a =-1时,直线l 1与直线l 2平行.(2)要使l 1⊥l 2,则需满足(a 2-2)×(-1)=-1,∴a =±3.故当a =±3时,直线l 1与直线l 2垂直.已知直线l 1:y =k 1x +b 1与直线l 2:y =k 2x +b 2.(1)若l 1∥l 2,则k 1=k 2,此时两直线与y 轴的交点不同,即b 1≠b 2;反之k 1=k 2且b 1≠b 2时,l 1∥l 2.所以有l 1∥l 2⇔k 1=k 2且b 1≠b 2.(2)若l 1⊥l 2,则k 1·k 2=-1;反之k 1·k 2=-1时,l 1⊥l 2.所以有l 1⊥l 2⇔k 1·k 2=-1.(1)已知直线y =ax -2和y =(a +2)x +1互相垂直,则a =________;(2)若直线l 1∶y =-2a x -1a与直线l 2∶y =3x -1互相平行,则a =________. 【解析】 (1)由题意可知a ·(a +2)=-1,解得a =-1.(2)由题意可知⎩⎨⎧-2a =3,-1a ≠-1,解得a =-23. 【答案】 (1)-1 (2)-23误把“截距”当“距离”致误已知斜率为-43的直线l ,与两坐标轴围成的三角形面积为6,求l 的方程. 【错解】 设l :y =-43x +b ,令x =0得y =b ;令y =0得x =34b , 由题意得12·b ·(34b )=6, ∵b >0,∴b =4,∴直线l 的方程为y =-43x +4. 【错因分析】 上述解法的错误主要在于“误把直线在两轴上的截距当作距离”.【防范措施】 直线在两轴上的截距是直线与坐标轴交点的横、纵坐标,而不是距离,因此本题在先求得截距后,应对截距取绝对值再建立面积表达式.【正解】 设l :y =-43x +b ,令x =0得y =b ;令y =0得x =34b , 由题意得12·|b |·|34b |=6,∴b 2=16,∴b =±4. 故直线l 的方程为y =-43x ±4.小结1.建立点斜式方程的依据是:直线上任一点与这条直线上一个定点的连线的斜率相同,故有y -y 1x -x 1=k ,此式是不含点P 1(x 1,y 1)的两条反向射线的方程,必须化为y -y 1=k (x -x 1)才是整条直线的方程.当直线的斜率不存在时,不能用点斜式表示,此时方程为x =x 1.2.斜截式方程可看作点斜式的特殊情况,表示过(0,b )点、斜率为k 的直线y -b =k (x -0),即y =kx +b ,其特征是方程等号的一端只是一个y ,其系数是1;等号的另一端是x 的一次式,而不一定是x 的一次函数.如y =c 是直线的斜截式方程,而2y =3x +4不是直线的斜截式方程.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、直线的点斜式和斜截式方程一等奖说课稿我本节课说课的内容是直线的点斜式和斜截式方程。
新课标指出,学生是教学的主体。
教师要以学生活动为主线。
在原有知识的基础上,构建新的知识体系。
我将以此为基础从教材地位和内容分析,教学目标分析,重点和难点分析,教法和学法分析,教学过程分析这几个方面加以说明。
一、教材地位和内容分析直线方程初步体现了解析几何的实质——用代数的知识来研究几何问题。
直线作为最常见的几何图形,在生产实践和生活应用中都有着广泛的应用。
直线的方程是是解析几何的基础知识,对后续圆、直线和圆的位置关系、圆锥曲线等内容的学习,无论从知识上还是方法上都有着积极的作用。
二、教学目标分析1、识记直线的点斜式和斜截式方程,了解其推导过程2、会根据已知条件熟练求出直线的方程3、培养学生主动探究知识、合作交流的意识三、重点与难点分析重点:会根据已知条件熟练求出直线的方程难点:直线点斜式方程的推导四、教法与学法分析1、教法分析遵循“教师的主导作用和学生的主体地位相统一的教学规律”,本节课通过教师点拨,启发学生自主探究来达到对知识的发现和接受。
2、学法分析本节课所面对的是职高二年级的学生,这个年龄段的学生思维活跃,求知欲强,但思维习惯还有待教师引导。
本节课从学生原有的知识和能力出发,教师将带领学生创设疑问,通过合作交流,共同探索,寻求解决问题的方法。
五、教学过程分析根据新课标的理念,我把整个的教学过程分为几个阶段:1、温故知新上课前复习特殊角的正切值以及斜率的求法,为研究新课打下基础。
2、创设情境直线是点的集合,求直线方程实际上就是求直线上点的坐标所满足的一个等量关系。
因此在教学中我把探究的过程变成一个问题来进行。
问题:已知一直线过一定点,且斜率为k,则直线是唯一确定的,也就是可求的,怎样求直线L的方程?3、探求新知学生带着问题预习,分组讨论,合作交流,共同研究出直线的点斜式方程。
教师巡视指导答疑。
在此基础上,找学生在黑板上讲解其推导过程,师生共同点评。
注:在求直线方程的过程中要说明直线上的点的坐标满足方程,也要说明以方程的解为坐标的点在直线上,即方程的解与直线上的点的坐标是一一对应的。
为以后学习曲线与方程打好基础。
教学中让学生感觉到这一点就可以。
不必做过多解释。
教师点明:上述方程是由直线上一点和直线的斜率确定的,叫做直线方程的`点斜式方程.4、深入探究问题1:X轴所在直线方程是什么?与X轴平行的直线方程是什么?通过这个问题让学生注意点斜式的特殊情况。
问题2:Y轴所在直线方程是什么?与Y轴平行的直线方程是什么?通过这个问题让学生注意点斜式直线方程的使用范围:即在斜率存在的情况下才可以使用。
问题3:如果直线L的斜率为K,且与Y轴的交点坐标为(0 ,b),求直线L的方程。
通过这个问题引出直线的斜截式方程。
教师说明:我们把直线L与Y轴交点(0 ,b)的纵坐标b叫做直线L在Y轴上的截距。
这个方程是由直线的斜率K与它在Y轴上的截距b确定,所以叫做直线的斜截式方程。
注:(1)截距可取任意实数,它不同于距离。
(2)斜截式方程中的K和b有明显的几何意义。
(3)斜截式方程的使用范围和斜截式一样。
5、应用举例求下列直线方程:(1)直线经过点P(1,2),倾斜角为(2)直线经过点、学生相互讨论,自主完成。
教师深入学生中,了解其思路,纠正其错误,并规范书写过程。
6、反馈练习P53:3、4,B组27、课堂小结让学生谈谈本节课都学习了哪些内容8、布置作业必做题:A组2(2)、4选做题:B组12、直线的点斜式和斜截式方程一等奖说课稿老师们同学们大家好,今天我说课的内容是《直线的点斜式方程》,下面我将从教学内容、教法分析、教学目标、教学重难点和教学流程五个方面进行阐述。
一、教材分析:教材内容,《直线的点斜式方程》选自苏教版数学必修二,其主要内容是直线的点斜式方程和斜截式方程。
在本节课的学习中,学生们将迈出探究解析几何学知识的第一步,在“数”和“形”之间建立联系。
这为后续学习直线与直线的位置关系等内容,提供了重要的思想方法。
学情分析高一学生具有一定直观感知能力,也具备一次函数和直线的斜率等知识储备,但还没有尝试过用代数方法解决几何问题,同时分析论证的能力有待提高,因此在概念的推导过程中可能会比较困难。
二、教学方法:其次,关于教学方法,新课标的基本理念之一是倡导积极主动、勇于交流的学习方式,因此是本节主要课采用“设问-探索-归纳-定论”的探究式教学,结合分组讨论的环节,营造“教师为主导,学生为主体”的乐学课堂。
三、教学目标:根据教学内容,本节课的教学目标分为三个维度:在知识与技能方面:能叙述直线点斜式方程与斜截式方程的概念,能运用点斜式方程和斜截式方程解决问题;在过程与方法方面:体会直线方程与一次函数之间的关系,培养数形结合、转化化归的数学思想。
在情感、态度和价值观方面:通过独立思考与分组讨论,培养探究意识及合作精神,激发努力思考、获得新知的学习热情。
四、教学重难点:由于本节课是首次学习直线方程的表示方法,因此把直线的点斜式方程与斜截式方程的概念设置为教学重点。
同时,直线点斜式方程和斜截式方程的推导过程超出了学生对代数和几何知识的原有认知水平,因此教学难点便设定为直线的点斜式方程与斜截式方程的推导。
五、教学过程:接下来我再来详细介绍一下本节课的教学过程。
1、以旧带新,设问激疑:第一个环节是以旧带新,设问激疑。
在回顾之前学习的'直线的斜率知识后,我将提出这样一个问题:已知一条直线的斜率及直线上一个点的坐标能否确定直线方程?通过这一问题,激发起学们生独立思考的积极性。
2、探究问题,获得新知:第二个环节是探究问题,获得新知。
我在ppt上展示2组直线方程及其图象,并提出几个问题,如图中直线的斜率是什么?图中定点的坐标是什么?如何用已知的斜率和坐标来表示直线?这一过程中,通过问题链来引导学生用已知点的坐标表示直线斜率,再将所得的关系式转化为直线方程,完成对直线点斜式方程的推导。
类比相同方法也完成对直线斜截式方程的推导,突破本节课的教学难点。
3、分组讨论,内化提高:第三个环节是分组讨论,内化提高。
我将给出几组针对新知识的细节,具有启发性的问题,如坐标轴所在的直线方程是什么?是否所有的直线都具有点斜式方程?通过分组讨论的环节,培养了学生们的探究意识和合作精神,从而达到了情感与态度的教学3、直线的点斜式和斜截式方程一等奖说课稿作为一名教学工作者,就难以避免地要准备说课稿,说课稿有助于顺利而有效地开展教学活动。
那要怎么写好说课稿呢?下面是小编帮大家整理的直线的方程一复习课的说课稿,欢迎大家分享。
1、教学目标:(1)知识目标:通过师生互动教学,培养学生自编自练自查能力,提高学生应用数学的意识,使学生掌握求直线方程的方法,进行综合能力训练;使学生学会如何根据题目的已知条件恰当选择直线方程形式求解问题。
(2)能力目标:培养学生在分析问题和解决问题中运用数形结思想的能力;培学生在分析问题和解决问题中运用转化思想的能力;(3)德育目标:引导、激发学生积极参与教学,使学生在获得成功的同时,培养学生爱学、乐学情感。
通过对数学客观规律的揭示,培养学生透过现象看本质的能力;培养学生辩证唯物主义世界观和方法论。
2、重点:求直线方程的基本方法。
3、难点:使学生学会如何根据题目的已知条件恰当选择直线方程形式求解问题。
4、教具:多媒体辅助教学设备。
5、教学方法:问题情境教学法;启发式教学法;反思式教学法。
6、教学步骤:(一)课前展示课题与相关知识(二)由三点坐标联想、发散自编习题并解答。
已知:点a、b、c的坐标分别为(3,4)、(6,0)、(-5,-2)。
可联想到:(1)三角形三边所在直线的方程、三个内角(2)三角形三边中线、高所在直线的方程(3)三角形三个内角的角平分线所在方程。
(4)变题1:已知三角形的两个顶点坐标、一条角平分线的方程,求:第三个顶点的坐标与相关直线方程(5)变题2:已知三角形一个顶点及两条角平分线所在直线方程,求相关量(6)变题3:已知三角形一个顶点及两条中线所在直线方程,求相关量(7)变题4:已知三角形两个顶点及一条中线方程,求相关量(8)变题5:已知三角形一个顶点及两条高所在直线方程(9)变题6:已知三角形两个顶点及一条高所在直线方程,(10)变题7:已知三角形两个顶点坐标及垂心坐标,(11)变题8:已知三角形两个顶点坐标及重心坐标,(12)变题9:已知三角形两个顶点坐标及内心坐标························课堂小结、作业布置7、直线方程教法设计的几点说明:本节是“直线综合复习”第一节课,重点是与学生共同研究求解直线方程的一般方法,在师生的双向交流中,让学生自己考查自己,从而了解学生对知识的理解与掌握程度,灵活调整教学进度,以期达到最佳教学效果。
旧知的回顾通过“屏保”让学生提前预览,这样节约了课堂教学时间,从而提高课堂教学效益。
“以学生主体性发展作为教学改革的起点和依据,对原有传统教育中不合理的行为和思维方式进行改革,真正实现教育观念上的转变,实现人的发展的社会化和个性化”是当代教学论的`研究主题。
本节课,学生在执教者的指导下积极主动的参与学习,从兴趣与学习的内在需求上下工夫,克服学生原有的知识经验、认知结构、情感、意志、性格等制约,发挥学生的自主性与创造性,在已知三点坐标的前提下,通过执教者的启发与引导,让学生采用猜想、类比、联想等思维方法,运用数形结合、参数、化归等数学思想,适时使用发散思维、逆向思维,通过自编自练自查,力争培养学生的应用数学的意识、提高学生的综合能力。
这样,以知识为媒介,以人为中心、以学生素质获得充分、自由、全面地发展原则组织教学。
从发展的角度来看,让学生经历数学知识的发现过程,体验学习过程中的各种感受,比获得知识本身更重要。
学生在由三点坐标联系所学知识考查自己时通常会遇到一定的困难,只有让学生处于“愤悱”状态中,通过引导、讨论,获得所需知识或解决了问题时,然后进行必要的发散、逆向思维训练,才能对学生的思维、能力的发展起推进作用。
因此,要让学生在游泳中学会游泳,在创造中学会创造。
“教育要面向现代化”已基本形成共识,现代教育技术应用于数学教学正逐渐变成现实。
而在数学教学中,使用媒体有效的标志是:“有利于学生的主动参与,有利于揭示教学内容的实质,有利于课堂交流的高效实现,有利于学生思维和技能的训练”。
本节课在媒体的选择上,主要运用“几何画板”通过图形对称、旋转变化进行直观教学,联系点线、线线关系解决问题;将“旧知复习”制成“屏幕保护”,在课前、课中展示,既能起温故知新作用,又为课堂教学的深入提供必要的理论保证。