结构的工程计算有限元法

合集下载

结构力学常用的3种计算方法

结构力学常用的3种计算方法

结构力学常用的3种计算方法
结构力学是研究物体在外力作用下的变形和破坏规律的学科。

在结构力学中,常用的计算方法有三种,分别是静力学方法、动力学方法和有限元方法。

静力学方法是结构力学中最基本的计算方法之一。

它是通过分析物体在静力平衡状态下的受力情况,来计算物体的变形和破坏情况。

静力学方法适用于简单的结构体系,如梁、柱、桥梁等。

在静力学方法中,常用的计算工具有受力分析、弹性力学、杆件理论等。

动力学方法是结构力学中另一种常用的计算方法。

它是通过分析物体在动力平衡状态下的受力情况,来计算物体的变形和破坏情况。

动力学方法适用于复杂的结构体系,如飞机、汽车、船舶等。

在动力学方法中,常用的计算工具有振动分析、动力学理论、有限元方法等。

有限元方法是结构力学中最常用的计算方法之一。

它是通过将物体分割成许多小的单元,然后对每个单元进行分析,最后将所有单元的分析结果综合起来,来计算物体的变形和破坏情况。

有限元方法适用于各种结构体系,无论是简单的还是复杂的。

在有限元方法中,常用的计算工具有有限元分析软件、数值计算方法、计算机模拟等。

结构力学中的三种计算方法各有优缺点,应根据具体情况选择合适的方法进行计算。

静力学方法适用于简单的结构体系,动力学方法
适用于复杂的结构体系,有限元方法则适用于各种结构体系。

在实际工程中,常常需要综合运用这三种方法,以得到更加准确的计算结果。

杆件结构的有限元法

杆件结构的有限元法
第一篇 有限元法
第一篇 有限元法
第二章 杆件结构的有限元法
当结构长度尺寸比两个截面方向的尺 寸大得多时,这类结构称为杆件。工程中 常见得轴、支柱、螺栓、加强肋以及各类 型钢等都属于杆件。
杆件结构可分为珩杆和梁两种。
和其他结构采用铰连接的杆称为珩杆。珩杆的连接处可以自由转动, 因此这类结构只承受拉压作用,内部应力为拉压应力。影响应力的 几何因素主要是截面面积,与截面形状无关。 和其他结构采用固定连接的杆称为梁。链的连接处不能自由转动, 因此梁不仅能够承受拉压,而且能承受弯曲和扭转作用。这类杆件 的内部应力状态比较复杂,应力大小和分布不仅与截面大小有关, 而且与截面形状和方位有很大关系。 建立有限元模型时,这两类杆件结构可用相应的杆单元和梁单元离散。
Ke 1 kkaa
ka
ka
中的元素在总刚度矩阵中应在位置第1行、第2行的第1列,第2列
k k
1 11
1 21
k
1 12
k
1 22
0
0
0 0 0
第2个单元的节点号为2和3,则单元刚度矩阵叠加到总刚度矩阵 的第2行、第3行的第2列、第3列元素上
0 0 0
0
k
2 22
k
2 23
0
k
2-3 杆件系统的有限元法
一、铰支杆系统的有限元计算格式 上面求解弹簧系统的有限元方法可以直接用力求解受轴向力的杆件系统。 均质等截面铰支杆,刚度值可由材料力学中力与变形的关系中获得
AE F1 L u1
k AE L
均质等截面铰支杆的力-位移方程可写为
F F12ALE11 11uu12
坐标变换
由杆件组成的机构体系称为杆系,如起重机、桥梁等。 由珩杆组成的杆系称为珩架,由梁组成的杆系称为刚架。

有限元-结构静力学分析

有限元-结构静力学分析

03
结果优化
如果结果不满足设计要求,需要对有 限元模型进行优化设计,如改变梁的 截面尺寸、增加支撑等。
THANKS
谢谢您的观看
结构静力学的求解方法
解析法
解析法是通过数学方法求解结构在静载荷作用下的响应的求解方法。它通常 适用于具有简单几何形状和载荷条件的结构,如梁、板、壳等。
数值法
数值法是一种通过数值计算方法求解结构在静载荷作用下的响应的求解方法 。它通常适用于具有复杂几何形状和载荷条件的结构,如飞机、汽车等。
结构静力学的基本假设和简化
问题描述和基本方程
问题描述
弹性地基梁是支撑在弹性地基上的梁,受到垂直荷载的作用。该问题可描述为求 解地基反力和梁的挠度。
基本方程
该问题的基本方程包括梁的平衡方程、几何方程和物理方程。这些方程描述了梁 在受力后的变形和应力分布情况。
利用有限元法进行每个单元之间通过节点相连。每个节点具有三个自由度:沿 x、y、z方向的移动。
系统方程的建 立
将所有单元的平衡方程 和变形协调方程组合起 来,得到整个结构的系 统方程。
求解系统方程
利用数值方法(如高斯 消元法)求解系统方程 ,得到每个节点的位移 和应力。
结果分析和讨论
01
结果输出
输出每个节点的位移、应力、应变和 弯矩等结果。
02
结果评估
根据输出结果,对框架结构的强度、 刚度和稳定性进行评估,判断是否满 足设计要求。
连续性假设
结构静力学的基本假设是结构的材料是连续的, 即结构的内部没有空隙和缺陷。
各向同性假设
结构静力学的基本假设是结构的材料是各向同性 的,即结构的各个方向具有相同的材料性质。
均匀性假设
结构静力学的基本假设是结构的材料是均匀的, 即结构的各个部分具有相同的材料性质。

结构分析的有限元法-第三章

结构分析的有限元法-第三章

式中
H 1 u B A yH v
(3.32)

H 0 u H 0 v 0 0 0 0 1 0 0 2 0 6x
(3.33)
单元刚度矩阵
再次应用式(2.70),并进行一系列的积分运算,可以得出单元刚度矩阵的显式如下:
l
K
e
E d A B B d x
0 1 l
Av
1
2 l
0 0 1 l 2 1 l
(3.21)
MATLAB不仅可以进行数值运算,也能进行符号运算。如式(3.20)中的矩 阵Au和Av的求逆运算,我们可以在MATLAB的命令窗口下输入 >> syms L >> Au = [ 1 0 1 L ] ; >> Av = [ 1 0 0 0 0 1 0 0 1 L L^2 L^3 0 1 2*L 3*L^2] ; 第一句是定义符号变量L,后面定义两个矩阵Au和Av。然后我们再输入下 面求逆的命令 >> inv(Au) ans = 0 1 1 [ 1, 0] Au [ -1/L, 1/L] 1 l 1 l >> inv(Av) ans = 0 0 1 [ 1, 0, 0, 0] 0 1 0 1 [ 0, 1, 0, 0] A v 2 2 3 l 2 l 3 l [ -3/L^2, -2/L, 3/L^2, -1/L] 3 2 3 1 l 2 l [ 2/L^3, 1/L^2, -2/L^3, 1/L^2] 2 l
根据材料力学的有关知识,我们可以立刻写出杆单元的结点位移与结点力 之间的关系为
FNi EA l (u i u j ) FNj EA l (u j u i )

结构有限元分析 (2)

结构有限元分析 (2)

结构有限元分析1. 简介结构有限元分析是工程领域中一种常用的数值分析方法,用于解决结构载荷下的应力、变形和振动问题。

通过将复杂的结构分成有限个简单的单元,通过求解每个单元的应力和位移,再将它们组合得到整个结构的应力和位移场。

有限元方法广泛应用于各种工程领域,如土木工程、机械工程和航空航天工程等。

2. 有限元分析的基本原理有限元分析的基本原理是建立结构的有限元模型,然后通过求解有限元模型的力学方程,得到结构的应力和位移场。

有限元模型通常由节点和单元构成。

节点是结构中的关键点,单元是连接节点的构造单元,常用的单元包括三角形单元、四边形单元和六面体单元等。

通过对单元的弯曲、伸长等变形进行逼近,可以得到结构的位移场。

然后,根据位移场和材料的力学性质,可以计算结构的应力场。

3. 有限元分析的步骤有限元分析通常包括以下步骤:步骤1:离散化将结构分成有限个单元,并为每个单元选择合适的单元类型。

步骤2:建立单元刚度矩阵根据每个单元的几何形状、材料性质和节点位移,建立单元的刚度矩阵。

步骤3:建立全局刚度矩阵将所有单元的刚度矩阵组装成全局刚度矩阵。

步骤4:应用边界条件根据结构的边界条件,将边界节点的位移固定或施加给定的载荷。

步骤5:求解线性方程组根据边界条件将全局刚度矩阵和载荷向量进行约束,然后通过求解线性方程组得到结构的位移。

步骤6:计算应力和应变根据得到的位移场和材料的力学性质,计算结构的应力和应变场。

4. 有限元分析的应用领域有限元分析是一种非常灵活和广泛应用的方法,可以用于解决各种结构工程中的力学问题,包括:•结构静力学分析:用于计算结构的应力和变形。

•结构动力学分析:用于计算结构的振动频率和模态形状。

•结构优化设计:通过调整结构的几何形状、材料和边界条件,实现结构的最佳设计。

•结构疲劳分析:用于评估结构在长期应力加载下的疲劳寿命。

有限元分析在工程实践中得到了广泛应用,可以帮助工程师在设计和优化结构时做出准确的决策。

计算结构力学有限元方法_一维结构

计算结构力学有限元方法_一维结构
2. 分析离散体系时,建立的是代数方程组,虽然大型结构的阶 数有时很高,但随着高速电子计算机的发展和计算技巧的完 善,一般是可解的。它克服了连续体弹性微分方程中,复杂 边界的不可解性。
有限元法基本概念
有限元方法
有限元法的基本工作包括两大部分:
1. 单元分析:即探讨单元的力学特性。它包括选取单元的试 探函数、推导表征单元刚度或柔度特性的单元刚度,或者柔 度矩阵。
Ve
Se
∫ ∫ PVe
= Ve NTXdV,PSe
NTqdS 对应体力/面力的等价节点力
Se
令:Re = PVe + PSe + Pe
∑ ∑ = Π m 1UeT KeUe − m UeT Re
2 =e 1=e 1
由于整体序号和局部序号存在一一对应关系,将Ke和Re按结
构结点位移列阵的自由度数和排列顺序添零升阶,进行膨胀,
8
2
16
空间任意 六面体元
8
3
24
三角形环元
轴对称元
八节点 等参元
3
2
6
8
2
16
有限元通用方程
有限元方法
设作用某个单元各节点上的节点力和节点位移分别为:
Se = S1 S2 Sn T ; Ue U1 U2 Un T
构造单元的位移函数如下:
u = NUe
其中,u:单元内任一点的位移函数,Ue:单元的节点位移 列阵,N:形状函数。
Se
上式中,m:单元总数,X:作用在单元上的体力,q:作用
在单元上的分布面力,Se:单元的边界,Ve:单元的体积。 Pe:单元的节点外载荷列阵。
有限元方法
上式可以进一步写成:
∑ ∫ ∑ ∫ ∫ Π

有限元法的工程领域应用

有限元法的工程领域应用

有限元法的工程领域应用
有限元法(Finite Element Method,简称FEM)是一种工程领域常用的数值计算方法,广泛应用于结构力学、固体力学、流体力学等领域。

以下是一些有限元法在工程领域常见的应用:
1. 结构分析:有限元法可用于分析各种结构的受力性能,如建筑物、桥梁、飞机、汽车等。

通过将结构离散成有限数量的单元,可以计算出每个单元的应力、应变以及整个结构的位移、变形等信息。

2. 热传导分析:有限元法可用于模拟材料或结构的热传导过程。

通过对材料的热传导系数、边界条件等进行建模,可以预测温度分布、热流量等相关参数。

3. 流体力学分析:有限元法在流体力学领域的应用非常广泛,例如空气动力学、水动力学等。

通过建立流体的速度场、压力场等参数的数学模型,可以分析流体在不同条件下的运动特性。

4. 电磁场分析:有限元法可以应用于计算电磁场的分布和特性,如电磁感应、电磁波传播等。

通过建立电磁场的数学模型,可以预测电场、磁场强度以及电磁力等。

5. 振动分析:有限元法可用于模拟结构的振动特性,如自由振动、强迫振动等。

通过建立结构的质量、刚度和阻尼等参数的数学模型,可以计算出结构在不同频率下的振动响应。

6. 优化设计:有限元法可以与优化算法结合,应用于工程设计中的结构优化。

通过对结构的材料、几何形状等进行参数化建模,并设置目标函数和约束条件,可以通过有限元分析来寻找最佳设计方案。

以上只是有限元法在工程领域的一些应用,实际上有限元法在各个领域都有广泛的应用,为工程师提供了一种精确、高效的数值计算方法,用于解决各种实际工程问题。

有限元法在工程结构计算中的应用

有限元法在工程结构计算中的应用

有限元法在工程结构计算中的应用有限元法是一种广泛应用于工程结构计算的数学方法,它可以将一个复杂的结构或系统分解为许多简单的、独立的单元,然后对每个单元进行单独的分析和计算,最后将各个单元的结果综合起来得到整个结构或系统的结果。

在工程结构计算中,有限元法的主要应用包括:1.结构静力学分析:有限元法可以用来求解结构在静载荷作用下的力学行为,例如结构的变形、应力、应变等。

通过对结构的每个单元施加力或力矩,计算出每个单元的响应,然后累计起来得到整个结构的响应。

2.结构动力学分析:有限元法可以用来求解结构在动态载荷作用下的力学行为,例如结构的振动、冲击等。

这需要考虑到时间因素和随时间变化的载荷,因此比静力学分析更复杂。

3.结构强度分析:有限元法可以用来求解结构的强度问题,例如结构的最大承载能力、稳定性等。

这需要对每个单元进行应力分析,并根据材料的力学性能进行计算,然后对所有单元的结果进行综合。

4.结构优化设计:有限元法可以用来指导结构优化设计,通过对结构的每个单元进行优化,可以提高结构的性能、减小结构的重量、降低成本等。

这需要对每个单元的力学行为进行精确模拟,并结合优化算法进行计算。

在工程结构计算中,有限元法的优点包括:1.可以将复杂的结构分解为简单的单元进行计算,提高了计算效率;2.可以考虑各种复杂的边界条件和载荷条件,提高了计算精度;3.可以对每个单元进行独立的校核和修复,提高了设计的可靠性;4.可以用于各种不同类型的结构,包括杆系结构、板壳结构、三维实体等。

因此,有限元法在工程结构计算中得到了广泛的应用,例如桥梁工程、房屋建筑工程、水利工程、机械工程等领域。

有限元软件也成为了工程设计中的重要工具,例如ANSYS、ABAQUS、SolidWorks等软件在工程设计中被广泛应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

结构的工程计算有限元法
一、什么是有限元法?
有限元法是一种工程计算方法,主要用于求解工程结构在外力作用下的应力、应变、位移等参数,为工程设计和优化提供重要的依据。

由于结构受外力作用而导致应力、应变分布的复杂性,因此直接采用理论方法求解通常比较困难,而有限元法则能够通过离散化方法将结构分割成若干个小单元进行分析,采用计算机模拟的方式对每个小单元进行求解,最终得到整个结构的应力、应变、位移等参数。

二、有限元法的基本原理是什么?
有限元法的基本原理是将一个大型的复杂结构分割成许多个影响较小的单元,然后对每个单元进行分析,逐步求解整个结构的力学特性。

分割单元的数目和形状取决于待分析的结构类型及需要达到的精度要求。

一般来讲,分割的单元形状越小、数目越多,则计算结果越精确,但计算量也随之增加。

三、有限元法的步骤有哪些?
有限元法采用以下步骤进行结构分析:
1.建模:将工程结构通过计算机软件建立起几何模型,由
不可数的结构体素转换为可数的三角化网格节点,建立起分析模型。

2.划分单元:将结构模型分割成若干个小单元,存储节点、单元信息以及单元间关系等数据,形成一个有限元模型。

3.建立节点位移方程:根据结构载荷和边界条件,建立节
点位移方程组。

4.求解节点位移:根据位移方程组求解节点位移值。

5.求解应力应变:根据节点位移结果,采用应变位移关系
计算节点应变,再结合材料本构关系计算节点应力。

6.检验结构:通过分析结果的误差检验分析结果的可靠性,调整模型参数以改善分析结果。

四、有限元法的优点是什么?
1. 有限元法能够处理复杂三维结构,适用性强。

由于被
分割成许多个小单元,因此可以处理各种复杂的几何形状和内部复杂性的结构。

2. 有限元法求解精度高,能够得出较准确的结果。

因为
单元形状够细致,可以分析结构内孔洞或任意形态的轮廓。

3. 有限元法的结果能够反映结构应力、应变、变形变化
的规律,并能够定量评估结构的承载能力、安全性、疲劳寿命以及预测结构大变形等情形的发生或变化。

4. 有限元法运算速度和效率不断提高,现在很多有限元
分析软件可以快速进行大规模的复杂结构分析。

五、有限元法的应用领域有哪些?
有限元法在现代结构工程的应用非常广泛,主要包括以下领域:
1.航空航天领域:飞行器设计、航空发动机设计和热辐射分析等。

2.交通领域:桥梁、道路、轨道交通设施、汽车和火车的动力学和振动分析等。

3.建筑领域:建筑物结构安全评估、地震分析、建筑物疲劳问题的研究等。

4.机械领域:机床加工的稳定性研究, 载荷下变形情况研究等。

5.生物医学领域:器官与组织的生物力学性能研究,计算机模拟人体疾病和治疗方法的探索。

六、有限元法的局限性是什么?
1.有限元法分析的精度取决于模型精度。

当模型有误差或略过重要信息时,导致预测结果远离真实情况。

2.有限元法需要高性能计算机和计算软件支持,计算成本较高。

3.有限元法所分析的是基于一定假设(例如几何概念、材料本构)的模型,无法完全覆盖真实结构的复杂性。

4.有限元法过于依赖经验模型,因此需要经验丰富的分析师对各个参数进行调整和优化,使其具有实际意义。

结论:
总体来说,有限元法具有精度高,适用性强,应用范围广等优点。

虽然有其局限性,但是通过不断的研究和发展,有限元法已经成为现代结构工程领域中必不可少的分析工具之一。

相关文档
最新文档