硝酸盐的来源

合集下载

粘土矿物材料用于水中硝酸盐去除的研究进展

粘土矿物材料用于水中硝酸盐去除的研究进展

第40卷第3期Vol.40㊀No.3重庆工商大学学报(自然科学版)J Chongqing Technol &Business Univ(Nat Sci Ed)2023年6月Jun.2023粘土矿物材料用于水中硝酸盐去除的研究进展赵贺芳1,任梦娇1,王子杰2,张杰杰11.马鞍山学院建筑工程学院,安徽马鞍山2431002.东南大学土木工程学院,南京211189摘㊀要:硝酸盐污染威胁着环境安全和人体健康,储量高㊁易获取㊁低价高效的粘土矿物材料作为硝酸盐脱除剂极具潜力㊂首先从硝酸盐的特性和来源出发,介绍了用于水中硝酸盐去除的天然粘土矿物,包括高岭土㊁凹凸棒土㊁伊利石㊁海泡石和膨润土,发现它们普遍存在着离子交换容量较低㊁选择吸附性不高的问题㊂接着归纳了目前常用的改性方法和复合方法:两种方法均能有效提升粘土矿物材料对硝酸盐的脱除能力,改性技术能够改良其表面性质,调整表面官能团的种类和数量,其中表面活性剂改性所取得的成效更优;复合技术能够拓宽其功能性,获取更多的操作性和性能提升,其中同双金属离子或壳聚糖复合是更好的办法㊂然后分析了粘土矿物材料的毒性,总结出其具有制备低毒性和高生物相容性复合材料的潜力,但需要对改性剂的选择和使用浓度进行严格的控制㊂最后,展望了未来粘土矿物材料在硝酸盐去除方面的研究重点和发展方向,为开发用于硝酸盐去除的新型粘土矿物材料提供理论支持和参考㊂关键词:粘土矿物;硝酸盐;水处理;发展趋势中图分类号:X522㊀㊀文献标识码:A ㊀㊀doi:10.16055/j.issn.1672-058X.2023.0003.002㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀收稿日期:2022-05-11㊀修回日期:2022-06-16㊀文章编号:1672-058X(2023)03-0009-11基金项目:安徽省高校优秀青年人才支持计划项目(GXYQ2020097);安徽省高校自然科学基金重点项目(KJ2021A1233);国家级大学生创新创业训练计划项目(202113614009).作者简介:赵贺芳(1985 ),女,安徽宿州人,硕士,讲师,从事环境保护技术与工程㊁污水处理等研究.引用格式:赵贺芳,任梦娇,王子杰,等.粘土矿物材料用于水中硝酸盐去除的研究进展[J].重庆工商大学学报(自然科学版),2023,40(3):9 19.ZHAO Hefang REN Mengjiao WANG Zijie et al.Research progress of clay mineral materials for nitrate removal in water J .Journal of Chongqing Technology and Business University Natural Science Edition 2023 40 3 9 19.Research Progress of Clay Mineral Materials for Nitrate Removal in Water ZHAO Hefang 1 REN Mengjiao 1 WANG Zijie 2 ZHANG Jiejie 11.School of Civil Engineering Ma anshan University Anhui Maanshan 243100 China2.School of Civil Engineering Southeast University Nanjing 211189 ChinaAbstract Nitrate pollution threatens environmental safety and human health.Clay mineral materials with high reserves easy access low price and high efficiency have great potential as nitrate removers.Starting from the characteristics and sources of nitrate the natural clay minerals used for nitrate removal in water including kaolin attapulgite illite sepiolite and bentonite were introduced.They generally have the problems of low ion exchange capacity and low selective adsorption.Then the commonly used modification method and composite method were summarized.Both methods can effectively improve the nitrate removal ability of clay mineral materials.Modification technology can improve its surface properties adjust the type and quantity of surface functional groups and the effect of surfactant modification is pounding technology can broaden its functionality and obtain more operability and performance improvement among which the compounding with bimetallic ions or chitosan is a better way.Further the toxicity of the clay mineral material was analyzed.It is concluded that it has the potential to prepare composites with low toxicity and high biocompatibility but the selection and concentration of modifiers need to be strictly controlled.In the end the future research focus and development direction of clay mineral materials in nitrate removal were prospected.Theoretical support and references are重庆工商大学学报(自然科学版)第40卷provided for the development of new clay mineral materials for nitrate removal.Keywords clay minerals nitrates water treatment development trend1㊀引㊀言硝酸盐是不可再生的微量营养素,对人类生活至关重要,但在高浓度下却会对生命产生毒性㊂目前,因化肥㊁畜禽粪便㊁工业和生活废水等导致的地下水和地表水硝酸盐污染,在世界许多地区造成了严重的环境和健康问题,包括沙特阿拉伯㊁印度㊁英国㊁北美㊁澳大利亚㊁摩洛哥㊁中国和伊朗等[1]㊂近20年,仅通过农业活动,水资源中硝酸盐总体含量增加了1mg/L~3mg/L㊂由于硝酸盐污染,约85%的湖泊均遭受着富营养化威胁[2]㊂从水体中低成本㊁高效地去除硝酸盐愈加成为环境治理的重头,化学还原工艺㊁生物反硝化工艺等技术纷纷被应用在硝酸盐处理领域,并且收获了不少成效[3]㊂然而它们也存在着运行成本高㊁处理效果不稳定和会产生副产物等缺点,需要被进一步克服[4]㊂粘土矿物在我国储量高㊁获得简单㊁便宜,并且有着天然的吸附能力以及离子交换特性,使其在脱除硝酸盐方面获得了广泛的关注[5]㊂在过去的几十年中,众多研究者们致力于增强粘土矿物的硝酸盐脱除能力,通过与改性技术及复合技术的结合,其吸附容量㊁选择吸附性㊁可回收性等都得到了一定程度的提升㊂粘土矿物和粘土矿物复合材料,有望能够成为一种集高效性㊁经济性㊁安全性于一体的硝酸盐脱除剂㊂本文总结了当今国内外用于水中硝酸盐去除的天然粘土矿物㊁改性粘土矿物㊁粘土矿物复合材料的研究进展,归纳了用于提升粘土矿物脱除硝酸盐能力的改性方法和复合方法,分析了粘土矿物材料的毒性,展望了未来粘土矿物材料在硝酸盐去除方面的研究重点和发展方向,为开发用于硝酸盐去除的新型粘土矿物材料提供理论支持和参考㊂2㊀硝酸盐的特性及来源硝酸盐被认为是农业必需的矿物质之一,它在氮循环中发生的硝化㊁反硝化过程内起着重要作用[6]㊂硝酸盐是一种高水溶性离子,它不容易直接与土壤结合,但在水环境中能够保持很高的稳定性和溶解性,因此高浓度的硝酸盐被认为是地下水资源的常见污染物之一㊂同时,它也是刺激富营养化的元素之一,影响着水环境中氮的形式,包括了铵态氮㊁硝酸盐氮和亚硝酸盐氮[7]㊂水中的硝酸盐进入人体后,在胃内细菌的作用下,很容易转化为亚硝酸盐,并形成致癌的N-亚硝基化合物[8]㊂此外,有研究表明饮用水中的硝酸盐通过与胺发生化学或酶反应容易形成亚硝胺,导致新生儿患癌症和高铁血红蛋白血症㊂当饮用水中的硝酸盐浓度过高时,人体会出现利尿㊁淀粉沉积积累增加和脾脏肿大等问题[9]㊂我国和美国环境保护署(USEPA)规定饮用水中硝酸盐的最高限量(以N计)为10mg/L,世界卫生组织(WHO)和欧盟(EU)规定饮用水中硝酸盐的最高限量为50mg/L㊂对于动植物而言,硝酸盐㊁亚硝酸盐等形式的氮也是一种威胁,硝酸盐浓度的增加会导致水体的溶解氧含量降低㊁透光率降低以及生物多样性的减少㊂硝酸盐形成的中间产物是一氧化二氮,其具有引起全球变暖的潜在风险[10]㊂硝酸盐的主要来源可分为四类,包括市政污水㊁工业废水㊁农业废水和大气沉积㊂市政污水中的硝酸盐主要来自于生活污水和生活废水,包括人类家庭和工作中的清洗㊁洗浴㊁污水处理系统㊁化粪池系统等环节㊂工业废水中硝酸盐的来源范围更加广泛,包括果胶工业㊁炸药工业㊁化肥工业㊁金属加工工业和核工业等㊂农业废水中的硝酸盐主要来自于动物粪便㊁灌溉㊁动物饲料㊁化肥㊁杀虫剂㊁除草剂等㊂大气沉积包括腐烂有机物的解离和风暴径流[11]㊂根据已有的研究报道,部分不同来源的硝酸盐浓度如表1所示㊂工业行业废水的硝酸盐浓度通常在200mg/L以上,远高于普通的市政污水㊂这是因为工业行业在生产过程中通常会将硝酸或硝酸盐作为原材料或辅助剂,导致硝酸盐的直接富集,或在加工过程中添加大量的含氮有机物,使废水经分解间接造成硝酸盐污染㊂表1㊀部分不同来源的硝酸盐浓度Table1㊀Nitrate concentrations from different sources 来㊀源浓度/(mg㊃L-1)文㊀献市政污水3~10[12]生活污水3~5[13]生活废水5~7[13]一般工业废水>200[14]果胶工业废水1000[15]炸药工业废水1000[15]化肥工业废水1000[16]金属加工废水1000[16]金属清洗废水50000[16]核废水186000[16]3㊀天然粘土矿物的应用粘土矿物是含水层状硅酸盐,存在于土壤㊁海洋沉积物和泥质页岩中,它们的形成是热液作用㊁沉积或风化铝硅酸盐岩石的结果[17]㊂在天然粘土矿物中存在两01第3期赵贺芳,等:粘土矿物材料用于水中硝酸盐去除的研究进展个结构单元,分别是硅四面体和氧化铝或镁八面体,如图1所示㊂四面体片状四面体八面体片状八面体O 2-S i 4+(H )O 2-A l 3+/M g 2+(H )O2-图1㊀片状四面体和片状八面体结构[20]Fig.1㊀Structures of tetrahedral and octahedral sheets各种天然粘土矿物都是由四面体和八面体的不同组合形成的,其金属氧化物表面和硅酸盐粘土边缘羟基的质子化使得大多数天然粘土矿物均有着低至中等的阴离子吸附能力[18]㊂基于Web of science 核心数据库2011 2021年关于 Clay minerals 和 Nitrate 的主题文献检索(图2(a)),可以发现在国际上近10年来的相关研究发文数量呈现稳定状态,对于粘土矿物与硝酸盐的关联探索长期维持着热度㊂而从不同发文国家/地区的网络图谱来看(图2(b)),美国和中国的研究占据了主要地位,表明了我国对粘土矿物脱除硝酸盐的研究投入较多而且产出了较多的研究成果㊂但是,天然粘土矿物普遍存在着离子交换容量较低㊁选择吸附性不高的问题[19]㊂因此,它们很少直接用于脱除水环境内的硝酸盐,有关研究文献也较少㊂即便如此,对于含有富粘土地层的地区而言,数量可观的天然粘土矿物依旧有不错的处理能力可被利用㊂目前,对于天然粘土矿物材料直接应用的研究主要包括了高岭土㊁凹凸棒土㊁伊利石㊁海泡石和蒙脱石㊂我国的粘土资源种类丰富,除了上述粘土矿物之外,红粘土㊁黄土㊁硅藻土等储量也非常充足,但是缺乏将其应用于硝酸盐脱除的相关研究,可以作为研究者未来关注的方向㊂807060504030201020112012201320142015201620172018201920202021年份发表文献数量(篇)5962615457726560697146(a )2011 2021年发文量分布情况(b )2011 2021年不同发文国家/地区的网络图谱图2㊀2011 2021年以粘土矿物和硝酸盐为主题的文献统计分析Fig.2㊀Aanlysis of literature statistical results onclay minerals and nitrates from 2011to 2021.3.1㊀高岭土高岭土(KN)是一种具有双层构造的无机粘土矿物,呈层状白色,它是通过热液改造或风化含有富铝硅酸盐的酸性火成岩形成的,这种矿物也可能存在于花岗岩和片麻岩中㊂其结构方程是Al 2Si 2O 5(OH)4,元素组成构成分别有SiO 2(45.68%)㊁Al 2O 3(40.45%)和H 2O (13.87%),其结构如图3所示[21]㊂KN 硅酸盐层内有Al 3+对Si 4+的同相置换,有助于去除硝酸盐㊂但是,KN 的层间位置会被易交换的OH 基团所占据,并且存在着过滤压降㊁比表面积低㊁吸附能力低等问题[22]㊂KN 是一种不膨胀的粘土矿物,相较于膨润土等膨胀粘土,在层间区域缺乏可交换阳离子的存在,其表面积及阳离子交换能力要小得多㊂Mohsenipour 等[23]评估了KN 在酸性条件下对硝酸盐还原的影响,结果显示在pH 值为4㊁温度为20ħ的环境中,对于高浓度以及低浓度的溶液,约25%的硝酸盐都能被吸附在KN 上㊂另外从吸附等温线的分析结果来看,Freundlich 模型在预测硝酸盐吸附方面比Longmuir 模型更准确㊂并且,在KN 的存在下,饱和区硝酸盐污染的延迟因子约为4,表明了KN 可被用于去除水环境中的硝酸盐㊂O O H A l S i图3㊀高岭土的结构示意图[24]Fig.3㊀Structure of kaolin11重庆工商大学学报(自然科学版)第40卷3.2㊀凹凸棒土凹凸棒土(ATP)是一种水合结晶型铝镁硅酸盐矿物,同时也是一种稀有的非金属矿资源㊂ATP由镁铝硅酸盐构成,理想结构方程为[Mg5][Si8O20](OH)2 (OH2)4㊃4H2O,如图4所示㊂其结构中的重要元素,是长方向上平行于c轴的角闪石双硅链㊂平行于c轴的双硅链以其纵向边缘的氧原子连接在一起,构成凹土的结构㊂在连续链中,四面体的顶点指向相反的方向,在层结构的底部和顶部交替间隔形成一种特殊的双层棱纹层,由两排四面体顶点组成㊂与双硅链一样,水分子链与c轴平行,填满了角闪石链之间的空隙[25]㊂从性能上看,ATP由于其独特的纤维晶体结构,具备了孔隙丰富㊁比表面积大的优势,同时外层羟基作为吸附位点提供了静电吸引的能力㊁外层络合效应以及较高的离子交换容量,使其在水处理范围应用广泛[26]㊂根据已有的研究,ATP的吸附性能和相应酸活化或热活化比表面积显示正向关联㊂Dong等[27]的研究报道了ATP对硝酸盐的去除能力,在硝酸盐含量20mg/L㊁ATP加入量2g/L㊁温度25ħ㊁接触时长12h的实验环境下,ATP对硝酸盐的去除率约为5%㊂H2O O H M g或A lO H2O S i图4㊀凹凸棒土的结构示意图[28]Fig.4㊀Structure of attapulgite3.3㊀伊利石伊利石(IMt-1)为2ʒ1铝硅酸盐,主要存在于页岩等沉积岩中,它是由KN在自然反应下变化而来的天然粘土矿物㊂IMt-1的结构方程为K0.75(Al1.75R) [Si3.5A l0.5O10](OH)2㊂结构如图5所示,其内部晶格包括两个硅心四面体片所围绕的一个铝心八面体片,通过四面体氧尖端和八面体羟基相互连接,铝中心只存在于三分之二的八面体片上,四面体层中的Si4+离子对低价态AI3+离子的同构取代敏感性较低[29]㊂IMt-1表面净负电荷被层间的K+离子中和,一些离子可以与阳离子进行交换,如H+㊁Ca2+和Mg2+㊂IMt-1对硝酸盐的还原,主要依赖于结构中的Fe2+与铁氧化菌的协同作用,将亚硝酸盐当成中间体进而还原成为氮气,同时这一微生物过程也促进了伊利石向其他岩石形态的转化[30]㊂Zhao等[31]研究了IMt-1对硝酸盐的去除过程,结果发现IMt-1样品的Fe2+浓度会随着反应时间的延长而降低,表明铁氧化菌能够氧化IMt-1内部的二价结构铁,而且最多仅需7d,IMt-1就能完全脱除水样内的硝酸盐㊂由于反应具有瞬变性,在实验任何时间点均可监测出NO和N2O存在㊂O2-O HA l3+,M g2+o r F e2+S i4+图5㊀伊利石的结构示意图[24]Fig.5㊀Structure of illite3.4㊀海泡石海泡石通常出现在沉积物和土壤中,是一种呈现微纤维构造的天然硅酸镁矿物,由二维四面体SiO5片组成,属于2ʒ1层状硅酸盐体系,分子式为(Si12)(Mg8)O30 (OH)4(OH2)4㊃8H2O,其结构如图6所示㊂海泡石的结构呈纤维状,其中包含由镁原子组成的平行四面体片㊂在SiO4条带中连续倒置的顶端氧原子常常引起八面体片的断裂,这些断裂使得构造通道形成,它们垂直于海泡石晶体的c轴以及条状结构[32]㊂通常,海泡石的比表面积接近于900m2/g,还存在着较强的化学㊁力学稳定性㊂海泡石的广泛可用性㊁成本效益㊁较强的吸附能力,使其在硝酸盐的去除方面被应用[33]㊂Ozturk等[34]的实验证明了海泡石对吸附硝酸盐的饱和容量最高为3.4mg/g,酸性的环境对于整个吸附进程有着促进效果,这可能归因于随着与海泡石接触的水相pH值的降低,海泡石表面上形成了过量的正电荷㊂拟二阶动力学模型更为贴切地拟合了吸附进程,从而验证了发生的活化吸附机制涉及硝酸盐和海泡石表面的活性位㊂ab S i O M g O H O H2H2O图6㊀海泡石的结构示意图[35]Fig.6㊀Structure of meerschaum21第3期赵贺芳,等:粘土矿物材料用于水中硝酸盐去除的研究进展3.5㊀膨润土膨润土(Bent)主要由蒙脱石粘土矿物组成,通常产生于水热合成或脱硝作用以及火山灰的化学变化,其分子式为(Na)0.7(Al3.3Mg0.7)Si8O20(OH)4㊃nH2O,结构如图7所示㊂其具有2ʒ1的铝硅酸盐结构,由一个铝为中心的八面体层夹在两个硅为中心的四面体层之间㊂Bent的表面带有净负电荷,这是由于八面体AI3+离子被价态较低的Fe2+和Mg2+等金属离子同构取代而产生的㊂类似的取代可能发生在它的四面体层中,Si4+离子被价态更低的铝AI3+离子取代,由此产生的表面负电荷被位于薄片层间区域的H+㊁K+㊁Na+和Ca2+等交换性阳离子中和[36]㊂Bent具有溶胀性好㊁表面吸附和离子交换性能强的优势,在工业和商业领域均有应用㊂在水处理领域中,Bent可以被用于吸附重金属和有机污染物等,也可应用于充当废水的混凝剂和废水处理过程中的污泥脱水环节㊂张庆乐等[37]研究表明了Bent对硝酸盐具有一定的吸附能力,当原水的硝酸盐浓度为25mg/L时,Bent对硝酸盐的去除率约为5.68%㊂OS iA lO HM g,F e图7㊀膨润土的结构示意图Fig.7㊀Structure of bentonite4㊀改性粘土矿物的应用天然粘土矿物的吸附能力一般会低于多孔硅或活性炭等多孔材料,为了提高这些廉价材料的吸附能力,科学界已经发展了各种策略来提高吸附能力㊂应用于改性天然粘土矿物的技术方法有很多,包括酸改性㊁表面活化剂改性㊁热改性㊁盐改性以及接枝改性等[38]㊂对于不同的天然粘土矿物和目标污染物,选择合适的改性方法能够使处理效果大幅提高㊂图8中统计了Web of science核心数据库2011 2021年用于硝酸盐去除的粘土矿物改性方法发文量占比情况,可以发现国际上对于改性粘土矿物的研究数量远超于天然粘土矿物,并且近年来的研究主要集中于酸活化改性和表面活性剂改性,两者的改性机理如图9所示㊂表2展示了粘土矿物在改性前后的硝酸盐脱除能力情况,酸活化改性和表面活性剂改性均有益于提升粘土矿物的硝酸盐脱除能力㊂酸改性热改性表面活性剂改性其他接枝改性天然粘土矿物5%7%3%32%53%<1%图8㊀2011—2021年用于硝酸盐去除的粘土矿物改性方法发文量占比Fig.8㊀Proportion of publications on clay mineral modification methods used for nitrate removal from2011to2021片状四面体酸活化改性表面活性剂改性图9㊀粘土矿物酸活化改性和表面化学改性机理图Fig.9㊀Mechanism diagram of acid activation modification and surface chemical modification of clay minerals表2㊀粘土矿物不同改性方法的硝酸盐去除能力Table2㊀Nitrate removal capability of different modificationmethods of clay minerals粘土矿物改性方法硝酸盐初始浓度/(mg㊃L-1)硝酸盐去除能力/(mg㊃g-1)文献高岭土480 1.24[23]H3PO4活化7015.00[40]HDTMA4-CEC表面活性剂改性100 4.87[41]海泡石100 3.4[34]HCl活化1009.80[34]DEDMA-Br表面活性剂改性2028.11[42]膨润土150 1.65[37]HCl活化408.90[43]H2SO4活化407.50[43]HDTMA4-CEC表面活性剂改性性10014.76[41]31重庆工商大学学报(自然科学版)第40卷4.1㊀酸活化改性酸处理活化粘土矿物,是增加层状硅酸盐骨架孔隙度最简单㊁最快的处理方法,它是粘土矿物与盐酸㊁硫酸等酸性物质反应的化学过程,过程内粘土矿物的金属阳离子会和氢离子交换致使去羟基化反应,致使粘土矿物外层的酸性基团增加,这有助于提升粘土矿物的吸附能力[44]㊂张素芳等[45]的研究对比了0.5%~ 15%的盐酸对天然膨润土改性效果,结果证明了酸溶液浓度和膨润土的吸附效能展现出负相关联系㊂因此,改性过程中选择合适浓度的酸溶液非常重要,高浓度的酸改性可能会对粘土矿物造成不利影响㊂Lei等[46]采用磷酸进行了高岭石的酸改性并引入了更多的H+,改性后的高岭石能够与合成的MgeAl层状双水滑石(LDH)前体协同作用,从而提高了对硝酸盐的去除率㊂Mena-Duran等[43]为了改变粘土矿物的构造特性,使它具有更大的孔隙率和表面积,从而提升硝酸盐的脱除效能,分别使用了硫酸和盐酸对天然膨润土实施了酸热活化㊂最终发现,硝酸盐的吸附量与吸附时间成正比,膨润土在被盐酸活化之后具有更高的硝酸盐脱除能力,可达22.28%㊂粘土残渣中存在的KCl证实了材料具有离子交换作用,而BET面积得测量结果表明了比表面积与硝酸盐去除能力之间没有直接关系㊂因此在酸活化改性过程中,根据不同的粘土矿物种类,选择合适的酸种类,优化酸溶液浓度㊁反应时间等操作条件非常重要,这直接影响硝酸盐的脱除效率㊂4.2㊀表面活性剂改性通过表面活性剂对天然粘土矿物进行改性,能够改良粘土矿物原有的表面性质,其包含的阳离子或阴离子基团还能够增强粘土矿物对于硝酸盐的吸附能力[47]㊂对于阴离子的去除,表面活性剂的有机阳离子可以与粘土的无机阳离子实施交换,这一过程使原本亲水的有机粘土转换成疏水,也促进了它对硝酸盐的吸附㊂另外,对于疏水键的利用不仅致使粘土矿物愈加稳定,还促进了阳离子表面活性剂的表层插入[48]㊂Duarte等[49]将十六烷基三甲基铵离子作为改性物质,研究调查了将其插入蒙脱土后在水性介质中去除硝酸盐的效率㊂初步测试表明,用氨基丙基三乙氧基硅烷和十八烷基胺官能化的纳米粘土在硝酸盐吸附方面最有效,另外改性蒙脱土对硝酸盐的吸附是物理的㊁自发的,且与硝酸盐有很好的亲和力㊂Gatti等[50]使用了氨基丙基三甲氧基硅烷当作天然粘土的改性物质,并且成功获取了新型改性材料Mn-S,并探究了其从水中去除硝酸盐的潜在能力㊂结果表明,Mn-S的阳离子吸附能力几乎是改性前的3倍,硝酸盐的吸附主要发生在-NH3+的表面基团上㊂较低的pH能够更为有效地促成吸附反应,并且随着pH的增加,硝酸盐的脱除率减少㊂将pH控制位于3可以获得0.8mmol/g的单层吸附容量㊂在表面活性剂改性之后,再实施镧改性,有助于粘土矿物进一步提升硝酸盐的脱除性能㊂Luo等[51]选用了蒙脱石(Mt)作为基质,并且将镧(La)和阳离子双子表面活性剂当作逐步改性物质,得到了能够共同吸附磷酸盐和硝酸盐的改性粘土矿物LaOMt㊂研究证明,改性之后La以LaCO3OH形式存在,双子表面活性剂则插入进了Mt层间空间㊂LaOMt对硝酸盐的吸附容量是0.84mmol/g,去除作用主要归因于与溴离子的离子交换以及与从Mt层释放的-R4N+基团的相互作用㊂另外,溶液中所含有的磷酸盐帮助LaOMt的水合也增进了硝酸盐的脱除㊂Wu等[52]则针对沸石使用类似的方法制取了以十六烷基三甲基溴化铵(HDTMA)和La为改性物质的新型材料SMZ-La,并且研究了其对硝酸盐的吸附性能㊂结果表明,SMZ-La比两种单组份物质改性后获得的材料具有更高的吸附容量(3.82mg/g)㊂通过一系列表征发现,HDTMA被双层装载在沸石的外层上,La则被装载在沸石的孔中,而HDTMA和La的引入均不会改变沸石的原始晶体构成㊂因此,选择不同的表面活性剂能够强化粘土矿物对硝酸盐的物理吸附或化学吸附性能,对于表面活性剂的选择以及改性条件的控制至关重要㊂在表面活性剂改性后,继续联用La改性或其他改性方法以进一步提高粘土矿物的硝酸盐脱除能力,是未来值得关注的研究方向㊂5㊀粘土矿物复合材料的应用相比于通过改性的方法来改善粘土矿物的硝酸盐处理效能,将粘土矿物与其他材料进行复合有着更广泛的操作空间,并且通常能够获得更高的性能提升㊂合成开发能够用于硝酸盐去除的新型粘土矿物复合材料是目前研究的重点和热点,主要集中于和金属㊁壳聚糖以及磁性纳米粒子的复合㊂近年来,诸如金属有机框架㊁碳纳米管等新型材料得到了飞速的发展,也为进一步拓展粘土矿物脱除硝酸盐的性能和应用场景提供了新的途径,但是缺乏相关的研究报道,研究者可以在41第3期赵贺芳,等:粘土矿物材料用于水中硝酸盐去除的研究进展未来作进一步的探索㊂5.1㊀粘土矿物和金属的复合粘土矿物可以通过和金属的复合,利用其所带的正电荷和金属氧化物表面的羟基,来强化对硝酸盐的吸附作用[53]㊂Omorogie等[54]分别将铁㊁锌两种金属和高岭土在真空(VHYCA)下进行复合,得到了Zn-VHYCA和Fe-VHYCA两种金属-粘土矿物复合材料㊂其研究结果表明,与表面活性剂改性的粘土矿物材料相比,通过使用锌进行金属复合而得到的新型材料从水溶液中去除硝酸盐的效率更高,Zn-VHYCA和Fe-VHYCA吸附剂可分别从水溶液中去除98%和85%的硝酸盐㊂一些研究证明,采取双金属复合脱除硝酸盐的效能要优于单金属复合㊂Jia等[55]将硅㊁铝和粘土矿物进行复合,得到了一种Si-Al多孔粘土矿物材料(PCMW),并作为吸附剂用来除去地下水中的硝酸盐㊂结果表明,PCMW吸附硝酸盐的最高容量是5.30mg/g,颗粒内扩散和液膜扩散是吸附进程的两个控制因素㊂Cai等[56]合成一种高岭石负载的双金属Fe/Ni纳米颗粒(K-Fe/Ni)用于同时脱除Cu2+和硝酸盐,结果表明,使用K-Fe/Ni去除Cu2+或硝酸盐是相互影响的㊂具体而言,在200mg/L的Cu2+存在下,硝酸盐的降解率为42.5%,而当不存在Cu2+时,硝酸盐仅还原了26.9%㊂在不存在或存在硝酸盐的情况下,去除Cu2+也获得了相似的结果㊂除此之外,将贵金属(如Pd㊁Pt㊁Ir)和促进剂金属(如Cu㊁Ag㊁In)作为不同的活性组分涂敷在粘土矿物上进行复合,还可以起到催化的作用[57]㊂Yun等[58]将钯㊁铜和硅藻土进行结合,制备出了新型材料Pd-Cu/硅藻土双金属粘土矿物,并且和零价铁联用进行硝酸盐的催化还原㊂在零价铁投加5g/L㊁钯/铜质量比3ʒ1㊁Pd-Cu/硅藻土投加4g/L㊁反应时间2h 的环境中,实现了67%的硝酸盐脱除率和62%的氮气选择性㊂5.2㊀粘土矿物和壳聚糖复合壳聚糖源自于甲壳素,通过去乙酰化处理而得来,存在着生物可降解㊁机械强度差㊁化学稳定性低㊁难以分离等局限性,将壳聚糖与粘土矿物进行复合可显著改良两者的缺陷,提高对污染区的去除性能[59]㊂Kumar等[60]将壳聚糖包埋高岭土粘土结合成了壳聚糖和高岭土复合材料(CSKN),为提高CSKN复合材料的吸附能力和选择性,采用原位沉淀法以及水热法把氧化锆(ZrO(OH)2)包覆于CSKN上得到Zr@CSKN复合材料,并用于去除硝酸盐和磷酸盐㊂研究结果表明:Zr @CSKN复合材料比单个原料表现出更强的去除能力,吸附硝酸盐和磷酸盐的最高容量达到了34.62mg/g和40.58mg/g㊂金属㊁壳聚糖和粘土矿物的共同复合,有时能进一步发挥三者的协同作用,强化对硝酸盐的脱除性能[61]㊂Banu等[62]研究了镧包覆壳聚糖-高岭土(LCK)杂化复合材料的吸附性能和机理,并将其用于水中硝酸盐和磷酸盐的去除㊂LCK杂化复合物具有极高的吸附能力和稳定性,其吸附机制遵循离子交换㊁络合和静电相互作用的机制,对硝酸盐和磷酸盐的吸附容量分别为87.11mg/g和106.48mg/g㊂Cheng等[63]将壳聚糖用作交联剂以将铁㊁铝双金属颗粒负载到膨润土上,制备了Fe-Al双金属壳聚糖膨润土(Fe-Al双金属@弯曲)复合物,用于在低温下有效去除废水及其副产物中的硝酸盐㊂该复合材料在60min内,对浓度为50mg/L 的硝酸盐废水的去除效率约为90%㊂证明了壳聚糖,膨润土和双金属具有优异的协同作用,这可以有效提高反应速率㊁pH缓冲能力㊁减少二次污染和硝酸盐危害㊂5.3㊀粘土矿物和磁性纳米粒子的复合磁回收技术由于不产生絮凝剂和混凝剂等二次污染物,能够在最短时间内处理大规模的废水,是环境修复的替代技术之一㊂粘土矿物与铁的氧化物复合已经被证明能够强化原有的吸附能力㊂Dehestaniathar等[64]将Fe2O3和硅藻土进行了结合,考察了硝酸盐对于Fe2O3/硅藻土上的吸附情况㊂实验结果表明:控制pH 位于4.5,可以最大程度地脱除硝酸盐㊂对于整个吸附剂剂量,去除效率和接触时间表现成比例关系㊂此外,硝酸盐的吸附量同吸附剂浓度之间也存在着相类似的趋势㊂Fe2O3/硅藻土的最佳加入量是5g/L,对于初始硝酸盐含量位于20㊁60和100mg/L,100min后硝酸盐的去除量分别为93%,85%和79%㊂对于具有离子交换特性的粘土矿物,与磁性材料结合能够增强相互作用的静电力,最终导致吸附效能的增强㊂Khatamian等[65]选用了化学共沉淀和超声方法合成了纳米级的Fe3O4/膨润土吸附剂,然后把获得的纳米复合吸附剂用于脱除水和工业废水内的硝酸盐㊂控制pH位于5㊁接触时间90min㊁吸附剂量0.6g㊁最初硝酸盐含量30mg/L的环境中,使用获取的新型材料吸附剂展现出最佳的硝酸盐脱率(79%)㊂另外,对制药厂内工业排水实施了测试,以评估复合材料对BOD和COD的处理能力㊂结果表明,使用2g的合成51。

硝酸盐

硝酸盐

硝酸盐概述硝酸盐是硝酸衍生的化合物的统称,一般为金属离子或铵根离子与硝酸根离子组成的盐类。

硝酸盐是离子化合物,含有硝酸根离子NO3-和对应的正离子,如硝酸铵中的NH4+离子。

常见的硝酸盐有:硝酸钠、硝酸钾、硝酸铵、硝酸钙、硝酸铅、硝酸铈等。

硝酸盐几乎全部易溶于水,只有硝酸脲微溶于水,碱式硝酸铋难溶于水,所以溶液中硝酸根不能被其他绝大多数阳离子沉淀。

结构结构硝酸根离子具有以下共振式:硝酸根离子,其中氮氧键介于单双键之间。

化学性质固体的硝酸盐加热时能分解放出氧,其中最活泼的金属的硝酸盐仅放出一部分氧而变成亚硝酸盐,其余大部分金属的硝酸盐,分解为金属的氧化物、氧和二氧化氮。

硝酸盐在高温或酸性水溶液中是强氧化剂,但在碱性或中性的水溶液几乎没有氧化作用。

硝酸根和金属离子可以按多种方式配位,包括单齿、双齿、叁齿或端梢、桥式等。

生产方法硝酸盐大量存在于自然界中,主要来源是固氮菌固氮形成,或在闪电的高温下空气中的氮气与氧气直接化合成氮氧化物,溶于雨水形成硝酸,在与地面的矿物反应生成硝酸盐。

硝酸与金属、金属氧化物或碳酸盐反应是最简单的制备硝酸盐的方法。

某些含水的硝酸盐如Be(NO3)2,Mg(NO3)2和Cu(NO3)2加热水解,因此得不到相应的无水硝酸盐。

无水硝酸盐可通过下列途径制得:在液态N2O4中反应:Ni(CO)4 + N2O4→ Ni(NO3)2 + 2NO + 4CO在纯HNO3-N2O5或液态N2O5中反应:TiCl4 + 4N2O5→ Ti(NO3)4 + 2N2O4 + 2Cl2与卤素的硝酸盐在低温反应。

如硝酸氯ClNO3:TiCl4 + 4ClNO3 (-80℃)→ Ti(NO3)4 + 2Cl2某些金属还可形成通式为MOx(NO3)y 的碱式硝酸盐,如BiO(NO3)2。

大多数硝酸盐为离子型晶体,易溶于水。

某些无水盐具有挥发性。

硝酸盐可以发生分解反应,产物可以是:亚硝酸盐和氧气(碱金属和碱土金属的硝酸盐);金属氧化物和氮氧化物和氧气(镁和铜之间的硝酸盐);金属单质和氮氧化物和氧气(铜后金属硝酸盐)。

地下水 硝酸盐

地下水 硝酸盐

地下水硝酸盐地下水硝酸盐是一种特殊的化学物质,它经常用于工业制造过程,也是一种重要的资源。

由于它在工业生产中的广泛应用,因此引起了人们对它的关注,并且有很多关于它在环境、健康和能源方面的讨论。

硝酸盐的发现可以追溯到古罗马时代,当时它用来制作肥料,今天它仍然用于制造肥料,用于种植庄稼和养殖动物。

它也用于制造各种化学物质,如发泡剂、染料、防腐剂和溶剂等。

它也被用于火药等发动机的制造,以及电子行业的制作过程中。

硝酸盐主要来源于地下水,地下水中的硝酸盐含量受到地质构造、气候影响多种因素的影响,通常被认为是地下水中硝酸盐含量最高的区域。

硝酸盐在环境中的存在和变化,与地下水系统、地表水系统以及陆地生态系统有着密切的关系。

这种关系表现在地下水系统中,地下水是硝酸盐的源头,当硝酸盐从地下水系统中流出时,它将被地表水系统所吸收,最终进入生态系统中,对地表水、地下水和生态系统造成污染。

硝酸盐的污染也会影响到健康,主要污染物中的氯乙烷和氟硝胺是有毒的,这些有毒物质可以通过水体进入人体,对人体造成毒性,可能引起疾病,已经有证据表明高氯乙烷水体对儿童和胎儿有害。

硝酸盐也是一种重要的能源资源,由于它的化学性质,可以用于生物锅炉的发电,并且可以用来制造其他能源,如汽油和天然气。

另外,硝酸盐也可以作为化石燃料的取代品,减少对化石燃料的利用,进而减少对环境的影响。

在当今世界,对地下水硝酸盐的关注越来越多,科学家们努力研究硝酸盐在环境和健康方面的影响,并尝试改进其在能源中的使用,以改善现状。

此外,政府也开展了一些专项行动,以监控和控制硝酸盐的使用,以确保水质的安全性。

总之,地下水硝酸盐是一种重要的天然资源,对我们的工业生产、环境、健康和能源都有重要的意义。

因此,硝酸盐的发现和使用有必要得到充分的关注,需要采取一些行动控制他们的使用,以便减少对环境、健康和能源的影响。

黑臭水体四项指标

黑臭水体四项指标

黑臭水体四项指标黑臭水体是指问题河流、湖泊、池塘等水体,经常发出熏天的黑臭气味,含有大量的有害物质,破坏了水环境,污染了自然生态,影响了人们的生活和健康。

为了有效治理黑臭水体,目前大多数国家和地区都采取了严格的政策和管控措施,并且基于传统生态治理,建立了若干监测指标,其中包括磷、氨氮、硝酸盐和COD,成为评价黑臭水体的重要指标。

首先,指标一是磷的含量。

磷是影响水体环境的重要物质,它可以通过工业排放物,污水排放、农业排放、垃圾焚烧等排放过程进入水体。

磷的排放超标将导致水体的COD值出现过高的现象,也就是黑臭现象的典型表现。

其次,指标二是氨氮的含量。

氨氮是水体黑臭的主要成分之一,它主要来源于农业结构流出水中,也可以来源于污水排放。

氨氮含量过高会导致水体黑臭,同时也会导致水体酸碱度发生变化,出现水体的生物失衡现象。

再次,指标三是硝酸盐的含量。

硝酸盐主要来源于农用肥料以及污水排放,它是水体重要污染物之一。

硝酸盐含量过高会导致水体酸碱度发生变化,影响水体重要物质的代谢等,从而引起水体黑臭现象。

最后,指标四是COD,即化学需氧量,它是水体中有机物总量的代表之一,是衡量水体环境质量的重要指标之一。

COD标表现了水体污染物的数量,如果水体中COD指标过高,则说明水体的有机物含量过高,可能出现黑臭现象。

此外,还有一些重要指标可以用来监测水体的黑臭,如酸碱度、悬浮物、溶解氧、浊度等,这些指标不仅能够反映水体污染的程度和强度,还可以表征水体的黑臭状态。

由于黑臭水体污染带来的健康和环境危害,越来越多的国家和地区制定了严格的防控措施,并建立了以“磷、氨氮、硝酸盐、COD”为主要指标的监测体系。

以上四项指标是衡量水体黑臭治理成果的重要依据,对于有效治理黑臭水体具有重要意义。

黑臭水体的治理是一项艰巨的任务,需要各方联合攻关,通过开展科学监测,及时发现和识别影响黑臭水体的各种因素,并采取相关措施,才能够有效解决黑臭水体污染问题。

蔬菜中硝酸盐含量标准

蔬菜中硝酸盐含量标准

蔬菜中硝酸盐含量标准蔬菜作为人们日常饮食中不可或缺的一部分,其营养价值备受关注。

然而,近年来,关于蔬菜中硝酸盐含量的问题引起了广泛的关注和讨论。

硝酸盐是一种常见的无机盐,它在自然界中广泛存在,也是植物生长过程中的一种必需元素。

然而,过高的硝酸盐含量对人体健康造成了一定的风险,因此,各国针对蔬菜中硝酸盐含量制定了相应的标准,以保障蔬菜的质量和安全。

本文将就蔬菜中硝酸盐含量标准进行探讨,以期为相关领域的研究和生产提供参考。

首先,我们需要了解蔬菜中硝酸盐的来源。

蔬菜中的硝酸盐主要来自土壤和肥料。

在植物生长的过程中,硝酸盐会通过根部吸收,并在植物体内转化为氨基酸和蛋白质。

然而,一些环境因素,如高温、光照不足、土壤中氮、磷含量过高等,都会导致植物体内硝酸盐的积累。

因此,蔬菜中的硝酸盐含量与土壤肥力、气候条件等因素密切相关。

接下来,我们需要了解蔬菜中硝酸盐含量标准的制定依据。

不同国家和地区对蔬菜中硝酸盐含量的标准制定依据各有不同,但主要考虑了两个方面,一是人体对硝酸盐的摄入量的安全性评价,二是蔬菜生产和加工技术的发展水平。

以中国为例,国家标准GB 2762-2017《食品安全国家标准食品中农药最大残留限量》规定了蔬菜中硝酸盐的最大残留限量。

该标准是根据国际食品法典委员会(Codex Alimentarius Commission)和国际卫生组织(WHO)的相关标准制定的,旨在保障蔬菜产品的质量和安全。

在实际生产和加工中,蔬菜中硝酸盐含量的监测和控制显得尤为重要。

针对不同的蔬菜种类,不同的硝酸盐含量标准也有所不同。

例如,根茎类蔬菜(如胡萝卜、甜菜)的硝酸盐含量标准相对较高,而叶菜类蔬菜(如菠菜、芹菜)的硝酸盐含量标准相对较低。

生产者在种植和施肥过程中需要根据不同蔬菜的特点和生长环境,合理控制硝酸盐的积累,以确保蔬菜产品的质量符合标准要求。

总的来说,蔬菜中硝酸盐含量标准的制定和执行,是为了确保蔬菜产品的质量和安全,保障人们的健康。

各行业废水中硝酸盐排放标准

各行业废水中硝酸盐排放标准

各行业废水中硝酸盐排放标准全文共四篇示例,供读者参考第一篇示例:各行业废水中硝酸盐排放标准近年来,随着我国工业化进程的加快和环境保护意识的提高,各行业废水排放标准也越来越受到关注。

硝酸盐是一种常见的废水污染物,对水质造成严重的影响。

对各行业废水中硝酸盐排放标准的制定和执行变得尤为重要。

硝酸盐是一种广泛存在于化工、电镀、矿产和农业等各行业废水中的物质。

它的排放会导致水体中的氮含量增高,引起水质污染,对生物及人类健康产生潜在危害。

各行业必须对硝酸盐排放做出限制,制定相应的标准以保护环境和人类健康。

各行业废水中硝酸盐排放标准的制定应当参考国家和地方相关法律法规的要求,并结合各行业的特点和排放情况进行具体规定。

下面以几个典型行业为例,介绍其废水中硝酸盐排放标准的情况:1. 化工行业化工行业是硝酸盐排放量较大的行业之一。

对于化工企业废水中硝酸盐排放标准的制定,应当参考《化工废水排放标准》等相关法规的要求。

一般来说,硝酸盐的排放浓度不得超过国家和地方法规规定的限值,一般为10mg/L左右。

对于特定的化工生产工艺,还需要制定更严格的排放标准,以确保废水处理达到国家标准。

2. 电镀行业电镀行业是另一个重要的硝酸盐排放企业。

电镀废水中的硝酸盐主要来源于电镀工艺中使用的酸性溶液和电镀液。

为控制电镀废水中硝酸盐的排放,电镀企业需要采取合理的工艺控制和废水处理措施。

一般来说,电镀废水中硝酸盐排放浓度不得超过20mg/L左右,严格遵守国家和地方法规的要求。

3. 矿产行业4. 农业行业各行业废水中硝酸盐排放标准的制定和执行对于环境保护和健康安全具有重要意义。

各行业必须严格遵守国家和地方法规的要求,制定合理的硝酸盐排放标准,并采取有效的控制和处理措施,以减少硝酸盐对水质造成的影响,保护环境和人类健康。

希望通过各界的共同努力,不断完善硝酸盐排放标准,实现我国环境质量的持续改善。

【文章结束】第二篇示例:各行业废水中硝酸盐排放标准硝酸盐是一种常见的化学物质,广泛应用于各种工业和农业生产中。

小肽 氮 植物 硝酸盐

小肽 氮 植物 硝酸盐

小肽氮植物硝酸盐小肽是由2-10个氨基酸残基组成的多肽分子。

它们在生物体内发挥着重要的生理功能,例如激素调节、蛋白质合成等。

而氮是植物生长发育过程中不可或缺的元素之一。

氮元素主要以硝酸盐的形式被植物吸收利用。

本文将详细探讨小肽对植物吸收利用氮元素的影响以及氮元素以硝酸盐形式进入植物体内的过程。

首先,小肽对植物吸收利用氮元素具有促进作用。

研究表明,小肽可以增强植物根系对氮元素的吸收能力。

小肽可以通过与植物根系细胞膜蛋白相互作用,促进氮元素的吸收。

此外,小肽还可以改变植物根系细胞膜的通透性,增加植物根系对水分和氮元素的吸收能力。

其次,小肽对植物的氮代谢和蛋白质合成具有调控作用。

小肽可以促进植物体内氮元素的转运和分配,从而增加植物体内氮元素的利用效率。

同时,小肽还可以调节植物体内蛋白质合成的速率和路径选择,使植物能够在不同环境条件下合理利用氮元素。

第三,氮元素主要以硝酸盐的形式被植物吸收。

在自然界中,硝酸盐主要来源于土壤中的氮肥和大气中的氮化物。

当植物吸收硝酸盐时,硝酸盐会先被还原为亚硝酸盐,然后转化为氨基酸,最后合成蛋白质。

这一过程中,光合作用是植物体内硝酸盐还原和转化的关键环节。

综上所述,小肽对植物吸收利用氮元素具有促进作用,可以增强植物根系对氮元素的吸收能力,并调节植物的氮代谢和蛋白质合成。

而氮元素则以硝酸盐的形式进入植物体内,在光合作用的调节下发挥重要作用。

这些研究对于深入理解植物氮素代谢以及优化植物的氮元素利用策略具有重要的意义。

然而,还有许多问题有待深入研究。

例如,小肽与植物根系细胞膜蛋白的相互作用机制,以及小肽对植物氮代谢和蛋白质合成调控的具体途径仍需进一步明确。

此外,氮元素从土壤到植物根系的吸收过程中的关键因素和调控机制也需要进一步研究。

这些问题的解答将有助于提高植物氮素利用效率,减少氮肥的使用量,从而实现可持续农业的发展。

水质中硝酸盐检测国标

水质中硝酸盐检测国标

水质中硝酸盐检测国标
1 硝酸盐
硝酸盐是水中的一种有毒的无机物,主要包括硝酸钾、硝酸钠等。

硝酸盐主要来源于地表水、化学制品和各种污染物等污染源的排放,
大量的硝酸盐会影响水的生态环境,损害水生物的健康,对人体健康
也造成危害。

2 硝酸盐检测
硝酸盐检测是水质检测中非常重要的项目,可以反应水体硝酸盐
污染程度,检测测值高者表示水质受到较大影响,可能会对人体健康
造成危害,因此非常重视。

3 国标要求
根据《中华人民共和国环境保护法》,硝酸盐检测是水质检测的
重要内容,国家制定了强制性的检测国标,要求水源中测得的硝酸盐
含量不能超过硝酸盐检测国标规定的相关值。

4 检测方法
硝酸盐检测主要有分光光度法、高效液相色谱-质谱联用技术(LC-MS)、形态分析法等。

其中,分光光度法是目前检测硝酸盐最常用的方法,它可以快速准确地测定水质中硝酸盐的含量,而且相对较为经济
实用。

5 检测重要性
硝酸盐检测可以反映水体中污染物存在的程度,防止过量的硝酸盐污染。

硝酸盐检测是水质检测中非常重要的一项,它能及时反应水体中硝酸盐的污染程度,从而更好地保护人体健康。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

~~ 硝酸盐的来源~~
蔬菜中的硝酸盐问题,是一个对部分人来说,相当富争议;对部分人来说,却闻所未闻的事情。

硝酸盐在大自然(包括泥土及蔬菜)中,本来经已存在,但亦可经由人工合成。

我们大多数食物都含有硝酸盐,部份是天然存在,部份由施肥而来,还有部份是以食物添加剂的形式加入。

虽然硝酸盐在食物中并不罕见,但却因为会在人体内转化为亚硝酸盐然后再转化为亚硝基化合物,而引致人类血液缺氧,且可能致癌及致基因突变。

另一方面,似乎在我们的食物当中,硝酸盐的含量,有越来越多的趋势,特别是在蔬菜上,故此已引起科学家、民间团体及政府的关注。

@@@ 大自然中的硝酸盐@@@
硝酸盐是大自然中氮素循环的一部分。

氮是一种无色无臭的气体,它大约占空气的80%。

生物无法直接利用它,必须要藉细菌将之固定,成为固定态的氮,即硝酸盐,植物才能吸收。

植物会用它来制造氨基酸和蛋白质,成为植物体内的成份。

当动物食用植物后,会将植物的蛋白质消化,用来合成自己的蛋白质。

当动物或植物死去,会在泥土中让细菌分解,成为植物的肥料,或者继续为细菌分解成为气态的氮,返回空气中。

另外,闪电可直接将空气中的氮氧化,经雨水溶解,落入泥土中形成硝酸盐,供植物直接吸收利用。

@@@ 人工施加的硝酸盐@@@
人类商业使用的硝酸盐都是人工合成的。

在农业上,它主要用作化肥施于田间;食品加工业上,可作食物防腐剂及着色剂用于肉类及乳制品;工业上,可用来生产爆炸品、烟花、火柴、冷凝剂、水泥、凝乳剂、……,甚至可用于核子工业中。

(注2)亚硝酸盐同样可作食物防腐剂及着色剂用于肉类加工业上。

另外,在工业上,可用来生产橡胶、感光膜、抗蚀剂及氰化物的解毒剂(但过量可引致亚硝酸盐中毒)。

相关文档
最新文档