三角形的内角和的说课稿
三角形内角和的说课稿7篇

三角形内角和的说课稿7篇三角形内角和的说课稿7篇教学反思是教师对自己的教学实践进行深入思考和分析的过程,旨在回顾和评估所教课程的效果、教学策略的有效性以及学生学习的成果,以便提高自己的教学能力和提供更好的教学体验。
现在随着小编一起往下看看三角形内角和的说课稿,希望你喜欢。
三角形内角和的说课稿(篇1)教学目标:1、教会学生主动探究新识的方法,学会运用转化迁移数学思想。
2、学生通过量、剪、拼、摆、分割等验证三角形内角和方法的比较,主动掌握三角形内角和是1800,并运用所学知识解决简单的实际问题,发展学生的观察、归纳、概括能力和初步的空间想象力。
教学重点:理解并掌握三角形的内角和是180°。
教学难点:验证所有三角形的内角之和都是180°。
教具准备:多媒体课件。
学具准备:量角器、正方形、剪刀、各类三角形(包括直角三角形、锐角三角形、钝角三角形)教学过程:一、导入师:知道今天我们学习什么内容吗?我们先来解读一下课题,三角形,你手中有么?举起来我看看,你拿的什么三角形?你呢?师:三角形按角分类,可分为直角三角形、钝角三角形和锐角三角形。
师:什么是内角?你能把你手中三角形的三个内角用角1、角2、角3标出来吗?师:还有一个关键字“和”,什么是三角形的内角和?师:你认为三角形的内角和是多少度?你呢?都知道啊?是多少度啊?看来都知道了,就不用再学了吧?你还想学什么?师:看来我们不仅要知道三角形的内角和是180度,还要亲自证明一下为什么是180度。
这才真了不起呢。
能证明吗?你想怎么证明阿?生:量一量的方法。
师:光量就知道了?还要算一算。
师:这种方法可行吗?下面咱就来试试,请同学们4人一组,分工合作,先测量内角,再计算求和。
小组长把计算的过程记录下来。
开始吧。
验证:量角、求和小组汇报生一:我们组量的是锐角三角形,三个角分别是50度、60度、70度,锐角三角形的内角和是180度。
生二:我们组量的是直角三角形,三个角分别是90度、35度、55度,直角三角形的内角和是180度。
三角形的内角和说课课件

通过测量、撕拼、折叠等方式验证三角形的内角和为180度。
三角形内角和的性质
无论三角形的形状和大小如何变化,其内角和始终保持不变。
作业布置及要求说明
完成教材上的相关练习题,巩固三角形内角和的知识点。 尝试使用不同的方法验证三角形的内角和,例如通过作辅助线、利用平行线的性质等。 思考并尝试解决一些与三角形内角和相关的实际问题,例如角度计算、角度关系分析等。
02
其他小组可以向分享的小组提出问题或质疑,分享小组需
要给予解答或回应。
教师点评
03
教师对学生的分享和交流进行点评和总结,强调三角形内
角和性质的重要性和证明方法的多样性。
2
教师答疑解惑,引导深入思考
答疑解惑
1
教师针对学生在讨论和分享过程中提出的 问题或疑惑进行解答,帮助学生理解和掌
握三角形内角和的性质。
美术学
在美术创作中,三角形内角和的原理被用于构图和色彩搭配等 方面,例如在绘画中利用三角形的稳定性来构建画面结构。
THANKWSAFTCOHRING
感谢您的观看
引导思考
教师进一步引导学生思考三角形内角和性 质的应用场景,以及与其他数学知识点的 联系和区别。
拓展延伸
3
教师可以给出一些拓展题目或思考题,让 学生进一步巩固和加深对三角形内角和性
质的理解和应用能力。
第总 结 回
六顾 与 作
章业 布 置
重点知识点总结回顾
三角形的内角和定义
三角形的三个内角之和等于180度。
第 方拓 法展 :
四多 边 形
章
内 角
和 计
算
多边形划分为三角形策略
对于n边形,可以选择一个顶点, 将其他n-1个顶点与该顶点相连, 形成n-2条对角线,从而将多边形 划分为n-2个三角形。
三角形的内角和优秀教学设计_三角形的内角和(优秀8篇)

三角形的内角和优秀教学设计_三角形的内角和(优秀8篇)《三角形内角和》数学教案篇一尊敬的各位评委老师:大家好!今天我很高兴也很荣幸能有这个机会与大家共同交流,在深入钻研教材,充分了解学生的基础上,我准备从以下几个方面进行说课:“三角形的内角和”是三角形的一个重要性质,它有助于学生理解三角形内角之间的关系,是进一步学习几何的基础。
1、知识与技能:明确三角形的内角的概念,使学生自主探究发现三角形内角和等于180°,并运用这一规律解决问题。
2、过程和方法:通过学生猜、量、拼、折、观察等活动,培养学生发现问题、提出问题、分析问题和解决问题的能力。
3、情感与态度:使学生感受数学图形之美及转化思想,体验数学就在我们身边。
教学重点:动手操作、自主探究发现三角形的内角和是180°,并能进行简单的运用。
教学难点:采用多种途径验证三角形的内角和是180°。
通过前面的学习,学生已经掌握了三角形的一些基础知识,会量角,部分学生已经知道三角形内角和是180°,但不知道怎样得出这个结论。
本节课采用自主探索、合作交流的教学方法,学生自主参与知识的构建。
领悟转化思想在解决问题中的应用。
1、教师准备:多媒体课件、三角形教具。
2、学生准备:锐、直、钝角三角形各两个,量角器、剪刀。
(一)、创设情境,激趣导入导入:“同学们,有三位老朋友已经恭候我们多时了。
“(出示三角形动画课件),让学生依次说出各是什么三角形。
课件分别闪烁三角形三个内角,并介绍:“这三个角叫做三角形的内角,把三个角的度数加起来,就是三角形的内角和。
请学生画一个三角形,要求:有两个直角。
为什么不能画,问题在哪呢?这节课我们就一起来探究三角形的内角和。
板书课题。
(二)、自主探究、合作交流1、探索特殊三角形内角和拿出自己的一副三角板,同桌之间互相说一说各个角的度数。
三角形内角和是多少度呢?指名汇报。
90°+30°+60°=180°90°+45°+45°=180°从刚才两个三角形内角和的计算中,你发现了什么?2、探索一般三角形的内角和一般三角形的内角和是多少度?猜一猜。
三角形的内角和的说课稿

三角形的内角和的说课稿三角形的内角和的说课稿一、说教材:(一)教材内容:本节内容是9年制义务教导人教版教材四年级下册第5单元《三角形的内角和》。
(二)教材分析:本课教学是在同学已经把握了三角形的特征,三边关系及分类等学问的基础上举行的。
把握三角形的内角和是180 ,这个数学结论具有重要意义,它是对三角形熟悉的深入,也是把握多边形内角和及其它实际问题的基础。
二、教学目标:1、学问目标:通过测量、拼、折叠等办法探究和发觉三角形的内角和等于180 ,已知三角形两个角的度数,会求出第三个角的度数。
2、能力目标:通过研究、操作、推理等培养同学的思维能力和解决问题的能力,培养同学的空间观念,使同学的创新能力得到进展,使同学初步把握由特别到普通的规律思维办法和先猜测后验证的讨论问题的办法。
3、情感目标:培养同学合作精神和探究精神,培养同学运用数学的意识。
教学重难点:把握三角形的内角和等于180 ,验证三角形的内角和是180 。
三、说教材:(教学有法、教无定法、贵在得法)由于在上学期同学已经把握了角的分类及度量问题。
在本课之前,同学又讨论了三角形的特性,三边关系及分类的学问,这些都是为进一步讨论三角形内角和作了学问储蓄和心理预备,为本课内容的教学作了铺垫。
我将采纳的教法是:1、直观演示、操作发觉(观看、归纳),老师利用直观教具(卡片)的演示,引导同学观看、比较,再让同学主动探究、操作、研究。
使同学在丰盛感性熟悉的基础上探究新知、理解新知、应用新知、从而巩固和深入新知。
2、巧设疑问,体现“四基”老师通过设疑,指明学习方向,营造探究新知的氛围,有目的、有方案、有层次的启迪同学的思维,让同学成为学习的仆人,使同学在观看、比较、研究、探索等活动中参加教学全过程,从而达到把握新知和进展能力的目的。
3、将探究贯通囫囵教学过程,引起同学的爱好,从而使同学主动学习,把握学问,形成技能。
四、说学法(如何使同学真正变成学习的仆人,让同学不仅学会,而且会学。
《三角形内角和》说课稿(精选5篇)

《三角形内角和》说课稿《三角形内角和》说课稿(精选5篇)作为一名默默奉献的教育工作者,常常要写一份优秀的说课稿,说课稿有助于顺利而有效地开展教学活动。
如何把说课稿做到重点突出呢?以下是小编精心整理的《三角形内角和》说课稿(精选5篇),欢迎阅读,希望大家能够喜欢。
《三角形内角和》说课稿1一、说教材三角形的内角和是北师大版四年级下册第二单元的内容。
三角形的内角和是三角形的一个重要性质,学好它有助于学生理解三角形内角之间的关系,也是进一步学习几何的基础。
二、说学情本节课是在学生学过角的度量、三角形的特征和分类等知识的基础上进行教学的,学生已经具备一定的关于三角形的认识的直接经验,也已具备了一些相应的三角形知识和技能,这为感受、理解、抽象三角形的内角和的规律,打下了坚实的基础。
因此,我确定本节课的教学目标是:教学目标:知识与技能:通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的和等于180。
知道三角形两个角的度数,能求出第三个角的度数。
能应用三角形内角和的性质解决一些简单的问题。
过程与方法:发展学生动手操作、观察比较和抽象概括的能力。
情感、态度与价值观:体验数学活动的探索乐趣,体会研究数学问题的思想方法。
教学重点:学生经历探究三角形内角和的全过程并归纳概括三角形内角和等于180。
教学难点:三角形内角和的探索与验证,对不同探究方法的指导和学生对规律的灵活应用。
三、说教法、学法整个教学将体现以人为本,先放后扶的教学策略。
放,不是漫无目的的放,而是为学生提供足够的探究规律的材料和时间,放手让学生自主学习,合作探究;扶,则是根据学生的不同探究方法和出现的错误,给予恰当指导,引导学生归纳概括出规律。
《课程标准》明确指出:要结合有关内容的教学,引导学生进行观察、操作、猜想,培养学生初步的思维能力。
四年级学生经过第一学段以及本单元的学习,已经掌握了三角形的分类,比较熟悉平角等有关知识;具备了初步的动手操作、主动探究的能力,他们正处于由形象思维向抽象思维过渡的阶段。
《三角形的内角和》优秀说课稿(精选11篇)

《三角形的内角和》优秀说课稿作为一位兢兢业业的人民教师,编写说课稿是必不可少的,说课稿可以帮助我们提高教学效果。
那么应当如何写说课稿呢?以下是小编整理的《三角形的内角和》优秀说课稿,欢迎阅读,希望大家能够喜欢。
《三角形的内角和》优秀说课稿篇1一、教学目标课程标准这样描述:通过观察、操作了解三角形内角和是180。
分析教材内容,在上学期的学习中学生已经掌握了角的分类及度量的知识。
在本课之前,学生又研究了三角形的特性、三边间的关系及三角形的分类等知识。
积累了一些有关三角形的知识和经验,形成了一定的空间观念,可以在比较抽象的水平上进一步认识三角形,探索新知。
教材中安排了学生对不同形状的、大小的三角形进行度量,再运用拼、折、剪等方法发现三角形的内角和是180°,学好它有助于学生理解三角形的三个内角之间的关系,也是进一步学习其他图形内角和的基础,同时为初中进一步论证做好准备。
课前我对学情进行了分析:1、学生在学习本课前已经掌握了锐角、直角、钝角、平角和周角的度数,认识了三角形的基本特征及其分类,由于学生的数学知识、能力和思考问题的角度有一定的差异,因此比较容易出现解决问题策略的多样化。
2、已经有不少学生知道了三角形内角和是180度的结论,但是很可能都知其然不知其所以然。
通过对课程标准的认识,以及内容分析和学情分析,我制定了这样的学习目标:1、通过量、拼、折、剪等方法探索和发现三角形的内角和等于180°并会应用这一规律解决实际的问题。
2、通过研究直角三角形进而研究锐角三角形、钝角三角形,初步认识、理解由特殊到一般的逻辑思辨方法。
二、评价设计针对这一目标的完成,我设计了一下评价方式:1、交流式评价:通过师生、生生对话交流,在交流中对学生进行评价。
2、表现性评价:通过小组讨论表现、学生回答问题情况,适当对学生进行点拨。
3、操作反应评价:通过学生在研究三角形内角和过程中的测量、简拼、折等活动对学生进行评价评价题目1、通过3个练习题(1、做一做。
三角形的内角和说课稿

三角形的内角和说课稿三角形的内角和引言:三角形是几何学中最基本的形状之一,它具有丰富的性质和特点。
其中,三角形的内角和是一个重要的概念,它对于解决各种几何问题具有重要的作用。
本文将围绕三角形的内角和展开讨论,探究其性质和应用。
一、三角形的内角和公式三角形的内角和是指三个内角之和。
对于任意一个三角形ABC,我们可以通过求解其内角和来推导出一些有用的结论。
根据几何学的基本原理,我们知道三角形的内角和等于180度。
这个性质可以表示为以下公式:∠A + ∠B + ∠C = 180°二、三角形的内角和的性质1. 三角形的内角和与外角的关系在三角形中,每个内角都有一个对应的外角。
我们可以发现,三角形的内角和等于其对应外角的补角。
具体而言,对于三角形ABC的内角∠A、∠B、∠C,它们的对应外角分别是∠D、∠E、∠F,则有以下关系:∠A + ∠D = ∠B + ∠E = ∠C + ∠F = 180°2. 等腰三角形的内角和等腰三角形是指两边长度相等的三角形。
对于等腰三角形ABC,我们可以得出其内角和的特殊性质。
由于等腰三角形的两个底角相等,我们可以将其内角和表示为:∠A + ∠B + ∠C = ∠A + ∠A + ∠C = 2∠A + ∠C = 180°通过解方程,我们可以得到等腰三角形的底角∠A和顶角∠C之间的关系:∠A = (180° - ∠C) / 2三、三角形的内角和的应用1. 判断三角形类型通过计算三角形的内角和,我们可以判断其类型。
例如,如果三角形的内角和等于180度,则它是一个普通的三角形;如果内角和小于180度,则它是一个锐角三角形;如果内角和大于180度,则它是一个钝角三角形。
2. 求解未知角度在解决几何问题时,我们常常需要求解未知的角度。
通过利用三角形的内角和公式,我们可以建立方程并求解未知角度的数值。
这种方法在解决各类几何问题中非常实用。
3. 推导其他几何性质三角形的内角和作为一个基本概念,可以帮助我们推导出其他几何性质。
《三角形内角和》说课稿一等奖

明确学习目标
通过导入,让学生明确本 节课的学习目标,了解三 角形内角和的概念及其应 用。
导入方法
实物演示
利用三角板等实物进行演 示,让学生直观感受三角 形内角和的特点。
故事情境
创设与三角形内角和相关 的故事情境,引导学生进 入学习状态。
问题导入
提出与三角形内角和相关 的问题,引发学生的思考 和探究欲望。
03
CATALOGUE
教学方法
教学方法选择
直观教学
归纳演绎法
通过实物、模型、图示等直观手段, 让学生直接感知三角形内角和的特性 ,增强感性认识。
通过具体实例的观察、归纳,得出三 角形内角和的一般规律,再通过演绎 推理,深化学生对这一规律的理解和 应用。
启发式教学
通过引导学生观察、思考、猜测、验 证等,激发学生的学习热情和主动性 ,培养其独立思考和解决问题的能力 。
动思考和发现问题。
课堂氛围
课堂氛围是否活跃,学生是否感 受到轻松愉悦的学习氛围,是否
有兴趣继续深入学习。
教学方法改进
教学方法评估
对本次所采用的教学方法进行评估,分析其优缺点,以便在今后 的教学中加以改进。
教学方法创新
思考是否有更有效、更生动的教学方法,以激发学生的学习兴趣和 提高教学效果。
信息技术应用
02
CATALOGUE
教学内容
三角形内角和的定义
三角形内角和的定义
三角形内角和是指三角形三个内角的 度数之和。
三角形内角和的性质
三角形内角和是一个定值,等于180 度。
三角形内角和的证明方法
证明方法一
通过几何作图,将三角形的三个内角分割成若干个直角或锐 角,然后利用这些角的度数之和来证明三角形内角和为180 度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形的内角和的说课稿
一、说教材:
(一)教材内容:本节内容是9年制义务教育人教版教材四年级下册第5单元《三角形的内角和》。
(二)教材分析:
本课教学是在学生已经掌握了三角形的特征,三边关系及分类等知识的基础上进行的。
掌握三角形的内角和是180 ,这个数学结论具有重要意义,它是对三角形认识的深化,也是掌握多边形内角和及其它实际问题的基础。
二、教学目标:
1、知识目标:通过测量、拼、折叠等方法探索和发现三角形的内角和等于180 ,已知三角形两个角的度数,会求出第三个角的度数。
2、能力目标:通过讨论、操作、推理等培养学生的思维能力和解决问题的能力,培养学生的空间观念,使学生的创新能力得到发展,使学生初步掌握由特殊到一般的逻辑思维方法和先猜想后验证的研究问题的方法。
3、情感目标:培养学生合作精神和探索精神,培养学生运用数学的意识。
教学重难点:掌握三角形的内角和等于180 ,验证三角形的内角和是180 。
三、说教材:(教学有法、教无定法、贵在得法)
因为在上学期学生已经掌握了角的分类及度量问题。
在本课之前,学生又研究了三角形的特性,三边关系及分类的知识,这些都是为进一步研究三角形内角和作了知识储蓄和心理准备,为本课内容的教学作了铺垫。
我将采用的教法是:
1、直观演示、操作发现(观察、归纳),教师利用直观教具(卡片)的演示,引导学生观察、比较,再让学生主动探索、操作、讨论。
使学生在丰富感性认识的基础上探索新知、理解新知、应用新知、从而巩固和深化新知。
2、巧设疑问,体现“四基”教师通过设疑,指明学习方向,营造探索新知的氛围,有目的、有计划、有层次的启迪学生的思维,让学生成为学习的主人,使学生在观察、比较、讨论、探究等活动中参与教学全过程,从而达到掌握新知和发展能力的目的。
3、将探索贯穿整个教学过程,引起学生的兴趣,从而使学生主动学习,掌握知识,形成技能。
四、说学法(如何使学生真正变成学习的主人,让学生不仅学会,而且会学。
这时教学的关键,也是教学的精华)
根据教材内容和学生已知的学习能力,通过本课的学习,使学生学会观察、比较、归纳、概括出------三角形内角和为180 ,并使学生主动探索、交流、提问。
五、说教程
本节课我设计了5个教学环节:目标导学、自主学习﹑合作探究、达标练习、堂清检测。
一.目标导学
㈡.展示目标。
二、自主学习
(一. )对照自学提纲自学
1、思考:什么是内角?什么是内角和?如何得到一个三角形的内角和?
2
形。
分别量出三个内角的度数。
3.折一折。
2、把三个角折叠在一起,你发现了什么?
通过以上活动,我们从中得到三角形三个内角和等于()度
(二.)自主学习
(三.)自学检测。
三、合作探究
1.小组交流
2.师生互探
四.达标练习
1、猜一猜。
2、下面哪三个角能构成一个三角形?
3.判一判。
4.算一算。
5.生活中的数学。
爸爸给小红买了一个等腰三角形的风筝,它的一个底角是70度,它的顶角是多少度?
6.小结:你有什么收获?
五、堂清检测
1、我来填一填。
⑴在一个直角三角形中,已知一个锐角是30°,另一个锐角是()。
⑵如果等腰三角形的顶角是120°,它的一个底角是()。
⑶一个等边三角形,每个内角都是()。
⑷在一个三角形中,两个锐角的和小于第三个角,这是一个()三角形。
⑸在一个三角形中,最大的角是78°,这个三角形是()三角形。
2.一个直角三角形,一个锐角是50度,另一个锐角是多少度?
3.下面哪三个角能围成一个三角形?
六.板书设计:
三角形内角和
三角形的内角和都是180度。