材料的强化和韧化
第8章工程材料强化与韧化的主要途径PPT课件

●细晶强化还受温度影响。
一般来说,高于1/2T溶时,晶界滑动成为材料形变的重要组成部分。 晶粒越细,单位体积内晶界面积越多,越容易滑动 ,这就导致高
温下细晶材料反比粗晶材料为软。
因此,高温合金一般希望获得粗晶组织。
●生产中细化晶粒的一些途径: 例如,对铸态使用的合金—— 可通过合理控制合金的熔炼和铸造工艺来细化晶粒, 如增大过冷度、加入变质剂、进行搅拌或振动凝固等; 对热轧或冷变形后退火使用的合金—— 可通过控制变形度、再结晶退火的温度和时间来细化晶粒; 对热处理强化使用的合金—— 可通过控制加热和冷却工艺参数,利用相变重结晶来细化晶粒。
位错的运动; ✓ 溶质原子常常被吸附在位错线的附近,降低了位错的能量,阻碍其运动。 固溶强化的影响因素 ✓ 溶剂原子与溶质原子的直径、电化学特征等的差异 ✓ 固溶体的类型
✓ 溶质的加入量 △σss = 2△τss = ΣΚiСi
● 几乎所有对综合力学性能要求较高的结构材料都是以固溶体作为最主要的 相组成物.
概念:金属材料在再结晶温度以下塑性变形(冷塑性变形)时强度和硬度升 高,而塑性和韧性降低的现象,称冷变形强化或加工硬化。
冷变形强化的原理 金属在塑性变形过程中,晶粒破碎、晶格扭曲的程 度不断加重,位错密度不断增加,使得弹性应力场不断增大,位错间的交 互作用不断增强。因而,位错运动的障碍越来越多、阻力越来越大,导 致位错的运动越来越困难,这时需要更大的力才能克服障碍而使位错运 动或产生新的位错,从而使材料的强度、硬度增加。
8.2.4 第二相强化(分散强化)
概念 通过基体中分布细小弥散的第二相粒子(质点)而产生强化 的方法,称为第二相强化或分散强化。 第二相粒子强化比固溶强化的效果更显ห้องสมุดไป่ตู้,但对塑性、韧性产
强化韧化机理

强化韧化机理
强化韧化是一种通过改变材料的微观结构和化学成分,提高材料的强度和韧性的方法。
它涉及到一系列的力学和物理机制,以下是一些常见的强化韧化机理:
1.晶粒细化:通过控制材料的热处理或变形加工条件,可以
使晶粒变得更加细小。
细小的晶粒能够阻碍位错和裂纹的运动,从而提高材料的抗拉强度和韧性。
2.相界增多:通过形成更多的相界面,例如晶界、相界以及
位错堆垛等,可以阻碍位错和裂纹扩展。
相界增多提供了额外的韧性机制,从而提高材料的韧性。
3.增强相分散:在基体材料中加入第二相颗粒或纳米颗粒,
可以形成复相结构。
这种复相结构能够阻碍位错运动和裂纹扩展,提供更高的强度和韧性。
4.锁定位错:通过在材料中引入位错锁定机制,可以阻止位
错的移动和滑移,从而提高材料的强度和韧性。
5.固溶强化:通过向基体材料中加入合金元素,调整其晶格
结构,形成的固溶体能够在晶内形成固溶强化效应,提高材料的强度和韧性。
6.相互作用增强:通过精细调控材料的化学成分和结构,使
不同相之间发生特定的相互作用,例如化学键的形成、界面的相容性等,从而提高材料的抗拉强度和韧性。
通过利用上述强化韧化机制,材料科学家和工程师能够设计和
制造出具有优异综合性能的材料,满足不同领域对材料性能的需求。
每种机制的适用性取决于材料的类型和应用要求。
第十章_材料的强化与韧化

(7)纤维、晶须增韧 纤维或晶须具有高弹性和高强度,当它作为第二 相弥散于陶瓷基体构成复合材料时,纤维或晶须能为 基体分担大部分外加应力而产生强化。当有裂纹时, 裂纹为避开纤维或晶须,沿着基体与纤维或晶须界面 传播,使裂纹扩展途径出现弯曲从而使断裂能增加而 增韧。 在裂纹尖端附近由于应力集中,纤维或晶须也可 能从基体中拔出。拔出时以拔出功的形式消耗部分能 量,同时在接近尖端后部,部分未拔出或末断裂的纤 维或晶须桥接上下裂纹面,降低应力集中,提高韧性。 在裂纹尖端,由于应力集中可使基体和纤维或晶须间 发生脱粘,脱粘大幅度降低裂纹尖端的应力集中,使 材料韧性提高。
第十章 材料的强化与韧化
第一节 金属材料的强韧化 第二节 陶瓷材料的强韧化 第三节 高分子材料的强韧化 第四节 复合材料的强韧化
对结构材料,最重要的性能指标是强度和韧性。 * 强 度:材料抵抗变形和断裂的能力; * 韧 性:材料变形和断裂过程中吸收能量的能力。 提高材料的强度和韧性,可以节约材料、降低 成本、增加材料在使用过程中的可靠性和延长服役寿 命,对国民经济和人类社会可持续发展具有重要意义。 所以人们在利用材料的力学性能时,总希望材料 既具有足够的强度,又有较好的韧性。但通常的材料 往往二者不可兼得。 理解材料的强化和韧化机理,以提高材料的强度 和韧性。
裂纹顶端应力诱发t →m相变增韧机理
(2)微裂纹增韧 在陶瓷基体相和分散相之间,由于温度变化引 起的热膨胀差或相变引起的体积差,会产生弥散均 布的微裂纹[图(a)],当导致断裂的主裂纹扩展时, 这些均匀分布的微裂纹会促使主裂纹分叉(图(b)), 使主裂纹扩展路径曲折前进,增加了扩展过程中的 表面能,从而使裂纹快速扩展受到阻碍,增加了材 料的韧性。
第二节 陶瓷材料的强韧化
金属材料的强化与韧化

金属材料的强化与韧化机械工程学院机械工程1班刘文龙2011201120 对于金属材料来讲,最重要的性能指标包括了材料的强度和韧性等。
简单的说,强度是指材料抵抗变形和断裂的能力,而韧性指的是材料变形和断裂过程中吸收能量的能力。
随着制造业及材料工业的快速发展,人们对高性能材料的需求已经越来越迫切,从目前角度来看,在不更改加工方式与行业整体现状的情况下,高性能材料主要由制备新型高性能材料与对原有材料进行改性以提高其性能两种方法,显然的,第二种方法更易实现,也更接近工程实际。
在现有的研究中,提高材料的强度主要有以下两种途径:1、完全消除材料内部的位错以及其他的缺陷,使它的强度接近于理论强度,例如金属晶须等,但实际应用难度较大;2、在金属中引入大量缺陷,以此阻碍位错的运动,如加工硬化、固溶强化、细晶强化、沉淀强化等。
其中金属材料的强化主要有以下几种放法:1、固溶强化此方法是利用点缺陷对位错运动的阻力使金属基体获得强化的一种方法,一般通过在金属基体中溶入一种或数种溶质元素形成固溶体而使其强度和硬度升高。
2、细晶强化此方法通过细化晶粒以增加晶界对位错的阻滞效应来提高金属强度。
3、第二相粒子强化此法按获得粒子的工艺可分为析出强化与弥散强化。
4、形变强化金属在塑性变形过程中,位错密度会逐渐增加,使得弹性应力场不断变大,位错间交互作用增强,使得位错困难增强金属强度。
这里以金属的细晶强化方式举例,在王艳林[1]等人关于热轧钢材晶粒细化的文章中指出,在保证相同变形量、变形温度以及化学成分的前提下,对22mm棒材进行热轧制后通过强制冷去的方式进行细化晶粒组织,将晶粒度的等级由7.5级提高到8.0级,见图1。
通过试验发现,轧后强制冷却的热轧钢材延伸率为22.68%,与空冷状态下的24.30%基本相等,但是其屈服强度由空冷状态下的358.03MPa提高到了498.37MPa,提高了大约39.20%,抗拉强度由空冷状态下的508.33MPa提高到了626.44Mpa,提高了23.23%,可见通过此种方法对热轧钢材进行细晶强化对提高其综合性能效果十分明显,适宜推广;而目前首钢、水城钢铁公司等单位都进行了细晶钢螺纹钢的研究开发,均实现了细晶钢棒线材的工业化生产,并进行了推广应用。
材料科学基础材料韧化基本原理

材料的强韧化
三、无机非金属材料的韧化机理
(1) 相变增韧 ZrO2陶瓷中四方相的ZrO2向单斜相的ZrO2转变,伴 随有体积膨胀。当有较大外应力作用时,基体的约束 作用减弱,促进相变,会引发微裂纹,从而消除应力 集中,吸收了主裂纹扩展的能量,提高断裂韧性。
一、金属材料的韧化原理
材料的韧性是强度和塑性的综合体现
改善材料的韧性的基本途径
1 减少诱发微裂纹的组成相 2 提高基体的塑性 3 增加组织的塑性形变均匀性(减少应力集中) 4 避免晶界弱化,防止裂纹沿晶界的形核和扩展
材料的强韧化
5 强化同时的增韧
(1)位错强化与塑性和韧性 位错密度升高会提高强度而降低塑性和韧性。可 动的未被锁住的位错对韧性的损害小于被沉淀物 或固溶原子锁住的位错。故提高可动位错密度对 塑性和韧性均有利。
(4)沉淀相颗粒与塑性
沉淀颗粒会通过弥散强化提高基体的强度和硬度, 但可能会明显降低塑性和韧性。尤其,条带状、片 状析出物,以及沿晶界网状析出的沉淀相,均显著 降低材料塑性。 减少沉淀相的析出数量,改善沉淀相的形状和分布 状态,可改善材料塑性。
材料的强韧化
二、高聚物的韧化原理
(1) 增塑剂与冲击韧性 添加增塑剂使分子间作用力减小,链段以至大分子 容易运动,使高分子材料的冲击韧性提高。
材料的强韧化
(3)亚结构为高密度位错, 位错强化作用
(4)可动位错缓解局部应力集中, 延缓裂纹产生, 塑性和韧性
(5)残余奥氏体薄膜阻挡裂纹扩展, 塑性和韧性
材料的强韧化
二、高分子材料强韧化的例子 三、陶瓷材料强韧化的例子
Al2O3-ZrO2 +Y2O3 (ZTA)陶瓷材料
材料的强化和韧化

➢ 形变强化使金属变脆,因而在冷加工过程中需要进行 多次中间退火,使金属软化,才能够继续加工
❖限制
➢ 使用温度不能太高,否则由于退火效应,金属会软化
➢ 对于脆性材料,一般不宜利用应变硬化来提高强度性 能
金属材料的韧化
材料的韧性是断裂过程的能量参量,是材料强度与塑性的 综合表现
当不考虑外因时,断裂过程包括裂纹的形核和扩展。通常 以裂纹形核和扩展的能量消耗或裂纹扩展抗力来标示材料 韧性。
细晶强化
❖定义
❖强化机理
➢晶界对位错滑移的阻滞效应
当位错运动时,由于晶界两侧晶粒的取向不同,加之 这里杂质原子较多,增大了晶界附近的滑移阻力, 因而的滑移带不能直接进入一侧晶粒中
➢晶界上形变要满足协调性
需要多个滑移系统同时动作,这同样导致位错不易穿 过晶界,而是塞积在晶界处
—晶粒越细,晶界越多,位错阻滞效应越显著, 多晶体的强度就越高
第二相粒子强化
➢不易形变的粒子
包括弥散强化的粒子以及沉淀强化的大尺寸粒子
位错绕过机制(Orowan,奥罗万机制)
运动位错线在 不易形变粒子 前受阻、弯曲
外加切应力的 增加使位错弯 曲,直到在A、 B处相遇
位错线方向相反 位错线绕过
的A、B相遇抵 粒子,恢复
消,留下位错环, 原态,继续
位错增殖
向前滑移
临界尺寸dc,十几到二十纳米之间 反Hall-Petch效应
第二相粒子强化 ❖分类
➢通过相变(热处理)获得 析出硬化、沉淀强化或时效强化
➢通过粉末烧结或内氧化获得 弥散强化
❖强化效果
➢相粒子的强度、体积分数、间距、粒子的形状 和分布等都对强化效果有影响
➢第二相粒子强化比固溶强化的效果更为显著
第1章钢合金化概论钢的强化和韧化课件

Si能溶于ε ,不溶于Fe3C ,Si要从ε 中出去
↓ε-FeXC的形核、长大
↓ε→ Fe3C 效果: 含2% Si能使M分解温度从260℃提高到350℃以上
(2)对残余A转变的影响
(3)回火时K的形成
各元素明显开始扩散的温度为:
Me
Si
Mn
Cr
(2) Me对A晶粒长大倾向的影响
➢合金元素形成的碳化物在高温下越稳定,
越不易溶入A中,能阻碍晶界长大,显著细 化晶粒。 按照对晶粒长大作用的影响,合 金元素可分为:
①Ti 、V 、Zr 、Nb等强烈阻止A晶粒长大,
Al在钢中易形成高熔点AlN 也能强烈阻止晶粒长大;
、Al2O3细质点,
AlN含量对A晶粒度的影响
第二 相
K ↓韧性。 K 小、匀、圆、适量 → 工艺努力方向。
杂质
杂质往往是形变断裂的孔洞形成核心, → 提高钢的冶金质量是必须的。
3、改善钢韧性的途径
1.改善延性断裂的途径 2.改善解理断裂抗力的途 3.改径善沿晶断裂抗力的途径
4、提高钢韧度的合金化途径
1)细化晶粒、组织—— 如Ti 、V 、Mo; 2) ↑回火稳定性 —— 如强K形成元素 ; 3)改善基体韧度 —— Ni ; 4) 细化K —— 适量Cr 、V ,使K小而匀 ; 5) ↓回脆 —— W 、Mo ; 6)在保证强度水平下,适当↓含C量.
效果
有效提高强度,但稍降低塑韧性。
钢强度表达式
位错被质点障碍物所挡住
4、位错强化
表达式
机理
位错密度ρt →tt位错交割、缠结, → 有效地阻止了位错运动 → t钢强度。
效果
强化韧化

其他强化方法
形变热处理强化 界面强化 纤维强化 …
将高强度材料制成纤维,通过一定方法 将纤维束布置在基体金属中
金属材料的强化增加材料Fra bibliotek部缺陷,提高强度
在金属中增加大量缺陷,以阻碍位错的运动
固溶强化
细晶强化
第二相强化 相变强化
0.2 μm
形变强化
固溶强化
融入固溶体中的溶质原子造成晶格畸变,晶格 畸变增大了位错运动的阻力,使滑移难以进行,从 而使合金固溶体的强度与硬度增加。
间隙固溶体
溶质原子嵌入晶格间隙中
常用名词
硬度 强度 刚度
抵抗变形 同种材料 材料局部抵抗硬物强度越高 材料在外力作用下 构件产生单位变形 VS 压入其表面的能力硬度越高 抵抗破坏的能力 弹性变形 所需的外力值
不同材料 无法对比 屈服强度 抗拉强度 抗压强度 抗弯强度 … 材料自身 VS 成品构件 影响刚度 的因素是 材料的弹 性模量和 结构形式
置换固溶体 溶质原子替换溶剂原子晶格中位置
细晶强化
晶界是位错运动的障碍,晶界越多,则位 错运动阻力越大,屈服强度越高。
霍尔佩奇(Hall-Petch)关系式
细化晶粒可增加单位体积内的晶界 面积,相对减少晶界上夹杂物含量
晶界既是位错运动的阻力,也是裂 纹扩展的障碍
高温形变时晶界成为薄弱环节
特殊热处理
超高温淬火、亚临界区淬火、性变热处理等
谢谢聆听!
常用名词
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反Hall-Petch效应
分类
第二相粒子强化
通过相变(热处理)获得
析出硬化、沉淀强化或时效强化
通过粉末烧结或内氧化获得
弥散强化
强化效果
相粒子的强度、体积分数、间距、粒子的形状 和分布等都对强化效果有影响 第二相粒子强化比固溶强化的效果更为显著
强化机理
限制
使用温度不能太高,否则由于退火效应,金属会软化 对于脆性材料,一般不宜利用应变硬化来提高强度性 能
金属材料的韧化
材料的韧性是断裂过程的能量参量,是材料强度与塑性的 综合表现 当不考虑外因时,断裂过程包括裂纹的形核和扩展。通常 以裂纹形核和扩展的能量消耗或裂纹扩展抗力来标示材料 韧性。 材料的韧性与金属组织结构密切相关的,它涉及到位错的 运动,位错间的弹性交互作用,位错与溶质原子和沉淀相 的弹性交互作用以及组织形态,其中包括基体、沉淀相和 晶界的作用等
韧化工艺
熔炼铸造(减少缺陷) 热处理韧化 压力加工
金属材料韧性表征及韧化原理 金属材料韧性表征
材料在外加负荷作用下从变形到断裂全过程吸 收能量的能力,所吸收的能量愈大,则断裂韧 性愈高 断裂韧性 冲击韧性
韧化原理
增加断裂过程中能量消耗的措施都可以提高断裂 韧性
金属材料韧化途径
细化组织韧化 韧性相与脆性相的比例、分布
基体韧性相 纤维、晶须等
定义
细晶强化
强化机理
晶界对位错滑移的阻滞效应
当位错运动时,由于晶界两侧晶粒的取向不同,加之 这里杂质原子较多,增大了晶界附近的滑移阻力, 因而的滑移带不能直接进入一侧晶粒中
晶界上形变要满足协调性
需要多个滑移系统同时动作,这同样导致位错不易穿 过晶界,而是塞积在晶界处
—晶粒越细,晶界越多,位错阻滞效应越显著, 多晶体的强度就越高
霍耳-配奇(Hall-Petch)关系式
σy = σi+ky· d-1/2
σi和ky是两个和材料有关的常数,d为晶粒直径 常规的多晶体(晶粒尺寸大于100nm) 纳米微晶体材料(晶粒尺度在1-100nm间) 中, 在纳米晶粒,晶界核心 区原子所占的比例可高 达50% 理论模拟的结果显示存 在一个临界尺寸dc
固溶强化
定义 本质
强化机理
利用点缺陷对位错运动的阻力使金属基体获得强化
间隙固溶体 碳、氮等间隙式溶质原子嵌入金属基体的晶格间隙 中,使晶格产生不对称畸变造成的强化效应 间隙式原子在基体中与刃位错和螺位错产生弹性交 互作用,使金属获得强化。
替代式溶质原子在基体晶格中造成的畸变大都是球 面对称的,因而强化效果要比填隙式原子小
形变强化(加工硬化) 定义
强化机理
金属在塑性变形过程中位错密度不断增加,使弹性应力 场不断增大,位错间的交互作用不断增强,因而位错
的运动越来越困难—位错强化
作用
提高材料的强度
使变形更均匀
防止材料偶然过载引起破坏
形变强化(加工硬化)
不利方面
金属在加工过程中塑性变形抗力不断增加,使金属的 冷加工需要消耗更多的功率 形变强化使金属变脆,因而在冷加工过程中需要进行 多次中间退火,使金属软化,才能够继续加工
细晶强化
定义 强化机理
晶界对位错滑移的阻滞效应
当位错运动时,由于晶界两侧晶粒的取向不同,加之 这里杂质原子较多,增大了晶界附近的滑移阻力, 因而的滑移带不能直接进入一侧晶粒中
晶界上形变要满足协调性
需要多个滑移系统同时动作,这同样导致位错不易穿 过晶界,而是塞积在晶界处
—晶粒越细,晶界越多,位错阻滞效应越显著, 多晶体的强度就越高
材料的强化和韧化
ቤተ መጻሕፍቲ ባይዱ
强韧化意义
提高材料的强度和韧性 节约材料,降低成本,增加材料在使用过程中的 可靠性和延长服役寿命
注意
希望材料既有足够的强度,又有较好的韧性, 通常的材料二者不可兼得 理解材料强韧化机理,掌握材料强韧化本质 合理运用和发展材料强韧化方法从而挖掘材料 性能潜力
提高金属材料强度途径
不易形变的粒子
第二相粒子强化
包括弥散强化的粒子以及沉淀强化的大尺寸粒子
位错绕过机制(Orowan,奥罗万机制)
运动位错线在 不易形变粒子 前受阻、弯曲
外加切应力的 增加使位错弯 曲,直到在A、 B处相遇
位错线方向相反 的A、B相遇抵 消,留下位错环, 位错增殖
位错线绕过 粒子,恢复 原态,继续 向前滑移
强度是指材料抵抗变形和断裂的能力
两种方法 完全消除内部
材 料 强 度 无缺陷的 理论强度
的缺陷,使它
的强度接近于
冷加工 状态
理论强度
增加材料内部 的缺陷,提高
退火状态
缺陷数量
材料强度与缺陷数量的关系
强度
提高金属材料强度途径 增加材料内部的缺陷,提高强度
即在金属中引入大量的缺陷,以阻碍位错的运动 固溶强化 细晶强化 第二相粒子强化 形变强化
强化机理
易形变的粒子
第二相粒子强化
包括弥散强化的粒子以及沉淀强化的大尺寸粒子
位错切割机制
位错切过粒子的示意图
Ni-19% Cr-6% Al合金中位错切过 Ni3Al粒子的透射电子显微像
切过粒子引起强化的机制 短程交互作用
位错切过粒子形成新的表面积,增加了界面能
位错扫过有序结构时会形成错排面或叫做反相畴,产 生反相畴界能
粒子与基体的滑移面不重合时,会产生割阶; 粒子的派 -纳力τ P-N高于基体等,都会引起临界切应力增加
长程交互作用(作用距离大于10b)
由于粒子与基体的点阵不同(至少是点阵常数不同), 导致共格界面失配,从而造成应力场
第二相粒子强化的最佳粒子半径
• 综合考虑切过、绕过两种机制,估算出第二相粒子强化的 最佳粒子半径rc=(G· b2)/(2· σs)