2011-2018高考数学立体几何分类汇编(理)

2011-2018高考数学立体几何分类汇编(理)
2011-2018高考数学立体几何分类汇编(理)

2011-2018新课标(理科)立体几何分类汇编

一、选填题

【2012新课标】(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( B ) ()A 6 ()B 9 ()C 12 ()D 18 【分析】选B 。该几何体是三棱锥,底面是俯视图,高为3,此几何体的体积为11633932

V =????=

【2012新课标】(11)已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ?是边长为1的正三角形,SC 为球O 的直径,且2SC =;则此棱锥的体积为( A )

()

A 26 ()

B 36 ()

C 23 ()

D 22

【分析】ABC ?的外接圆的半径3

3

r =

,点O 到面ABC 的距离2263d R r =-=,SC 为球

O 的直径?点S 到面ABC 的距离为2623

d =此棱锥的体积为

113262

233436ABC V S d ?=?=??=

另:13

236

ABC V S R ?<

?=排除,,B C D 【2013新课标1】6、如图,有一个水平放置的透明无盖的正方体容

器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器的厚度,则球的体积为 ( A )

A 、500π3cm 3

B 、866π3cm 312

C 、1372π3cm 3

D 、2048π3cm 3

【分析】设球的半径为R ,则由题知球被正方体上面截得圆的半径为4,球心到截面圆的距离为

R -2,则2

2

2

(2)4R R =-+,解得R=5,∴球的体积为3453

π?=500π

3

3cm ,故选A.

【2013新课标1】8、某几何函数的三视图如图所示,则该几何的体积为( A )

A 、16+8π

B 、8+8π

C 、16+16π

D 、8+16π 【分析】由三视图知,该几何体为放到的半个圆柱底面半径为2 高为4,上边放一个长为4宽为2高为2长方体,故其体积为

21

244222

π??+?? =168π+,故选A . 【2013新课标2】4. 已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,l α,l β,则( D ).

A .α∥β且l∥α

B .α⊥β且l ⊥β

C .α和β相交,且交线垂直于l

D .α和β相交,且交线平行于l

【分析】因为m ⊥α,l ⊥m ,l α,所以l ∥α.同理可得l ∥β。又因为m ,n 为异面直线,所以α和β相交,且l 平行于它们的交线.故选D.

【2013新课标2】7. 一个四面体的顶点在空间直角坐标系O -xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx

平面为投影面,则得到的正视图可以为( A ).

【分析】如图所示,该四面体在空间直角坐标系O -xyz 的图像如图:

【2014新课标1】12. 如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( B )

A 、6

B 、6

C 、4

D 、4 【分析】几何体的直观图如图:AB=4,BD=4,C 到BD 的中点的距离为:4, ,AC=

=6,AD=4

,显然AC 最长。

【2014新课标2】6. 如图,网格纸上正方形小格的

边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm ,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积和原来毛坯体积的比值为( C ) A.1727 B.59 C.1027 D.13

【分析】该零件是一个由两个圆柱组成的组合体,其体积为π×32×2+

π×22×4=34π(cm 3),原毛坯的体积为π×32×6=54π(cm 3),切削掉部分的体积为54π-34π=

20π(cm 3),故所求的比值为20π54π=10

27。

【2014新课标2】11. 直三棱柱ABC -A 1B 1C 1中,∠BCA =90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 和AN 所成角的余弦值为( C )

A.110

B.25

C.3010

D.22

【分析】如图,E 为BC 的中点.由于M ,N 分别是A 1B 1,A 1C 1的中点,

故MN ∥B 1C 1且MN =1

2B 1C 1,故MN 綊BE ,所以四边形MNEB 为平行四

边形,所以EN 綊BM ,所以直线AN ,NE 所成的角即为直线BM ,AN 所成的角.设BC =1,则B 1M =12B 1A 1=2

2,所以MB =1+12=62=NE ,AN =AE =5

2,在△ANE 中,根据余弦定理

得cos ∠ANE =30

10。

【2015新课标1】6.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有( B )

A.14斛

B.22斛

C.36斛

D.66斛

【2015新课标1】(11)圆柱被一个平面截去一部分后和半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示。若该几何体的表面积为16 + 20π,则r=( B )

(A )1 (B )2 (C )4 (D )8 【2015新课标2】(6)一个正方体被一个平面截去一

部分后,剩余部分的三视图如右图,则截去部分体积和剩余部分体积的比值为( ) (A )

(B )

(C )

(D )

【分析】由三视图得,在正方体中,截去四面体

,如图所示,,设正方体棱长为,则,故剩余几何体体积为

,所以

截去部分体积和剩余部分体积的比值为

【2015新课标2】(9)已知A,B 是球O 的球面上两点,

∠AOB=90,C 为该球面上的动点,若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( C )

A .36π B.64π C.144π D.256π 【分析】如图所示,当点C 位于垂直于面的直径端点时,三棱锥

的体积

最大,设球

的半径为

,此时

,故

则球的表面积为,故选C . 【2016新课标1】(6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直

的半径.若该几何体的体积是

283

π

,则它的表面积是( A ) (A )17π(B )18π(C )20π(D )28π

【分析】该几何体为球体,从球心挖掉整个球的1

8

(如右图所示),故

34728383r ππ=

解得2r =,2271

431784

S r r πππ∴=?+?=。 【2016新课标1】(11)平面a 过正方体ABCD -A 1B 1C 1D 1的顶点A ,a //平面CB 1D 1,a ?平面ABCD =m ,a ?平面ABA 1B 1=n ,则m 、n 所成角的正弦值为( A ) (A)

32 (B)22 (C)33 (D)13

【详细解答】令平面a 和平面CB 1D 1重合,则m = B 1 D 1,n = CD 1 故直线m 、n 所成角为60o ,正弦值为

3

【2016新课标2】6. 右图是由圆柱和圆锥组合而成的几何体的三视图,

则该几何体的表面积为( C )

(A )20π (B )24π (C )28π (D )32π

【分析】几何体是圆锥和圆柱的组合体,设圆柱底面圆半径为,周长为,圆锥母线长为,圆柱高为.由图得,,由勾股定理得:

【2016新课标2】14. α,β是两个平面,m ,n 是两条线,有下列四个命题: ①如果m n ⊥,m α⊥,n β∥,那么αβ⊥。②如果m α⊥,n α∥,那么m n ⊥.

③如果a β∥,m α?,那么m β∥。 ④如果m n ∥,αβ∥,那么m 和α所成的角和n 和β所成的角相等.

其中正确的命题有 ②③④ .(填写所有正确命题的编号)

【2016新课标3】9. 如图,网格纸上小正方形的边长为1,粗实现画出的的是某多面体的三视图,则该多面体的表面积为( B )

(A )18+36 5 (B )54+185 (C )90 (D )81 【2016新课标3】10. 在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 13,则V 的最大值是( B )

(A )4π (B )9π2 (C )6π (D )32π

3

【2017新课标1】7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( B ) A .10 B .12 C .14 D .16

【2017新课标1】16.如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O 。D 、E 、F 为圆O 上的点,△DBC ,△ECA ,△FAB 分别是以BC ,CA ,AB 为底边的等腰三角形。沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△FAB ,使得D 、E 、F 重合,

r c l h 2r =2π4πc r ==()

2

2

2234l =+=2

1π2

S r ch cl =++表4π16π8π=++28π=

得到三棱锥。当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为____415___。

【2017新课标2】4. 如图,网格纸上小正方形的边长为1,粗实线画出

的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为( B )

A .90π

B .63π

C .42π

D .36π 【分析】该几何体可视为一个完整的圆柱减去一个高为6的圆柱的一半。

2211

π310π3663π22=-=??-???=V V V 总上

【2017新课标2】10.已知直三棱柱111C C AB -A B 中,C 120∠AB =,

2AB =,1C CC 1B ==,则异面直线1AB 和1C B 所成角的余弦值为( C )

A .

32 B .15 C .10

D .33 【分析】M ,N ,P 分别为AB ,1BB ,11B C 中点,则1AB ,1BC 夹角为MN 和NP 夹角或其补角(异面线所成角为π02?

?

???,)

可知1152MN AB =

=

,11222

NP BC ==,作BC 中点Q ,则可知PQM △为直角三角形. 1=PQ ,1

2

MQ AC =

ABC △中,2222cos AC AB BC AB BC ABC =+-??∠

=4+1-2′2′1×-12?è???÷=7,7=AC ,则7MQ =,则MQP △中,22112

MP MQ PQ =+=,

则PMN △中,222cos 2MN NP PM PNM MH NP +-∠=

??2

2

2

52111052

2??????

+- ? ? ? ? ? ???????==-?? 又异面线所成角为π02?

? ???

,,则余弦值为10。

【2017新课标3】8.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,

则该圆柱的体积为( B )

A .π

B .3π4

C .π2

D .π

4

【分析】由题可知球心在圆柱体中心,圆柱体上下底面圆半径

2

2

1312r ??=-=

???

,则圆柱体体积2

3ππ4V r h ==,故选B. 【2017新课标3】16.a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC

所在直线和

a ,

b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论: ①当直线AB 和a 成60?角时,AB 和b 成30?角; ②当直线AB 和a 成60?角时,AB 和b 成60?角; ③直线AB 和a 所成角的最小值为45?;

④直线AB 和a 所成角的最大值为60?.其中正确的是___②③_____(填写所有正确结论的编号) 【分析】由题意知,a b AC 、、三条直线两两相互垂直,画出图形如图.

不妨设图中所示正方体边长为1,故||1AC =,2AB =,斜边AB 以直线AC 为旋转轴旋转,则A 点保持不变,B 点的运动轨迹是以C 为圆心,1为半径的圆。以C 为坐标原点,以

为x 轴

正方向,

为y 轴正方向,

为z 轴正方向建立空间直角坐标系.

则(1,0,0)D ,(0,0,1)A ,直线a 的方向单位向量,

,B 点起始坐标为(0,1,0),

直线b 的方向单位向量,

,设B 点在运动过程中的坐标(cos ,sin ,0)B θθ',

其中θ为B C '和CD 的夹角,[0,2π)θ∈。

那么'AB 在运动过程中的向量,

和所成夹角为π

[0,]2

α∈,则

故ππ

[,]42

α∈,所以③正确,④错误.设

和所成夹角为π

[0,]2

β∈,

.

和夹角为60?时,即π3α=,12

sin 2cos 2cos 2322

πθα====.

∵22cos sin 1θθ+=,∴2|cos |θ=

,∴21cos |cos |2

βθ==. ∵π[0,]2β∈,∴π

=3

β,此时AB '和b 夹角为60?,∴②正确,①错误.

【2018新课标1】7.某圆柱的高为2,底面周长为16,其三视图如右图所示,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )

A .217

B .25

C .3

D .2 【答案】B

【2018新课标1】12.已知正方体的棱长为1,每条棱所在直线和平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( ) A .33

B .23

C .

32

D .

3 【答案】A

【2018新课标2】9.在长方体1111ABCD A B C D -中,1AB BC ==,

13AA =,则异面直线1AD 和1DB 所成角的余弦值为( )

A .15

B .

5 C .

5 D .

2 【答案】C

【2018新课标2】16.已知圆锥的顶点为S ,母线SA ,SB

所成角的余弦值为7

8

,SA 和圆锥底

面所成角为45°,若SAB △的面积为515,则该圆锥的侧面积为__________. 【答案】 402p

【2018新课标3】3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卯眼,图中木构件右边的小长方体是棒头.若如图摆放的木构件和某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )

【答案】A

【2018新课标3】10.设A B C D ,,,是同一个半径为4的球的球面上四点,ABC ?为等边三角形且其面积为93,则三棱锥D ABC -体积的最大值为( ) A .123 B .183

C .243

D .543

【答案】B

二、解答题

【2011新课标】 如图,四棱锥P—ABCD 中,底面ABCD 为平行四边形,∠DAB=60°,AB=2AD,PD ⊥底面ABCD. (Ⅰ)证明:PA ⊥BD ;

(Ⅱ)若PD=AD ,求二面角A -PB -C 的余弦值。 【答案】

(Ⅰ)因为60,2DAB AB AD ∠=?=, 由余弦定理得

3BD AD = ,从而BD 2+AD 2= AB 2,故BD ⊥AD 又PD ⊥底面ABCD ,可得BD ⊥PD 所以BD ⊥

平面PAD. 故PA ⊥BD

(Ⅱ)如图,以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系D -xyz ,则

()1,0,0A ,()03,0B ,,()

1,3,0C -,()0,0,1P 。

PAB 的法向量为n=(x,y,z ),则 即

3030

x y y z -+=-= 因此可取n=(3,1,3)

设平面PBC 的法向量为m ,则 00

m PB m BC ?=?= 可取m=

(0,-1,3-) 427

cos ,727

m n -=

=-

故二面角A -PB -C 的余弦值为 277-

【2012新课标】19. 如图,直三棱柱111ABC A B C -中,

11

2

AC BC AA ==

,D 是棱1AA 的中点,BD DC ⊥1 (1)证明:BC DC ⊥1 (2)求二面角11C BD A --的大小。

【答案】(1)在Rt DAC ?中,AD AC = 得:45ADC ?∠= 同理:1114590A DC CDC ??∠=?∠=

得:111,DC DC DC BD DC ⊥⊥?⊥面1BCD DC BC ?⊥ (2)11,DC BC CC BC BC ⊥⊥?⊥面11ACC A BC AC ?⊥ 取11A B 的中点O ,过点O 作OH BD ⊥于点H ,连接11,C O C H 1111111AC B C C O A B =?⊥,面111A B C ⊥面1A BD 1C O ?⊥面1A BD

1OH BD C H BD ⊥?⊥ 得:点H 和点D 重合 且1C DO ∠是二面角11C BD A --的平面角

设AC a =,则122

a

C O =

,1112230C D a C O C DO ?==?∠= 既二面角11C BD A --的大小为30?

【2013新课标1】18、(本小题满分12分)

如图,三棱柱ABC -A 1B 1C 1中,CA=CB ,AB=A A 1, ∠BAA 1=60°.

(Ⅰ)证明AB ⊥A 1C;

(Ⅱ)若平面ABC ⊥平面AA 1B 1B ,AB=CB=2,求直线A 1C 和平面BB 1C 1C 所成角的正弦值。

【答案】(Ⅰ)取AB 中点E ,连结CE ,1A B ,1A E ,∵AB=1AA ,1BAA ∠=060,∴1BAA ?是正三角形,∴1A E ⊥AB , ∵CA=CB , ∴CE ⊥AB , ∵1CE A E ?=E ,∴AB ⊥面1CEA , ∴AB ⊥1A C ;

(Ⅱ)由(Ⅰ)知EC ⊥AB ,1EA ⊥AB ,

又∵面ABC ⊥面11ABB A ,面ABC∩面11ABB A =AB ,∴EC ⊥面11ABB A ,∴EC ⊥1EA ,∴EA ,EC ,1EA 两两相互垂直,以E 为坐标原点,

的方向为x 轴正方向,|

|为单位长度,建立

如图所示空间直角坐标系O xyz -,由题设知A(1,0,0),1A (0,3,0),C(0,0,3),B(-1,0,0),则=

(1,0,3),=

=(-1,0,3),

=(0,-3,3), 设n =(,,)x y z 是平面11CBB C 的法向

量, 则

,即3030

x z x y ?+=??+=??,

可取n =(3,1,-1), ∴

=

10

5

∴直线A 1C 和平面BB 1C 1C

所成角的正弦值为

105

.

【2013新课标2】18.如图,直三棱柱ABC -A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点,AA 1=AC =CB =

2

AB . (1)证明:BC 1∥平面A 1CD ;

(2)求二面角D -A 1C -E 的正弦值. 【答案】

(1)连结AC 1交A 1C 于点F ,则F 为AC 1中点.又D 是AB 中点,连结DF ,则BC 1∥DF . 因为DF ?平面A 1CD ,BC 1平面A 1CD , 所以BC 1∥平面A 1CD .

(2)由AC =CB =

2

2

AB 得,AC ⊥BC . 以C 为坐标原点,

的方向为x 轴正方向,建立如图所示的空间直

角坐标系C -xyz .

设CA =2,则D (1,1,0),E (0,2,1),A 1(2,0,2),

=(1,1,0),

=(0,2,1),

=(2,0,2).

设n =(x 1,y 1,z 1)是平面A 1CD 的法向量, 则

即1111

0,

220.x y x z +=??+=? 可取n =(1,-1,-1).

同理,设m 是平面A 1CE 的法向量,则

可取m =(2,1,-2).

从而cos 〈n ,m 〉=

3

||||=

·n m n m ,故sin 〈n ,m 〉=63.即二面角D -A 1C -E 的正弦值为63.

【2014新课标1】19.如图,三棱柱ABC ﹣A 1B 1C 1中,侧面BB 1C 1C 为菱形,AB ⊥B 1C . (Ⅰ )证明:AC=AB 1;

(Ⅱ )若AC ⊥AB 1,∠CBB 1=60°,AB=BC ,求二面角A ﹣A 1B 1﹣C 1的余弦值. 【答案】 (1)连结BC 1,交B 1C 于点O ,连结AO ,∵侧面BB 1C 1C

为菱形, ∴BC 1⊥B 1C ,且O 为BC 1和B 1C 的中点,又 ∵AB ⊥B 1C ,∴B 1C ⊥平面ABO , ∵AO ?平面ABO ,∴B 1C ⊥AO , 又B 1O=CO , ∴AC=AB 1, (2) ∵AC ⊥AB 1,且O 为B 1C 的中点,∴AO=CO , 又 ∵AB=BC ,∴△BOA ≌△BOC ,∴OA ⊥OB , ∴OA ,OB ,OB 1两两垂直, 以O 为坐标原点,

的方向为x 轴的正方向,|

|为单位长度,

的方向为y 轴的正方向,

的方向为z 轴的正方向建立空间直角坐标系,

∵∠CBB 1=60°,∴△CBB 1为正三角形,又AB=BC , ∴A (0,0,),B (1,0,0,),B 1(0,,0),C (0,

,0) ∴

=(0,

),

=

=(1,0,

),

==(﹣1,

,0),

设向量=(x ,y ,z )是平面AA 1B 1的法向量,

则,可取=(1,,),

同理可得平面A 1B 1C 1的一个法向量=(1,﹣,),

∴cos <,>==, ∴二面角A ﹣A 1B 1

﹣C 1的余弦值为

【2014新课标2】18.如图,四棱锥P -ABCD 中,底面

ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点. (Ⅰ)证明:PB ∥平面AEC ;

(Ⅱ)设二面角D -AE -C 为60°,AP=1,3,求

三棱锥E -ACD 的体积. 【答案】

(1)连结BD 交AC 于点O,连结EO

因为ABCD 为矩形,所以O 为BD 的中点 又E 为的PD 的中点,所以EO ∥PB

EO ?平面AEC,PB ?平面AEC ,所以PB ∥平面AEC

(2)因为PA ⊥平面ABCD ,ABCD 为矩形,所以AB,AD,AP 两两垂直 如图,以A 为坐标原点,

的方向为x 轴的正方向,

为单位长,建立空间直角坐标系,

则A—xyz,则3则E(0,

32

,

12),=(0,

32,1

2

) 设B(m,0,0)(m >0),则C (3,0)设n(x,y,z)为平面ACE

的法向量,则{

即{ 0

1

023

2

3mx y z +=+= 可取1n =3

-31n =(1,0,0)为平面DAE 的法向量, 由题设12cos(,)n n =12,2334m +12,解得m=3

2

因为E 为PD 的中点,所以三棱锥E -ACD

的高为

12,三棱锥E -ACD 的体积为V=13?12?3?32?1

23

【2015新课标1】(18)如图,四边形ABCD 为菱形, ∠ABC=120°,E ,F 是平面ABCD 同一侧的两点,

BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE=2DF ,AE ⊥EC 。 (1)证明:平面AEC ⊥平面AFC

(2)求直线AE 和直线CF 所成角的余弦值

【2015新课标2】如图,长方体ABCD —A 1B 1C 1D 1中,AB = 16,BC = 10,AA 1 = 8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E = D 1F = 4,过点E ,F 的平面α和此长方体的面相交,交线围成

一个正方形。

(1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 和平面α所成的角的正弦值。 【答案】

D D 1 C 1

A 1 E

F

A

B

C B 1

【2016新课标1】18. 如图,在已A ,B ,C ,D ,E ,F 为顶

点的五面体中,面ABEF 为正方形,AF =2FD ,

90AFD ∠=,且二面角D -AF -E 和二面角C -BE -F 都是60.

(I )证明平面ABEF ⊥EFDC ; (II )求二面角E -BC -A 的余弦值. 【答案】(I ),AF FE AF FD ⊥⊥,AF FECD ⊥面,

AF ABFE ?面,所以平面ABEF ⊥EFDC ;

(II )以E 为坐标原点,EF ,EB 分别为x 轴和y 轴建立空间直角坐标系(如图),设2AF =,则1FD =,因为二面角D -AF -E 和二面角C -BE -F 都是60,即60o EFD FEC ∠=∠=,

易得(0,2,0)B ,(2,2,0)A ,13(,0,22

C ,

设平面EBC 和平面ABCD 的法向量分别为

,则

令11x =,则1130,y z ==,

由,

令22z =,则2230,2

x y ==

,二面角E -BC -A 余弦值219

19

-

. 【2016新课标2】19. 如图,菱形ABCD 的对角线AC 和BD 交于点O ,5AB =,6AC =,点E ,

F 分别在AD ,CD 上,5

4

AE CF ==,EF 交BD 于点H .将

△DEF 沿EF 折到△D EF '的位置10OD '=.

(I )证明:D H '⊥平面ABCD ; (II )求二面角B D A C '--的正弦值. 【答案】

⑴证明:∵,∴,∴.

∵四边形为菱形,∴,∴,∴,∴.∵,∴;

又,,∴,∴,∴,∴,

∴.又∵, ∴面. ⑵建立如图坐标系.,

,,,

,

,

设面法向量,

得,取 ∴.同理可得面的法向量

,

, ∴

【2016新课标3】(19)如图,四棱锥P -ABCD 中,P A ⊥平面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,

M 为线段AD 上一点,AM =2MD ,N 为PC 的中点。

5

4AE CF ==AE CF AD CD

=EF AC ∥ABCD AC BD ⊥EF BD ⊥EF DH ⊥EF DH

'⊥6AC =3AO =5AB =AO OB ⊥4OB =1AE OH OD AO

=?=3DH D H '==222

'OD OH D H '=+'D H OH ⊥OH EF H ='D H ⊥ABCD H xyz -()500B ,,()130C ,,()'003D ,,()130A -,,'ABD 430330x y x y z +=??-++=?3

45

x y z =??=-??=?

'AD C 295

sin 25

θ=

N

M

D

B

C

A

P

z

y

x

N

M

D

C

A

P

(1)证明:MN ∥平面P AB

(2)求直线AN 和平面PMN 所成角的正弦值. 【答案】

【2017新课标1】18. 如图,在四棱锥P -ABCD 中,AB//CD ,且90BAP CDP ∠=∠=. (1)证明:平面PAB ⊥平面PAD ;

(2)若PA =PD =AB =DC ,90APD ∠=,求二面角A -PB -C 的余弦值. 【答案】

(1)由已知90BAP CDP ∠=∠=?,得AB ⊥AP ,CD ⊥PD . 由于AB ∥CD ,故AB ⊥PD ,从而AB ⊥平面PAD . 又AB ?平面PAB ,所以平面PAB ⊥平面PAD . (2)在平面PAD 内做PF AD ⊥,垂足为F ,由(1)可知,AB ⊥平面PAD ,故

AB PF ⊥,可得PF ⊥平面ABCD . 以F 为坐标原点,

的方向为x 轴正方向,

为单位长,

建立如图所示的空间直角坐标系F xyz -。由(1)及已知可得

2(

,0,0)2A ,2(0,0,)2P ,2

(,1,0)2

B ,2(,1,0)2

C -, 所以

设(,,)x y z =n 是平面PCB 的法向量,则

,即22

022

20x y z x ?-+-=???=?

,可取(0,1,2)=--n . 设(,,)x y z =m 是平面PAB 的法向量,则

,即22

00

x z y ?-=?

?=?

,可取(1,0,1)=n ,则3cos ,||||?==-<>n m n m n m , 所以二面角A PB C --的余弦值为33

-

。 【2017新课标2】19. 如图,四棱锥P -ABCD 中,侧面PAD 为等比三角形且垂直于底面ABCD ,

o 1

,90,2

AB BC AD BAD ABC ==

∠=∠= E 是PD 的中点. (1)证明:直线//CE 平面PAB

(2)点M 在棱PC 上,且直线BM 和底面ABCD 所成锐角为o 45 ,求二面角M -AB -D 的余弦值 【答案】

(1)令PA 中点为F ,连结EF ,BF ,CE .

∵E ,F 为PD ,PA 中点,∴EF 为PAD △的中位线,∴1

2

EF AD ∥.又∵90BAD ABC ∠=∠=?,

∴BC AD ∥,又∵12AB BC AD ==,∴1

2

BC AD ∥,∴EF BC ∥.∴四边形BCEF 为平行四边形,

∴CE BF ∥,又∵BF PAB ?面,∴CE PAB 面∥

(2)以AD 中点O 为原点,如图建立空间直角坐标系.设1AB BC ==,

则(000)O ,,,(010)A -,,,(110)B -,,,(100)C ,,,(010)D ,,,,(003)P ,,. M 在底面ABCD 上的投影为M ',∴MM BM ''⊥.∵45MBM '∠=?,∴MBM '△为等腰直角三角形. ∵POC △为直角三角形,3

3

OC OP =,∴60PCO ∠=?. 设MM a '=,3CM '=

,3

1OM '=.∴3100M ??'- ? ???

,,. 2

22

231610133BM a a a a ??'=++=+=?= ? ???

∴32

11OM '=-

=.∴2100M ??' ? ???,,2610M ?- ??

, .设平面ABM 的法向量.

116

0y z =,,.

设平面ABD 的法向量为,

,∴

∴二面角M AB D --10. 【2017新课标3】19. 如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角

形.,AB BD . (1)证明:平面平面ABC ; (2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分.求二面角D AE C 的余弦值. 【分析】⑴取AC 中点为O ,连接BO ,DO ;

∵D ABC 为等边三角形 ∴BO AC ⊥ ∴AB BC =

AB BC BD BD

ABD DBC =??

=??∠=∠?

ABD CBD ∴???. ∴AD CD =,即ACD ?为等腰直角三角形,ADC ∠为直角又O 为底边AC 中点 ∴DO AC ⊥

令AB a =,则AB AC BC BD a ====,易得:2OD =,3

OB =

z

y

x

M 'M

O

F

P

A

B

C

D

E

D

A

B

C E

O

∴2

2

2

OD OB BD +=,由勾股定理的逆定理可得2

DOB π

∠=,

即OD OB ⊥

OD ^AC OD ^OB AC ∵OB =O AC ìABC OB ìABC ìí?

??

?

??

?OD ABC ∴⊥平面 又∵OD ADC ?平面, 由面面垂直的判定定理可得ADC ABC ⊥平面平面

⑵由题意可知V V D ACE B ACE --=,即B ,D 到平面ACE 的距离相等,即E 为BD 中点,以O 为原点,

为x 轴正方向,

为y 轴正方向,

为z 轴正方向,设AC a =,建立空间直角坐标系,

则()0,0,0O ,,0,02a A ?? ???,0,0,2a D ?

? ???,30,,0B a ?? ? ???,30,,4a E a ?? ? ???

易得:

,,

设平面AED 的法向量为,平面AEC 的法向量为

,解得

,解得

若二面角D AE C --为θ,易知θ为锐角,则

【2018新课标1】18. 如图,四边形ABCD 为正方形,E ,

F 分别为AD ,BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥. (1)证明:平面PEF ⊥平面ABFD ;

(2)求DP 和平面ABFD 所成角的正弦值. 【分析】

(1)由已知可得,BF ⊥PF ,BF ⊥EF ,所以BF ⊥平面PEF . 又BF ?平面ABFD ,所以平面PEF ⊥平面ABFD .

(2)作PH ⊥EF ,垂足为H .由(1)得,PH ⊥平面ABFD . 以H 为坐标原点,

的方向为y 轴正方向,

为单位

长,建立如图所示的空间直角坐标系H ?xyz .

由(1)可得,DE ⊥PE .又DP =2,DE =1,所以PE =3. 又PF =1,EF =2,故PE ⊥PF .可得33

,22

PH EH ==. 则

为平面ABFD 的法向量.

D

A

B

C E

y

x

O

z

设DP 和平面ABFD 所成角为θ,则

所以DP 和平面ABFD 所成角的正弦值为

3.

【2018新课标2】20. 如图,在三棱锥P ABC -中,

22AB BC ==,4PA PB PC AC ====,O 为AC 的中点.

(1)证明:PO ⊥平面ABC ;

(2)若点M 在棱BC 上,且二面角M PA C --为30?,求PC 和平面PAM 所成角的正弦值. 【分析】

(1)因为4AP CP AC ===,O 为AC 的中点,所以

OP AC ⊥,且23OP =.

连结OB ,因为2

AB BC AC ==,所以ABC △为等腰直角三角形, 且OB AC ⊥,1

22

OB AC =

=. 由222OP OB PB += 知PO OB ⊥.由,OP OB OP AC ⊥⊥知PO ⊥平面ABC .

(2)如图,以O 为坐标原点,的方向为x 轴正方向,建立

空间直角坐标系O xyz -.

由已知得:O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0),P (0,0,23)

取平面PAC 的法向量

.

设(,2,0)(02)M a a a -<≤,则. 设平面PAM 的法向量为(,,)x y z =n . 由

得2230(4)0

y z ax a y ?+=??+-=??,可取(3(4),3,)a a a =--n , 所以

.由已知得

.

所以

222

23|4|3=

223(4)3a a a a --++.解得4a =-(舍去),4

3

a =. 所以83434

(,,)3

=-

-n .又,所以

.

所以PC 和平面PAM 所成角的正弦值为

3

4

. 【2018新课标3】19. 如图,边长为2的正方形ABCD 所在平面和半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.

P

A

O

C

M

(1)证明:平面AMD ⊥平面BMC ;

(2)当三棱锥M ABC -体积最大时,求面MAB 和面MCD 所成二面角的正弦值. 【分析】

(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC 平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM .

因为M 为上异于C ,D 的点,且DC 为直径,所以 DM ⊥CM . 又 BC

CM =C ,所以DM ⊥平面BMC .

而DM 平面AMD ,故平面AMD ⊥平面BMC . (2)以D 为坐标原点,

的方向为x 轴正方向,建立如图所示的空间直角坐标系D ?xyz .

当三棱锥M ?ABC 体积最大时,M 为的中点. 由题设得:

设是平面MAB 的法向量,则

即可取.

是平面MCD 的法向量,因此

所以面MAB 和面MCD 所成二面角的正弦值是

?CD ?CD (0,0,0),(2,0,0),(2,2,0),(0,2,0),(0,1,1)D A B C M (,,)x y z =n 20,

20.x y z y -++=??

=?

(1,0,2)=n 25

高中数学立体几何测试题及答案一)

高中数学必修2立体几何测试题及答案(一)一,选择(共80分,每小题4分) 1,三个平面可将空间分成n个部分,n的取值为() A,4;B,4,6;C,4,6,7 ;D,4,6,7,8。 2,两条不相交的空间直线a、b,必存在平面α,使得() A,a?α、b?α;B,a?α、b∥α;C,a⊥α、b⊥α;D,a?α、b⊥α。 3,若p是两条异面直线a、b外的任意一点,则() A,过点p有且只有一条直线与a、b都平行;B,过点p有且只有一条直线与a、b都垂直;C,过点p有且只有一条直线与a、b都相交;D,过点p有且只有一条直线与a、b都异面。 4,与空间不共面四点距离相等的平面有()个 A,3 ;B,5 ;C,7;D,4。 5,有空间四点共面但不共线,那么这四点中() A,必有三点共线;B,至少有三点共线;C,必有三点不共线;D,不可能有三点共线。 6,过直线外两点,作与该直线平行的平面,这样的平面可有()个 A,0;B,1;C,无数;D,涵盖上三种情况。 7,用一个平面去截一个立方体得到的截面为n边形,则() A,3≤n≤6 ;B,2≤n≤5 ;C,n=4;D,上三种情况都不对。 8,a、b为异面直线,那么() A,必然存在唯一的一个平面同时平行于a、b;B,过直线b 存在唯一的一个平面与a平行;C,必然存在唯一的一个平面同时垂直于a、b;D,过直线b 存在唯一的一个平面与a垂直。 9,a、b为异面直线,p为空间不在a、b上的一点,下列命题正确的个数是() ①过点p总可以作一条直线与a、b都垂直;②过点p总可以作一条直线与a、b都相交;③

过点p 总可以作一条直线与a 、b 都平行;④过点p 总可以作一条直线与一条平行与另一条垂直;⑤过点p 总可以作一个平面与一条平行与另一条垂直。 A ,1; B ,2; C ,3; D ,4。 10,异面直线a 、b 所成的角为80°,p 为空间中的一定点,过点p 作与a 、b 所成角为40° 的直线有( )条 A ,2; B ,3; C ,4; D ,6。 11,P 是△ABC 外的一点,PA 、PB 、PC 两两互相垂直,PA=1、PB=2、PC=3,则△ABC 的 面积为( )平方单位 A ,25; B ,611; C ,27; D ,2 9。 12,空间四个排名两两相交,以其交线的个数为元素构成的集合是( ) A ,{2,3,4}; B ,{1,2,3,}; C ,{1,3,5}; D ,{1,4,6}。 13,空间四边形ABCD 的各边与对角线的长都是1,点P 在AB 上移动 ,点Q 在CD 上移 动,点P 到点Q 的最短距离是( ) A ,21; B ,22; C ,23; D ,4 3。 14,在△ABC 中,AB=AC=5,BC=6,PA ⊥平面ABC ,PA=8,则P 到BC 的距离是( ) A ,45; B ,43; C ,25; D ,23。 15,已知m ,n 是两条直线,α,β是两个平面,下列命题正确的是( ) ①若m 垂直于α内的无数条直线,则m ⊥α;②若m 垂直于梯形的两腰,则m 垂直于梯形所 在的平面;③若n ∥α,m ?α,则n ∥m ;④若α∥β,m ?α,n ⊥β,则n ⊥m 。 A ,①②③; B ,②③④; C ,②④; D ,①③。 16,有一棱长为1的立方体,按任意方向正投影,其投影最大面积为( )

近五年高考数学(理科)立体几何题目汇总

高考真题集锦(立体几何部分) 1.(2016.理1)如图是由圆柱和圆锥组合而成的几何体的三视图,则该几何体的表面积是( ) A 20π B24π C28π D.32π 2. βα,是两个平面,m,n 是两条直线,有下列四个命题: (1)如果m ⊥n,m ⊥α,n ∥β,那么βα⊥; (2)如果m ⊥α,n ∥α,那么m ⊥n. (3)如果αβα?m ,∥那么m ∥β。 (4)如果m ∥n,βα∥,那么m 与α所成的角和n 与β所成的角相等。 其中正确的命题有___________ 3.(2016年理1)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是π328,则它的表面积是 A 17π B.18π C.20π D.28π 4.平面α过正方体1111D C B A ABCD -的顶点A ,α//平面11D CB ,?α平面ABCD =m , ?α平面11A ABB =n,则m,n 所成角的正弦值为( ) A.23 B.22 C.33 D.3 1 5.(2016年理1)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方形,AF=2FD ,∠AFD=90°,且二面角D-AF-E 与二面角C-BE-F 都是60° .(12分) (Ⅰ)证明:平面ABEF ⊥平面EFDC ; (Ⅱ)求二面角E-BC-A 的余弦值.

6. (2015年理1)圆柱被一个平面截取一部分后与半球(半径为r )组成一个几何体,该几何体三视图的正视图和俯视图如图所示,若该几何体的表面积是16+20π,则r=( ) A.1 B.2 C.7 D.8 7.如图,四边形ABCD 为菱形,∠ABC=120°,E,F 是平面ABCD 同一侧的亮点,BE ⊥平面ABCD,DF ⊥平面ABCD,BE=2DF,AE ⊥EC. (1) 证明:平面AEC ⊥平面AFC; (2) 求直线AE 与直线CF 所成角的余弦值。 8.一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截取部分体积和剩余 部分体积的比值为() 9.如图,长方体1111D C B A ABCD -中,AB = 16,BC = 10,AA1 = 8,点E ,F 分别在1111C D B A , 上,411==F D E A ,过点E,F 的平面α与此长方体的面相交,交线围成一个正方形。 (1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 与平面α所成的角的正弦值 10.如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB=5,AC=6,点E,F 分别在AD,CD 上,AE=CF=45 ,EF 交BD 于点H.将△DEF 沿EF 折到△DEF 的位置,OD ’=10 (1)证明:D ’H ⊥平面ABCD (2)求二面角B-D ’A-C 的正弦值

2011—2017高考全国卷文科数学立体几何总结

新课标全国卷 文科数学总结 立 体 几 何 一、选择题 【2017,6】如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是( ) 【2016,7】如图所示,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂 直的半径.若该几何体的体积是 28π 3 ,则它的表面积是( ) A .17π B . 18π C . 20π D . 28π 【2016,11】平面α过正方体1111ABCD A BC D -的顶点 A ,α∥平面11C B D ,α平面ABCD m =, α 平面11ABB A n =,则,m n 所成角的正弦值为( ) A . 2 B .2 C .3 D .13 【2015,6】《九章算术》是我国古代内容极为丰富的数学名著,书 中有如下问 题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各位多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有( ) A .14斛 B .22斛 C .36斛 D .66斛 【2015,11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的 正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r =( ) B A .1 B .2 C .4 D .8 【2015,11】 【2014,8】 【2013,11】 【2012,7】 【2014,8】如图,网格纸的各小格都是正方形,粗实线画出的一个几何体的三视图,则这个几何体是( ) A .三棱锥 B .三棱柱 C .四棱锥 D .四棱柱 【2013,11】某几何体的三视图如图所示,则该几何体的体积为( ). A .16+8π B .8+8π C .16+16π D .8+16π 【2012,7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为 A .6 B .9 C .12 D .15

2020高考数学立体几何练习题23题

2020高考数学之立体几何解答題23題 一.解答题(共23小题) 1.在如图所示的几何体中,四边形ABCD是菱形,ADNM是矩形,平面ADNM⊥平面ABCD,∠DAB=60°,AD=2,AM=1,E为AB的中点. (Ⅰ)求证:AN∥平面MEC; (Ⅱ)在线段AM上是否存在点P,使二面角P﹣EC﹣D的大小为?若存在,求出AP的长h;若不存在,请说明理由. 2.如图,三棱柱中ABC﹣A1B1C1中,点A1在平面ABC内的射影D为棱AC的中点,侧面A1ACC1为边长为2 的菱形,AC⊥CB,BC=1. (Ⅰ)证明:AC1⊥平面A1BC; (Ⅱ)求二面角B﹣A1C﹣B1的大小.

3.如图,已知四棱锥P﹣ABCD,PB⊥AD侧面PAD为边长等于2的正三角形,底面ABCD为菱形,侧面PAD与底面ABCD所成的二面角为120°. (I)求点P到平面ABCD的距离, (II)求面APB与面CPB所成二面角的大小. 4.在正三棱锥P﹣ABC中,底面正△ABC的中心为O,D是PA的中点,PO=AB=2,求PB与平面BDC所成角的正弦值.

5.如图,正三棱锥O﹣ABC的三条侧棱OA、OB、OC两两垂直,且长度均为2.E、F分别是AB、AC的中点,H是EF的中点,过EF作平面与侧棱OA、OB、OC或其延长线分别相交于A1、B1、C1,已知. (1)求证:B1C1⊥平面OAH; (2)求二面角O﹣A1B1﹣C1的大小. 6.如图,在三棱锥A﹣BCD中,侧面ABD、ACD是全等的直角三角形,AD是公共的斜边,且AD=,BD=CD=1,另一个侧面是正三角形. (1)求证:AD⊥BC. (2)求二面角B﹣AC﹣D的大小. (3)在直线AC上是否存在一点E,使ED与面BCD成30°角?若存在,确定E的位置;若不存在,说明理由.

2018届高考数学(理)热点题型:立体几何(含答案解析)

4 42 立体几何 热点一空间点、线、面的位置关系及空间角的计算 空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解. π 【例1】如图,在△ABC中,∠ABC=,O为AB边上一点,且3OB=3OC=2AB,已知PO⊥平面ABC,2DA=2AO=PO,且DA∥PO. (1)求证:平面PBD⊥平面COD; (2)求直线PD与平面BDC所成角的正弦值. (1)证明∵OB=OC,又∵∠ABC= π 4 , ππ ∴∠OCB=,∴∠BOC=. ∴CO⊥AB. 又PO⊥平面ABC, OC?平面ABC,∴PO⊥OC. 又∵PO,AB?平面PAB,PO∩AB=O, ∴CO⊥平面PAB,即CO⊥平面PDB. 又CO?平面COD, ∴平面PDB⊥平面COD. (2)解以OC,OB,OP所在射线分别为x,y,z轴,建立空间直角坐标系,如图所示.

? →·n ? 则 sin θ=? ?|PD||n|? PD BC BD BC BD =? ?= 02+(-1)2+(-1)2× 12+12+32 ? 11 1×0+1×(-1)+3×(-1) 设 OA =1,则 PO =OB =OC =2,DA =1. 则 C(2,0,0),B(0,2,0),P(0,0,2),D(0,-1,1), ∴→=(0,-1,-1),→=(2,-2,0),→=(0,-3,1). 设平面 BDC 的一个法向量为 n =(x ,y ,z), ??n·→=0, ?2x -2y =0, ∴? ∴? ??n·→=0, ?-3y +z =0, 令 y =1,则 x =1,z =3,∴n=(1,1,3). 设 PD 与平面 BDC 所成的角为 θ, ? PD ? → ? ? ? ? 2 22 . 即直线 PD 与平面 BDC 所成角的正弦值为 2 22 11 . 【类题通法】利用向量求空间角的步骤 第一步:建立空间直角坐标系. 第二步:确定点的坐标. 第三步:求向量(直线的方向向量、平面的法向量)坐标. 第四步:计算向量的夹角(或函数值). 第五步:将向量夹角转化为所求的空间角. 第六步:反思回顾.查看关键点、易错点和答题规范. 【对点训练】 如图所示,在多面体 A B D DCBA 中,四边形 AA B B ,ADD A ,ABCD 均为正方 1 1 1 1 1 1 1 形,E 为 B D 的中点,过 A ,D ,E 的平面交 CD 于 F. 1 1 1 1 (1)证明:EF∥B C. 1 (2)求二面角 EA D B 的余弦值. 1 1 (1)证明 由正方形的性质可知 A B ∥AB∥DC,且 A B =AB =DC ,所以四边形 A B CD 为平行 1 1 1 1 1 1

高考数学专题复习立体几何(理科)练习题

A B C D P 《立体几何》专题 练习题 1.如图正方体1111D C B A ABCD -中,E 、F 分别为D 1C 1和B 1C 1的中点, P 、Q 分别为A 1C 1与EF 、AC 与BD 的交点, (1)求证:D 、B 、F 、E 四点共面; (2)若A 1C 与面DBFE 交于点R ,求证:P 、Q 、R 三点共线 2.已知直线a 、b 异面,平面α过a 且平行于b ,平面β过b 且平行于a ,求证:α∥β. 3. 如图所示的多面体是由底面为ABCD 的长方体被截面AEFG 4=AB 1=BC 3=BE ,4=CF ,若如图所示建立空间直角坐标系. ①求EF 和点G 的坐标; ②求异面直线EF 与AD 所成的角; ③求点C 到截面AEFG 的距离. 4. 如图,三棱锥P —ABC 中, PC ⊥平面ABC ,PC=AC=2,AB=BC ,D 是PB 上一点,且CD 平面PAB . (I) 求证:AB ⊥平面PCB ; (II) 求异面直线AP 与BC 所成角的大小; (III )求二面角C-PA-B 的余弦值. 5. 如图,直二面角D —AB —E 中,四边形ABCD 是边长为2的正方形,AE=EB ,F 为CE 上的点,且BF ⊥平面ACE. (1)求证AE ⊥平面BCE ; (2)求二面角B —AC —E 的余弦值. 6. 已知正三棱柱111ABC A B C -的底面边长为2,点M 在侧棱1BB 上. P Q F E D 1C 1B 1A 1D C B A F E C B y Z x G D A

(Ⅰ)若P 为AC 的中点,M 为BB 1的中点,求证BP//平面AMC 1; (Ⅱ)若AM 与平面11AA CC 所成角为30ο,试求BM 的长. 7. 如图,在底面是矩形的四棱锥P —ABCD 中,PA ⊥底面ABCD ,PA =AB =1,BC =2. (1)求证:平面PDC ⊥平面PAD ; (2)若E 是PD 的中点,求异面直线AE 与PC 所成角的余弦值; 8. 已知:在正三棱柱ABC —A 1B 1C 1中,AB = a ,AA 1 = 2a . D 是侧棱BB 1的中点.求证: (Ⅰ)求证:平面ADC 1⊥平面ACC 1A 1; (Ⅱ)求平面ADC 1与平面ABC 所成二面角的余弦值. 9. 已知直四棱柱1111ABCD A B C D -的底面是菱形,且60DAB ∠=,1AD AA =F 为 棱1BB 的中点,M 为线段1AC 的中点. (Ⅰ)求证:直线MF //平面ABCD ; (Ⅱ)求证:直线MF ⊥平面11ACC A ; (Ⅲ)求平面1AFC 与平面ABCD 所成二面角的大小 10. 棱长是1的正方体,P 、Q 分别是棱AB 、CC 1上的内分点,满足 21==QC CQ PB AP . P A B C D E

-2018江苏高考数学立体几何真题汇编

A B C D E F 2008-2018江苏高考数学立体几何真题汇编 (2008年第16题) 在四面体ABCD 中, CB =CD ,AD ⊥BD ,且E 、F 分别是AB 、BD 的中点, 求证:(1)直线EF ∥平面ACD (2)平面EFC ⊥平面BCD 证明:(1) ??? E , F 分别为AB ,BD 的中点?EF ∥AD 且AD ?平面ACD ,EF ?平面ACD ?直线EF ∥平面ACD (2)? ?????CB =CD F 是BD 的中点 ? CF ⊥BD ? ?? AD ⊥BD EF ∥AD ? EF ⊥BD ?直线BD ⊥平面EFC 又BD ?平面BCD , 所以平面EFC ⊥平面BCD

B C? (2009年第16题) 如图,在直三棱柱ABC—A1B1C1中,E,F分别是A1B,A1C的中点,点D在B1C1上,A1D⊥B1C . 求证:(1)EF∥平面ABC (2)平面A1FD⊥平面BB1C1C 证明:(1)由E,F分别是A1B,A1C的中点知EF∥BC, 因为EF?平面ABC,BC?平面ABC,所以EF∥平面ABC (2)由三棱柱ABC—A1B1C1为直三棱柱知CC1⊥平面A1B1C1, 又A1D?平面A1B1C1,故CC1⊥A1D, 又因为A1D⊥B1C,CC1∩B1C=C,CC1、B1C?平面BB1C1C 故A1D⊥平面BB1C1C,又A1D?平面A1FD, 故平面A1FD⊥平面BB1C1C

P A B C D D P A B C F E (2010年第16题) 如图,在四棱锥P —ABCD 中,PD ⊥平面ABCD ,PD =DC =BC =1,AB =2,AB ∥DC , ∠BCD =90°. (1)求证:PC ⊥BC ; (2)求点A 到平面PBC 的距离. 证明:(1)因为PD ⊥平面ABCD , BC ?平面ABCD ,所以PD ⊥BC . 由∠BCD =90°,得CD ⊥BC , 又PD ∩DC =D ,PD 、DC ?平面PCD , 所以BC ⊥平面PCD . 因为PC ?平面PCD ,故PC ⊥BC . 解:(2)(方法一)分别取AB 、PC 的中点E 、F ,连DE 、DF ,则: 易证DE ∥CB ,DE ∥平面PBC ,点D 、E 到平面PBC 的距离相等. 又点A 到平面PBC 的距离等于E 到平面PBC 的距离的2倍. 由(1)知:BC ⊥平面PCD ,所以平面PBC ⊥平面PCD 于PC , 因为PD =DC ,PF =FC ,所以DF ⊥PC ,所以DF ⊥平面PBC 于F . 易知DF = 2 2 ,故点A 到平面PBC 的距离等于2. (方法二)等体积法:连接AC .设点A 到平面PBC 的距离为h . 因为AB ∥DC ,∠BCD =90°,所以∠ABC =90°. 从而AB =2,BC =1,得△ABC 的面积S △ABC =1. 由PD ⊥平面ABCD 及PD =1,得三棱锥P —ABC 的体积V =13S △ABC ×PD = 1 3 . 因为PD ⊥平面ABCD ,DC ?平面ABCD ,所以PD ⊥DC . 又PD =DC =1,所以PC =PD 2+DC 2=2. 由PC ⊥BC ,BC =1,得△PBC 的面积S △PBC = 2 2 . 由V A ——PBC =V P ——ABC ,13S △PBC ×h =V = 1 3 ,得h =2, 故点A 到平面PBC 的距离等于2.

高考数学压轴专题(易错题)备战高考《空间向量与立体几何》经典测试题及答案解析

【高中数学】单元《空间向量与立体几何》知识点归纳 一、选择题 1.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的体积为( ) A . 643 π B .8316π π+ C .28π D .8216π π+ 【答案】B 【解析】 【分析】 结合三视图,还原直观图,得到一个圆锥和一个圆柱,计算体积,即可. 【详解】 结合三视图,还原直观图,得到 故体积22221183242231633V r h r l πππππ=?+?=?+??=+,故选B . 【点睛】 本道题考查了三视图还原直观图,考查了组合体体积计算方法,难度中等. 2.如图,在长方体1111ABCD A B C D -中,13,1AB AD AA ===,而对角线1A B 上存 在一点P ,使得1AP D P +取得最小值,则此最小值为( )

A .7 B .3 C .1+3 D .2 【答案】A 【解析】 【分析】 把面1AA B 绕1A B 旋转至面1BA M 使其与对角面11A BCD 在同一平面上,连接1MD 并求出,就 是最小值. 【详解】 把面1AA B 绕1A B 旋转至面1BA M 使其与对角面11A BCD 在同一平面上,连接1MD .1MD 就是1||||AP D P +的最小值, Q ||||3AB AD ==,1||1AA =,∴0113tan 3,60AA B AA B ∠==∴∠=. 所以11=90+60=150MA D ∠o o o 221111111113 2cos 13223()72 MD A D A M A D A M MA D ∴=+-∠=+-??- ??= 故选A . 【点睛】 本题考查棱柱的结构特征,考查计算能力,空间想象能力,解决此类问题常通过转化,转化为在同一平面内两点之间的距离问题,是中档题. 3.已知圆锥SC 的高是底面半径的3倍,且圆锥SC 的底面直径、体积分别与圆柱OM 的底面半径、体积相等,则圆锥SC 与圆柱OM 的侧面积之比为( ). A 10 B .3:1 C .2:1 D 102 【答案】A

年高考数学试题知识分类大全立体几何

年高考数学试题知识分类大全立体几何 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

2007年高考数学试题汇编 立体几何 一、选择题 1.(全国Ⅰ?理7题)如图,正四棱柱1111D C B A ABCD -中, AB AA 21=,则异面直线11AD B A 与所成角的余弦值为( D ) A .51 B .52 C .53 D .5 4 2.(全国Ⅱ?理7题)已知正三棱柱ABC -A 1B 1C 1的侧棱长与底面边长相等,则AB 1与侧面ACC 1A 1所成角的正弦等于( A ) A . 6 B . 10 C . 2 2 D . 3 3.(北京理3题)平面α∥平面β的一个充分条件是( D ) A .存在一条直线a a ααβ,∥,∥ B .存在一条直线a a a αβ?,,∥ C .存在两条平行直线a b a b a b αββα??,,,,∥,∥ D .存在两条异面直线a b a a b αβα?,,,∥,∥ 4.(安徽理2题)设l ,m ,n 均为直线,其中m ,n 在平面α内,“l α⊥”是l m ⊥且“l n ⊥”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也 不必要条件 5.(安徽理8题)半径为1的球面上的四点D C B A ,,,是正四面体的顶点,则A 与B 两点间的球面距离为( ) A .)33arccos(- B .)36arccos(- C .)31arccos(- D .)4 1arccos(- 6.(福建理8题)已知m ,n 为两条不同的直线,α,β为两个不同的平面,则下列命题中正确的是( D ) A .,,//,////m n m n ααββαβ??? B . //,,//m n m n αβαβ??? C .,//m m n n αα⊥⊥? D . //,m n n m αα⊥?⊥

全国高考理科数学:立体几何

2013年国理科数学试题分类汇编7立体几何 一、选择题 1 .(2013年新课标1(理))如图有一个水平放置的透明无盖的正方体容器容器8cm 将一个 球放在容器口再向容器内注水当球面恰好接触水面时测得水深为6cm 如果不计容器的 厚度则球的体积为 ) A 2 .(2013年普通等学校招生统一试广东省数学(理)卷(纯WORD 版))设,m n 是两条不同的 直线,αβ是两个不同的平面下列命题正确的是( )[] A .若αβ⊥m α?n β?则m n ⊥ B .若//αβm α?n β?则//m n C .若m n ⊥m α?n β?则αβ⊥ D .若m α⊥//m n //n β则αβ⊥ 3 .(2013年上海市春季数学试卷(含答案))若两个球的表面积之比为1:4则这两个球的体积 之比为( ) A .1:2 B .1:4 C .1:8 D .1:16 4 .(2013年普通等学校招生统一试大纲版数学(理)WORD 版含答案(已校对))已知正四棱柱 1111ABCD A B C D -12AA AB =则CD 与平面1BDC 所成角的正弦值等于( ) A 5 .(2013年新课标1(理))某几何体的三视图如图所示则该几何体的体积为

( ) A .168π+ B .88π+ C .1616π+ D .816π+ 6 .(2013年湖北卷(理))一个几何体的三视图如图所示该几何体从上到下由四个简单几何 体组成其体积分别记为1V 2V 3V 4V 上面两个简单几何体均为旋转体下面两个简单几何体均为多面体则有( ) A .1243V V V V <<< B .1324V V V V <<< C .2134V V V V <<< D .2314V V V V <<< 7 .(2013年湖南卷(理))已知棱长为1的正方体的俯视图是一个面积为1的正方形则该正 方体的正视图的面积不可能...等于( ) A .1 B 8 .(2013年普通等学校招生统一试广东省数学(理)卷(纯WORD 版))某四棱台的三视图如 图所示则该四棱台的体积是

(完整版)高三数学立体几何历年高考题(2011年-2017年)

高三数学立体几何高考题 1.(2012年7)如图,网格纸上小正方形的边长为1,粗线画出 的是某几何体的三视图,则此几何体的体积为 (A )6 (B )9 (C )12 (D )18 2.(2012年8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为 (A )6π (B )43π (C )46π (D )63π 3.(2013年11)某几何体的三视图如图所示, 则该几何体的体积为( ). A .16+8π B .8+8π C .16+16π D .8+16π 4.(2013年15)已知H 是球O 的直径AB 上一点,AH ∶HB =1∶2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为______. 5.(2014年8)如图,网格纸的各小格都是正方形,粗实线画出的 事一个几何体的三视图,则这个几何体是( ) A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱 6.(2014年10)正四棱锥的顶点都在同一球面上.若该棱锥的高为4, 底面边长为2,则该球的表面积为( ) A.81π4 B .16π C .9π D.27π4 7.(2015年6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各位多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有( ) (A )14斛 (B )22斛 (C )36斛 (D )66斛 8.(2015年11)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( ) (A )1 (B )2 (C )4 (D )8 9(2016年7)如图,某几何体的三视图是三个半径相等的 圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π 3 , 则它的表面积是 (A )17π (B )18π (C )20π (D )28π 10(2016年11)平面α过正方体ABCD —A 1B 1C 1D 1的顶点A ,11//CB D α平面, ABCD m α=I 平面,11ABB A n α=I 平面,则m ,n 所成角的正弦值为 (A )32 (B )22 (C )33 (D )1 3 11.(2017年6)如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是 12.(2017年16)已知三棱锥S-ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径。若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S-ABC 的体积为9,则球O 的表面积为________。

历年全国理科数学高考试题立体几何部分精选(含答案)

1.在一个几何体的三视图中,正视图和俯视图如 右图所示,则相应的俯视图可以为 2.已知矩形ABCD的顶点都在半径为4的球O的球面上,且6,23 ==,则棱锥 AB BC -的体积为。 O ABCD 3.如图,四棱锥P—ABCD中,底面ABCD为平行四 边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD. (Ⅰ)证明:PA⊥BD; (Ⅱ)若PD=AD,求二面角A-PB-C的余弦值。

2.83 3. 解:(Ⅰ)因为60,2DAB AB AD ∠=?=, 由余弦定理得3BD AD = 从而BD 2+AD 2= AB 2,故BD ⊥AD 又PD ⊥底面ABCD ,可得BD ⊥PD 所以BD ⊥平面PAD. 故 PA ⊥BD (Ⅱ)如图,以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系D-xyz ,则 ()1,0,0A ,()03,0B ,,() 1,3,0C -,()0,0,1P 。 (1,3,0),(0,3,1),(1,0,0)AB PB BC =-=-=- 设平面PAB 的法向量为n=(x ,y ,z ),则0, 0,{ n AB n PB ?=?= 即 3030 x y y z -+=-= 因此可取n=(3,1,3) 设平面PBC 的法向量为m ,则 m 0, m 0, { PB BC ?=?= 可取m=(0,-1,3-) 27 cos ,727 m n = =- 故二面角A-PB-C 的余弦值为 27 7 -

1. 正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为 A 23 B 33 C 2 3 D 63 2. 已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为俩切点,那么PA PB ?的最小值为 (A) 42-+ (B)32-+ (C) 422-+ (D)322-+ 3. 已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 (A) 23 (B)43 (C) 23 (D) 83 4. 如图,四棱锥S-ABCD 中,SD ⊥底面ABCD ,AB ⊥⊥(Ⅰ)证明:SE=2EB ; (Ⅱ)求二面角A-DE-C 的大小 .

2019-2020年高考数学大题专题练习——立体几何

2019-2020年高考数学大题专题练习——立体几何(一) 1.如图所示,四棱锥P ABCD -中,底面ABCD 为正方形,⊥PD 平面ABCD , 2PD AB ==,点,,E F G 分别为,,PC PD BC 的中点. (1)求证:EF PA ⊥; (2)求二面角D FG E --的余弦值. 2.如图所示,该几何体是由一个直角三棱柱ADE BCF -和一个正四棱锥P ABCD -组合而成,AF AD ⊥,2AE AD ==. (1)证明:平面⊥PAD 平面ABFE ; (2)求正四棱锥P ABCD -的高h ,使得二面角C AF P --的余弦值是 22 .

3.四棱锥P ABCD -中,侧面PDC是边长为2的正三角形,且与底面垂直,底面ABCD是 面积为ADC ∠为锐角,M为PB的中点. (Ⅰ)求证:PD∥面ACM. (Ⅱ)求证:PA⊥CD. (Ⅲ)求三棱锥P ABCD -的体积. 4.如图,四棱锥S ABCD -满足SA⊥面ABCD,90 DAB ABC ∠=∠=?.SA AB BC a ===,2 AD a =. (Ⅰ)求证:面SAB⊥面SAD. (Ⅱ)求证:CD⊥面SAC. S B A D M C B A P D

5.在四棱锥P ABCD -中,底面ABCD 为矩形,测棱PD ⊥底面ABCD ,PD DC =,点E 是 BC 的中点,作EF PB ⊥交PB 于F . (Ⅰ)求证:平面PCD ⊥平面PBC . (Ⅱ)求证:PB ⊥平面EFD . 6.在直棱柱111ABC A B C -中,已知AB AC ⊥,设1AB 中点为D ,1A C 中点为E . (Ⅰ)求证:DE ∥平面11BCC B . (Ⅱ)求证:平面11ABB A ⊥平面11ACC A . E D A B C C 1 B 1 A 1 D A B C E F P

2018届高考数学立体几何(理科)专题02-二面角

2018届高考数学立体几何(理科)专题02 二面角 1.如图,在三棱柱111ABC A B C -中, 1,90A A AB ABC =∠=?侧面11A ABB ⊥底面ABC . (1)求证: 1AB ⊥平面1A BC ; (2)若15360AC BC A AB ==∠=?,,,求二面角11B A C C --的余弦值.

2.如图所示的多面体中,下底面平行四边形与上底面平行,且,,,,平面 平面,点为的中点. (1)过点作一个平面与平面平行,并说明理由; (2)求平面与平面所成锐二面角的余弦值.

3.如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形, 2AB AD =, BD =,且PD ⊥底面ABCD . (1)证明:平面PBD ⊥平面PBC ; (2)若Q 为PC 的中点,且1AP BQ ?=u u u v u u u v ,求二面角Q BD C --的大小.

4.如图所示的几何体是由棱台和棱锥拼接而成的组合体,其底面四边形是边长为2的菱形,,平面. (1)求证:; (2)求平面与平面所成锐角二面角的余弦值.

5.在四棱锥P ABCD -中,四边形ABCD 是矩形,平面PAB ⊥平面ABCD ,点E 、F 分别为BC 、AP 中点. (1)求证: //EF 平面PCD ; (2)若0 ,120,AD AP PB APB ==∠=,求平面DEF 与平面PAB 所成锐二面角的余弦值.

6.如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形, ,90AD BC ADC ∠=o P ,平面PAD ⊥底面ABCD , Q 为AD 中点, M 是棱PC 上的点, 1 2,1,2 PA PD BC AD CD === ==(Ⅰ)若点M 是棱PC 的中点,求证: PA P 平面BMQ ; (Ⅱ)求证:平面PQB ⊥平面PAD ; (Ⅲ)若二面角M BQ C --为30o ,设PM tMC =,试确定t 的值.

2021-2022年高考数学专题复习导练测 第八章 立体几何阶段测试(十)理 新人教A版

2021年高考数学专题复习导练测 第八章 立体几何阶段测试(十)理 新人教A 版 一、选择题 1.空间中四点可确定的平面有( ) A .1个 B .3个 C .4个 D .1个或4个或无数个 答案 D 解析 当这四点共线时,可确定无数个平面;当这四点不共线且共面时,可确定一个平面;当这四点不共面时,其中任三点可确定一个平面,此时可确定4个平面. 2.一个长方体被一个平面所截,得到的几何体的三视图,如图所示,则这个几何体的体积为( ) A .8 B .4 C .2 D .1 答案 C 解析 根据该几何体的三视图知,该几何体是一个平放的三棱柱;它的底面三角形的面积为S 底面=1 2×2×1=1,棱柱高为h =2,∴棱柱的体积为S 棱柱=S 底面·h =1×2=2. 3.下列命题中,错误的是( ) A .三角形的两条边平行于一个平面,则第三边也平行于这个平面 B .平面α∥平面β,a ?α,过β内的一点B 有唯一的一条直线b ,使b ∥a C .α∥β,γ∥δ,α、β、γ、δ所成的交线为a 、b 、c 、d ,则a ∥b ∥c ∥d D .一条直线与两个平面成等角,则这两个平面平行

答案D 解析A正确,三角形可以确定一个平面,若三角形两边平行于一个平面,而它所在的平面与这个平面平行,故第三边平行于这个平面;B正确,两平面平行,一面中的线必平行于另一个平面,平面内的一点与这条线可以确定一个平面,这个平面与已知平面交于一条直线,过该点在这个平面内只有这条直线与a平行;C正确,利用同一平面内不相交的两直线一定平行判断即可确定C是正确的;D错误,一条直线与两个平面成等角,这两个平面可能是相交平面,故应选D. 4.在空间四边形ABCD中,平面ABD⊥平面BCD,且DA⊥平面ABC,则△ABC的形状是( ) A.锐角三角形B.直角三角形 C.钝角三角形D.不能确定 答案B 解析作AE⊥BD,交BD于E, ∵平面ABD⊥平面BCD, ∴AE⊥平面BCD,BC?平面BCD,∴AE⊥BC, 而DA⊥平面ABC,BC?平面ABC,∴DA⊥BC, 又∵AE∩AD=A,∴BC⊥平面ABD, 而AB?平面ABD,∴BC⊥AB, 即△ABC为直角三角形.故选B. 5.在三棱锥P-ABC中,PA⊥平面ABC,AC⊥BC,D为侧棱PC上的一点,它的正视图和侧视图如图所示,则下列命题正确的是( )

立体几何-2019年高考理科数学解读考纲

05 立体几何 (三)立体几何初步 1.空间几何体 (1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构. (2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二侧法画出它们的直观图. (3)会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式. (4)会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求). (5)了解球、棱柱、棱锥、台的表面积和体积的计算公式. 2.点、直线、平面之间的位置关系 (1)理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理. ? 公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内. 公理2:过不在同一条直线上的三点,有且只有一个平面. 格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为 A.90πB.63π C.42πD.36π 【答案】B 【名师点睛】在由三视图还原为空间几何体的实际形状时,要从三个视图综合考虑,根据三视图的规

则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线.在还原空间几何体实际形状时,一般是以正视图和俯视图为主,结合侧视图进行综合考虑.求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解. 考向二 球的组合体 样题4 (2017新课标全国Ⅲ理科)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .π B . 3π4 C . π2 D . π4 【答案】B 【解析】绘制圆柱的轴截面如图所示: 由题意可得:, 结合勾股定理,底面半径, 由圆柱的体积公式,可得圆柱的体积是,故选B. 【名师点睛】(1)求解空间几何体体积的关键是确定几何体的元素以及线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解. 样题5 (2017江苏)如图,在圆柱12O O 内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱12 O O 的体积为1V ,球O 的体积为2V ,则 1 2 V V 的值是 .

2019届高考理科数学专题 高考中的立体几何问题

2019届高考理科数学专题 高考中的立体几何问题 一、选择题(每小题5分,共30分) 1.一个多面体的三视图如图4-1所示,则此多面体的表面积是() 图4-1 A.22 B.24- C.22+ D.20+ 2.如图4-2,网格纸上小正方形的边长为1,粗线画的是某组合体的三视图,则该组合体的体积 是() 图4-2 A.+π B.+π C.4+π D.+π 3.已知正方体ABCD-A1B1C1D1的所有顶点均在球O的表面上,E,F,G分别为AB,AD,AA1的中点,若平面EFG截球O所得圆的半径为,则该正方体的棱长为() A. B. C.3 D.2 4. [数学文化题]如图4-3为中国传统智力玩具鲁班锁,它起源于中国古代建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分啮合,外观看是严丝合缝的十字立方体,其上下、左右、前后完全对称,六根完全相同的正四棱柱分成三组,经90°榫卯起来.现有一鲁班锁的正四棱柱 的底面正方形的边长为2,欲将其放入球形容器内(容器壁的厚度忽略不计),若球形容器的表 面积的最小值为56π,则正四棱柱的高为()

A. B.2 C.6 D.2 5. [数学文化题]中国古代计时器的发明时间不晚于战国时代(公元前476年~前222年),其中沙漏就是古代利用机械原理设计的一种计时装置,它由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时细沙全部在上部容器中,细沙通过连接管道流到下部容器.如图4-4所示,某沙漏由上、下两个圆锥形容器组成,圆锥形容器的底面圆的直径和高均为8 cm,细沙全部在上部时,其高度为圆锥形容器高度的(细管长度忽略不计).若细沙全部漏入下部后,恰好堆成一个盖住沙漏底部的圆锥形沙堆,则此圆锥形沙堆的高为() 图4-4 A.2 cm B.cm C.cm D.cm 6.如图4-5,在正三棱柱ABC-A1B1C1中,AA1=AB,E,F分别为BC,BB1的中点,M,N分别为 AA1,A1C1的中点,则直线MN与EF所成角的余弦值为() 图4-5 A. B. C. D. 二、填空题(每小题5分,共10分) 7.若侧面积为8π的圆柱有一外接球O,则当球O的体积取得最小值时,圆柱的表面积 为. 8.如图4-6,在棱长为1的正方体ABCD-A1B1C1D1中,作以A为顶点,分别以AB,AD,AA1为轴,底面圆半径为r(0

相关文档
最新文档