2020年北京延庆初三一模数学试题及答案(WORD版)
初中数学北京市延庆区中考模拟数学一模考试题考试卷及答案

xx学校xx学年xx 学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx 分)试题1:的绝对值是A. B. C. D.试题2:在第六次全国人口普查,截至2010年11月1日零时,延庆县常住人口为317000人,将317000用科学记数法表示应为A.3.17×105 B.31.7×104 C.3.17×104 D.0.317×106试题3:一个不透明的盒子中装有2个白球,5个红球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的概率为A.B. C. D.试题4:如图,直线a∥b,EF⊥CD于点F,∠2=65°,则∠1的度数是A.15° B.25°C.45° D.65°试题5:下列图形中,是中心对称图形但不是轴对称图形的是A.等边三角形 B.菱形C. 平行四边形 D.矩形试题6:小明用自制的直角三角形纸板DEF测量树AB的高度.测量时,使直角边DE保持水平状态,其延长线交AB于点G;使斜边DF与点A在同一条直线上.测得边DE离地面的高度GB为1.4m,点D到AB的距离DG为6m(如图所示).已知DE=30cm,EF=20cm,那么树AB的高度等于A.4 m B.5.4 m C.9 m D.10.4 m试题7:某中学足球队9名队员的年龄情况如下:年龄(单位:岁)14 15 16 17人数 1 4 2 2则该队队员年龄的众数和中位数分别是A.15,15 B.15,16 C.15,17 D.16,15试题8:如图,在△ABC中,AB=5cm,BC=12cm,动点D、E同时从点B出发,点D由B到A以1cm/s的速度向终点A作匀速运动,点E沿BC-CA以2.4cm/s的速度向终点A作匀速运动,那么△BDE的面积S与点E运动的时间t 之间的函数图象大致是A.B. C. D.试题9:分解因式:= __________ .试题10:若分式的值为0,则x的值等于.试题11:某一次函数的图象经过点(1,-2),且函数y的值随自变量x的增大而减小,请写出一个满足上述条件的函数关系式:.试题12:如图,正三角形ABC、正四边形ABCM、正五边形ABCMN中,点E在CB的延长线上,点D在另一边反向延长线上,且BE=CD,DB延长线交AE于点F.图1中∠AFB的度数为,图2中∠AFB度数为,若将条件“正三角形、正四边形、正五边形”改为“正n边形”,其它条件不变,则∠AFB度数为.(用含n的代数式表示)图1 图2 图3试题13:如图,点C、E、B、F在同一直线上,AC∥DF,AC=DF,BC=EF;求证:∠D=∠A试题14:计算:.试题15:解不等式组:试题16:已知,求代数式的值.试题17:在平面直角坐标系xOy中,一次函数的图象与反比例函数的图象的一个交点为A(1,).(1)求反比例函数的解析式;(2)若P是坐标轴上一点(P不与O重合),且满足,直接写出点P的坐标.试题18:为了响应市政府“绿色出行”的号召,小张上下班由自驾车方式改为骑自行车方式.已知小张单位与他家相距20千米,上下班高峰时段,自驾车的平均速度是自行平均车速度的2倍,骑自行车所用时间比自驾车所用时间多小时.求自驾车平均速度和自行车平均速度各是多少.试题19:如图,在△ABC中,D、E分别是AB、AC的中点,延长DE到点F,使EF=DE,连接CF.(1)求证: 四边形BCFD是平行四边形;(2)若BD=4,BC=6,∠F=60°,求CE的长.试题20:以下是根据2013年某旅游县接待游客的相关数据绘制的统计图的一部分,请根据图1,图2回答下列问题:(1)该旅游县5~8月接待游客人数一共是280万人,请将图1中的统计图补充完整;(2)该旅游县6月份4A级景点接待游客人数约为多少人?(3)小明观察图2后认为,4A级景点7月份接待游客人数比8月多了,你同意他的看某旅游县5~8月4A级景点接待游客人数占该县当月游客人数百分比的统计图某旅游县5~8月各月接待游客人数统计图法吗?说明你的理由.试题21:已知:如图,在△ABC中,AB=AC,点D是边BC的中点.以CD为直径作⊙O,交边AC于点P,连接BP,交AD于点E.(1)求证:AD是⊙O的切线;(2)如果PB是⊙O的切线,BC=4,求PE 的长.试题22:阅读下面资料:小明遇到这样一个问题:如图1,对面积为a的△ABC逐次进行以下操作:分别延长AB、BC、CA至A1、B1、C1,使得A1B=AB,B1C=BC,C1A=CA,顺次连接A1、B1、C1,得到△A1B1C1,记其面积为S1,求S1的值.小明是这样思考和解决这个问题的:如图2,连接A1C、B1A、C1B,因为A1B=AB,B1C=BC,C1A=CA,根据等高两三角形的面积比等于底之比,图1 图2所以,由此继续推理,从而解决了这个问题.(1)请直接写出S1= ;(用含字母a的式子表示).请参考小明同学思考问题的方法,解决下列问题:(2)如图3,对面积为a的△ABC逐次进行以下操作:分别延长AB、BC、CA至A1、B1、C1,使得A1B=2AB,B1C=2BC,C1A=2CA,顺次连接A1、B1、C1,得到△A1B1C1,记其面积为S2,求S2的值.(3)如图4,P为△ABC内一点,连接AP、BP、CP并延长分别交边BC、AC、AB于点D、E、F,则把△ABC分成六个小三角形,其中四个小三角形面积已在图上标明,设△APE的面积为y,△BPF的面积为x,①求△APE ,△BPF,△APF 面积之间的关系;②求△ABC的面积.图3 图4试题23:已知:抛物线与x轴相交于A、B两点,与y轴相交于点C,其中点C的坐标是(0,3),顶点为点D,联结CD,抛物线的对称轴与x轴交于点E.(1)求m的值;(2)求∠CDE的度数;(3)在抛物线对称轴的右侧部分上是否存在一点P,使得△PDC是等腰三角形?如果存在,求出符合条件的点P的坐标;如果不存在,请说明理由.试题24:如图,正方形ABCD的边长是2,M是AD的中点.点E从点A出发,沿AB运动到点B停止.连接EM并延长交射线CD于点F,过M作EF的垂线交射线BC于点G,连接EG、FG.(1)设AE=x时,△EGF的面积为y.求y关于x的函数关系式,并写出自变量x的取值范围;(2)P是MG的中点,求点P运动路线的长.试题25:已知:在平面直角坐标系xOy中,给出如下定义:线段AB及点P,任取AB上一点Q,线段PQ长度的最小值称为点P到线段AB的距离,记作d(P→AB).(1)如图1,已知C点的坐标为(1,0),D点的坐标为(3,0),求点P(2,1)到线段CD的距离d(P→CD)为;(2)已知:线段EF:y=x(0≤x≤3),点G到线段EF的距离d(P→EF)为,且点G的横坐标为1,在图2中画出图,试求点G的纵坐标.图1 图2试题1答案:B试题2答案:A试题3答案:D试题4答案:B试题5答案:C试题6答案:B试题7答案:A试题8答案:D试题9答案:试题10答案:3试题11答案:略试题12答案:60,90,试题13答案:证明:∵AC∥DF∴∠C=∠F在△DEF和△ACB中∴∴∠D=∠A 试题14答案:解:=①②试题15答案:解:由①得:x>-6由①得:∴试题16答案:==∵∴原式=2试题17答案:⑴∵点A(1,n)在一次函数的图象上,∴n=3.∴点A的坐标为(1,3).∵点的反比例函数的图象上,∴k=3.∴反比例函数的解析式为.⑵点P的坐标为(2,0)或(0,6).试题18答案:解:自行车平均速度为x km/h,自驾车平均速度为2x km/h由题意得:解方程得:60-30=2x∴x=15,经检验:x=15是所列方程的解,且符合实际意义,∴2x=30答:自行车速度为15km/h,汽车的速度为30km/h.试题19答案:证明:(1)∵D、E分别是AB、AC的中点∴∵EF=DE∴∴∴四边形BCFD是平行四边形(2)过点C作CM⊥DF于M,∵平行四边形BCFD∴CF=BD=4 DF=BC=6∴EF=DE=3∵∠F=60°∴∠MC F=30°∴Rt△CMF中,Rt△NMF中,试题20答案:(1)图略(2)(万人)(3)(万人)(万人)所以小明说的不对试题21答案:证明:(1)∵AB=AC,点D是边BC的中点∴∠ADC=∠ADB=90°∴AD是⊙O的切线(2)∵AD是⊙O的切线PB是⊙O的切线∴PE=DE连接OP∴∠BPO=90°∴∠BPO=∠ADB =90°∴∽△BPO∴∵BC=4∴CD=BD=2∴OP=1,OB=3∴∴试题22答案:(1)S1=7a;(2)∵A1B=2AB,B1C=2BC,C1A=2CA根据等高两三角形的面积比等于底之比,∴S△A1BC=S△B1CA=S△C1AB=2S△ABC=2a∴S1=19a;(3)①过点C作CG⊥BE于点G,∵S△BPC=BP•CG=70;S△PCE=PE•CG=35,∴∴即:BP=2EP同理,∴S△APB=2S△APF.=x,S△APE=y,∴x+84=2y.②∵,又∵x+84=2y∴∵S△BPF∴S△ABC=315.试题23答案:(1)∵抛物线过点C(0,3)∴1-m=3∴m=-2(2)由(1)可知该抛物线的解析式为y=-x2+2x+3=-(x-1)2+4∴此抛物线的对称轴x=1抛物线的顶点D(1,4)过点C作CF⊥DE,则CF∥OE∴F(1,3)所以CF=1,DF=4-3=1∴CF=DF又∵CF⊥DE∴∠DFC=90°∴∠CDE=45°(3)存在.①延长CF交抛物线于点P1,则CP1∥x轴,所以P1正好是C点关于DE的对称点时,有DC=DP1,得出P1点坐标(2,3);由y=-x2+2x+3得,D点坐标为(1,4),对称轴为x=1.②若以CD为底边,则PD=PC,设P点坐标为(x,y),根据两点间距离公式,得x2+(3-y)2=(x-1)2+(4-y)2,即y=4-x.又P点(x,y)在抛物线上,∴4-x=-x2+2x+3,即x2-3x+1=0,解得:<1,应舍去;∴∴y=4-x=则P2点坐标()∴符合条件的点P坐标为()和(2,3).试题24答案:解:(1)当点E与点A重合时,x=0,y=2-----------2分当点E与点A不重合时,0<x≤2在正方形ABCD中,∠A=∠ADC=90°∴∠MDF=90°,∴∠A=∠MDF在△AME和△DMF中∴△AME≌△DMF(ASA)∴ME=MF在Rt△AME中,AE=x,AM=1,ME=∴EF=2ME=2过M作MN⊥BC,垂足为N(如图)则∠MNG=90°,∠AMN=90°,MN=AB=AD=2AM ∴∠AME+∠EMN=90°∵∠EMG=90°∴∠GMN+∠EMN=90°∴∠AME=∠GMN∴Rt△AME∽Rt△NMG∴即∴MG=2ME=∴∴(2)如图,PP′即为P点运动的距离;在Rt△BMG′中,MG⊥BG′;∴∠MBG=∠G′MG=90°-∠BMG;∴tan∠MBG=∴tan∠GMG′=tan∠MBG=∴GG′=2MG=4;△MGG′中,P、P′分别是MG、MG′的中点,∴PP′是△MGG′的中位线;∴PP′=即:点P运动路线的长为2.试题25答案:(1) d(P→CD)为 1(2)在坐标平面内作出线段DE:y=x(0≤x≤3).∵点G的横坐标为1,∴点G在直线x=1上,设直线x=1交x轴于点H,交DE于点K,①如图2所示,过点G1作G1F⊥DE于点F,则G1F就是点G1到线段DE的距离,∵线段DE:y=x(0≤x≤3),∴△G1FK,△DHK均为等腰直角三角形,∵G1F=∴KF=由勾股定理得G1K=2,又∵KH=OH=1,∴H G1=3,即G1的纵坐标为3;②如图2所示,过点O作G2O⊥OE交直线x=1于点G2,由题意知△OHG2为等腰直角三角形,∵OH=1,∴G2O=∴点G2同样是满足条件的点,∴点G2的纵坐标为-1,综上,点G的纵坐标为3或-1.。
北京市延庆县中考数一模试卷 人教版

1E DCBAEDCB A 北京市延庆县中考数一模试卷一、选择题(本题共30分,每小题3分)1.清明小长假延庆县的旅游收入约为1900万,将1900用科记数法表示应为( ) A .21910⨯ B .31.910⨯ C .41.910⨯ D .40.1910⨯ 2. 23的倒数是( ) A .23- B .23 C .32- D . 323. 在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5, 从中随机摸出一个小球,其标号是奇数的概率为( ) A.51 B. 52 C. 53 D. 54 4.如图,△ABC 中,∠A =90°,点D 在AC 边上,DE ∥BC , 若∠1=35°,则∠B 的数为( ) A . 25° B. 35° C. 55° D. 65°5.关于x 的方程0222=++m x x 有两个相等的实数根,那么m 的值为( ) A .2± B .1± C .1 D . 26.在下列交通标志中,既是轴对称图形,又是中心对称图形的是( )7.若把代数式223x x -+化为()2x m k -+的形式,其中m ,k 为常数,结果为( )A .2(1)4x ++B .2(1)2x -+C .2(1)4x -+D . 2(1)2x ++ 8.如图,在△ABC 中,点D E 、分别在AB AC 、边上,DE BC ∥,若AD =1,BD =2,则DEBC 的值为( )A .12 B .13 C .14 D .199完成引体向上的个数 10 9 8 7 人 数1135这 A .7和7.5 B .7和8 C .7.5和9 D .8和9CABED O10.如图,△ABC 中,∠ACB =90°,∠A =30°,AB =16.点P 是斜边AB 上一点.过点P 作PQ ⊥AB ,垂足为P ,交边AC (或边CB )于点Q ,设AP =x ,△APQ 的面积为y ,则y 与x 之间的函数图象大致是( )二、填空题(本题共18分,每小题3分) 11.分解因式:24x y y -= . 12.若分式1x x-的值为0,则x 的值等于_________ . 13.如图,⊙O 的直径CD 垂直弦AB 于点E ,且CE =2,DE =8,则AB 的长为 .14.请写出一个开口向上,并且与y 轴交于点(0,2)的抛物线的表达式__________ .15. 习勾股定理相关内容后,张老师请同们交流这样的一个问题:“已知直角三角形的两条边长分别为3,4,请你求出第三边.”张华同通过计算得到第三边是5,你认为张华的答案是否正确:________,你的理由是 _______________________________________.16. 将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图161.在图162中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图161所示的状态,那么按上述规则连续完成3次变换后,骰子朝上一面的点数是________;连续完成次变换后,骰子朝上一面的点数是________.三、解答题(本题共30分,每小题5分)17.如图,△ABC 中,∠ACB =90°,延长AC 到D ,使得CD=CB ,过点D 作DE ⊥AB 于点E ,交BC 于F .求证:AB =DF .FED C BA图161 图162向右翻滚90° 逆时针旋转90°18.计算:011(3)4cos 45()2π---︒++-.19.解不等式组: 32,12.3x x x x >-⎧⎪+⎨>⎪⎩20.已知2410x x +-=,求代数式22(2)(2)(2)x x x x +-+-+的值.21.如图,一次函数1y x =+的图象与反比例函数ky x=(k 为常数,且0k ≠)的图象都经过点A (m ,2).(1)求点A 的坐标及反比例函数的表达式;(2) 设一次函数1y x =+的图象与x 轴交于点B ,若点P 是x 轴上一点,且满足△ABP 的面积是2,直接写出点P 的坐标.22.列方程或方程组解应用题:八级的生去距校10千米的科技馆参观,一部分生骑自行车先走,过了20分钟,其余的生乘汽车出发,结果他们同时到达,已知汽车的速是骑自行车生速的2倍,求骑车生每小时走多少千米?四、 解答题(本题共20分,每小题5分)23. 如图,点O 是△ABC 内一点,连结OB 、OC ,并将AB 、OB 、OC 、AC 的中点D 、E 、F 、G 依次连结,得到四边形DEFG .(1)求证:四边形DEFG 是平行四边形;(2)如果∠OBC =45°,∠OCB =30°,OC =4,求EF 的长.G FOBCDE A24. 某区对市民开展了有关雾霾的调查问卷,调查内容是“你认为哪种措施治理雾霾最有效”,有以下四个选项:A .使用清洁能源B .汽车限行C .绿化造林D .拆除燃煤小锅炉调查过程随机抽取了部分市民进行调查,并将调查结果绘制了两幅不完整的统计图,请回答下列问题:(1)这次被调查的市民共有 人. (2)请你将统计图1补充完整.(3)已知该区人口为00人,请根据调查结果估计该市认同汽车限行的人数.25. 如图,AB 是⊙O 的直径,点C 在⊙O 上,过点C 作⊙O 的切线CM . (1)求证:∠ACM =∠ABC ;(2)延长BC 到D ,使CD = BC ,连接AD 与CM 交于点E ,若⊙O 的半径为2,ED =1,求AC 的长.ODCA BM E26. 阅读下面资料: 问题情境:(1)如图1,等边△ABC ,∠CAB 和∠CBA 的平分线交于点O ,将顶角为120°的等腰三角形纸片(纸片足够大)的顶点与点O 重合,已知OA =2,则图中重叠部分△OAB 的面积是 . 探究:(2)在(1)的条件下,将纸片绕O 点旋转至如图2所示位置,纸片两边分别与AB ,AC 交于点E ,F ,求图2中重叠部分的面积.(3)如图3,若∠ABC =α(0°<α<90°),点O 在∠ABC 的角平分线上,且BO =2,以O 为顶点的等腰三角形纸片(纸片足够大)与∠ABC 的两边AB ,AC 分别交于点E 、F ,∠EOF =180°﹣α,直接写出重叠部分的面积.(用含α的式子表示)五、解答题(本题共22分,第27题7分、28题各7分,29题8分) 27. 二次函数2y x mx n =-++的图象经过点A (﹣1,4),B (1,0),12y x b =-+经过点B ,且与二次函数2y x mx n =-++交于点D .过点D 作DC ⊥x 轴,垂足为点C .(1)求二次函数的表达式;(2)点N 是二次函数图象上一点(点N 在BD 上方),过N 作NP ⊥x 轴,垂足为点P ,交BD 于点M ,求MN 的最大值.28. 已知,点P是△ABC边AB上一动点(不与A,B重合)分别过点A,B向直线CP作垂线,垂足分别为E,F,Q为边AB的中点.(1)如图1,当点P与点Q重合时,AE与BF的位置关系是,QE与QF的数量关系是;(2)如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明;(3)如图3,当点P在线段BA的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明.29. 对于平面直角坐标系xOy 中的点P 和线段AB ,给出如下定义:在线段AB 外有一点P ,如果在线段AB 上存在两点C 、D ,使得∠CPD =90°,那么就把点P 叫做线段AB 的悬垂点.(1)已知点A (2,0),O (0,0)①若1(1,)2C ,D (1,1),E (1,2),在点C ,D ,E 中,线段AO 的悬垂点是______; ②如果点P (m ,n )在直线1y x =-上,且是线段AO 的悬垂点,求m 的取值范围; (2)如下图是帽形M (半圆与一条直径组成,点M 是半圆的圆心),且圆M 的半径是1,若帽形内部的所有点是某一条线段的悬垂点,求此线段长的取值范围.延庆县毕业考试答案初三数题号 1 2 3 4 5 6 7 8 9 104分 4分 5分① ② 5分4分 2分5分5分 4分 2分1分011(3)4cos 45()2123π---︒++-=-+=3分 1分三、解答题(本题共30分,每小题5分) 17. 证明:证明:∵ DE ⊥AB ∴∠DEA=90° ∵∠ACB =90° ∴∠DEA=∠ACB ∴∠D=∠B在△DCF 和△ACB 中DCB ACB DC BC B D ∠=∠⎧⎪=⎨⎪∠=∠⎩∴DCF ACB ∆≅∆∴AB =DF18.解:19. 32,12.3x x x x >-⎧⎪+⎨>⎪⎩解:由①得:x>1 由①得:15x < ∴115x -<<22222220.(2)(2)(2)44448x x x x x x x x x x +-+-+=++-++=++ ∵2410x x +-=∴241x x +=∴原式=921. ⑴ ∵点A (m ,2)在一次函数1y x =+的图象上,5分3分 5分 4分4分 5分 3分2分4分2分60MA FG E BCD∴m=1.∴点A 的坐标为(1,2).∵点A 的反比例函数xky =的图象上,∴k=2.∴反比例函数的解析式为2y x=. ⑵ 点P 的坐标为(1,0)或(3,0).24.(1)200 (2)5分 1分 2分3分 5分O D C A BME(3)8020020000080000÷⨯=25.证明:(1)证明:连接OC . ∵ AB 为⊙O 的直径, ∴ ∠ACB = 90°.∴ ∠ABC +∠BAC = 90°. ∵ CM 是⊙O 的切线, ∴ OC ⊥CM .∴ ∠ACM +∠ACO = 90°. ·································································· 1分[来∵ CO = AO ,∴ ∠BAC =∠ACO . ∴ ∠ACM =∠ABC . ··············································································· 2分 (2)解:∵ BC = CD ,OB=OA ,∴ OC ∥AD. 又∵ OC ⊥CE ,∴CE ⊥AD . 3分[∵ ∠ACD =∠ACB = 90°,∴ ∠AEC =∠ACD . ∴ ΔADC ∽ΔACE .∴AD ACAC AE=. ····················································································· 4分[ 而⊙O 的半径为2, ∴ AD = 4. ∴43AC AC =. ∴ AC = 2 3 . ······················································································ 5分[ 26.(1) 3(2) 连接AO 、BO ,如图②,由题意可得:∠EOF =∠AOB ,则∠EOA =∠FOB . 在△EOA 和△FOB 中,EAO FBO OA OBEOA FOB ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△EOA ≌△FOB . ∴S 四边形AEOF =S △OAB .过点O 作ON ⊥AB ,垂足为N ,如图, ∵△ABC 为等边三角形, ∴∠CAB =∠CBA =60°.∵∠CAB 和∠CBA 的平分线交于点O ∴∠OAB =∠OBA =30°. ∴OB=OA =2. ∵ON ⊥AB ,∴AN=NB ,ON =1.∴AN =N FEOCBA4分 5分D P ABCE FQPFEQD CBA ∴AB=2AN =2. ∴S △OAB =AB •ON =. S 四边形AEOF = (3) S 面积=4sincos.27. 解:(1)∵二次函数2y x mx n =-++的图象经过点A (﹣1,4),B (1,0) ∴4101m nm n=--+⎧⎨=-++⎩∴m=2,n=3∴二次函数的表达式为223y x x =--+ (2)12y x b =-+经过点B ∴12b = 画出图形()211(,),2322M m m m m m -+--+设,则N ∴21123()22MN m m m =--+--+设 ∴23522MN m m =--+∴2349()416MN m =-++ ∴MN 的最大值为491628.解:(1)AE ∥BF ,QE=QF , (2)QE=QF ,证明:如图2,延长EQ 交BF 于D , ∵AE ∥BF ,∴∠AEQ=∠BDQ , 在△BDQ 和△AEQ 中AEQ BDQ AQE BQD AQ BQ ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BDQ ≌△AEQ (ASA ), ∴QE=QD , ∵BF ⊥CP ,∴FQ 是Rt △DEF 斜边上的中线, ∴QE=QF=QD , 即QE=QF . (3)(2)中的结论仍然成立, 证明:如图3,延长EQ 、FB 交于D , ∵AE ∥BF ,7分 2分 6分 5分3分 4分2分3分5分4分∴∠AEQ =∠D ,在△AQE 和△BQD 中AEQ BDQ AQE BQD AQ BQ ∠=∠⎧⎪∠=∠⎨⎪=⎩, 图3 ∴△AQE ≌△BQD (AAS ), ∴QE=QD ,∵BF ⊥CP ,∴FQ 是Rt △DEF 斜边DE 上的中线, ∴QE=QF . 说明:第三问画出图形给1分 29.(1)线段AO 的悬垂点是C ,D ;(2)以点D 为圆心,以1为半径做圆,设1y x =-与⊙D 交于点B ,C与x 轴,y 轴的交点坐标为(1,0),(0,1) ∴∠ODB=45° ∴DE=BE在Rt △DBE 中,由勾股定理得:DE=22∴2211122m m -≤≤+≠且 (3)设这条线段的长为a①当2a <时,如图1,凡是⊙D 外的点不满足条件; ②当2a =时,如图2,所有的点均满足条件; ③当2a >时,如图3,所有的点均满足条件; 综上所述:2a ≥以上答案仅供参考。
北京市延庆县2019-2020学年中考数学第一次调研试卷含解析

北京市延庆县2019-2020学年中考数学第一次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=1.那么在计算6×7时,左、右手伸出的手指数应该分别为()A.1,2 B.1,3C.4,2 D.4,32.估计8-1的值在()A.0到1之间B.1到2之间C.2到3之间D.3至4之间3.左下图是一些完全相同的小正方体搭成的几何体的三视图.这个几何体只能是()A.B.C.D.4.如图,长度为10m的木条,从两边各截取长度为xm的木条,若得到的三根木条能组成三角形,则x 可以取的值为()A.2m B.52m C.3m D.6m5.不等式组1351xx-<⎧⎨-≤⎩的解集是()A.x>﹣1 B.x≤2C.﹣1<x<2 D.﹣1<x≤26.如图,在⊙O中,O为圆心,点A,B,C在圆上,若OA=AB,则∠ACB=()A.15°B.30°C.45°D.60°7.如图,在矩形ABCD中,2,AD=2,以点A为圆心,AD的长为半径的圆交BC边于点E,则图中阴影部分的面积为()A .2213π--B .2212π--C .2222π--D .2214π--8.如图,在Rt ABC ∆中,90ACB ∠=︒,3tan 3CAB ∠=,3AB =,点D 在以斜边AB 为直径的半圆上,点M 是CD 的三等分点,当点D 沿着半圆,从点A 运动到点B 时,点M 运动的路径长为( )A .π或2π B .2π或3π C .3π或π D .4π或3π 9.如图,已知函数3y x =-与k y x =的图象在第二象限交于点()1,A m y ,点()21,B m y -在ky x=的图象上,且点B 在以O 点为圆心,OA 为半径的O e 上,则k 的值为( )A .34-B .1-C .32-D .2-10.将某不等式组的解集13x ≤<-表示在数轴上,下列表示正确的是( ) A . B . C .D .11.下列实数中,结果最大的是( ) A .|﹣3|B .﹣(﹣π)C 7D .312.小明在九年级进行的六次数学测验成绩如下(单位:分):76、82、91、85、84、85,则这次数学测验成绩的众数和中位数分别为( )A .91,88B .85,88C .85,85D .85,84.5二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.分式方程34xx +=1的解为_________. 14.若n 边形的内角和是它的外角和的2倍,则n= .15.如图所示,一个宽为2cm 的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm ),那么该光盘的半径是____cm.16.2018年5月13日,中国首艘国产航空母舰首次执行海上试航任务,其排水量超过6万吨,将数60000用科学记数法表示应为_______________.17.分解因式:mx 2﹣4m =_____. 18.分解因式:4ax 2-ay 2=________________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)数学兴趣小组为了解我校初三年级1800名学生的身体健康情况,从初三随机抽取了若干名学生,将他们按体重(均为整数,单位:kg )分成五组(A :39.5~46.5;B :46.5~53.5;C :53.5~60.5;D :60.5~67.5;E :67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.补全条形统计图,并估计我校初三年级体重介于47kg 至53kg 的学生大约有多少名. 20.(6分)如图,在平面直角坐标系中,抛物线212y x bx c =-++与x 轴交于点A 、B ,与y 轴交于点C ,直线y=x+4经过点A 、C ,点P 为抛物线上位于直线AC 上方的一个动点. (1)求抛物线的表达式;(2)如图,当CP//AO 时,求∠PAC 的正切值;(3)当以AP 、AO 为邻边的平行四边形第四个顶点恰好也在抛物线上时,求出此时点P 的坐标. 21.(6分)如图,方格纸中每个小正方形的边长都是1个单位长度,ABC ∆在平面直角坐标系中的位置如图所示.(1)直接写出ABC ∆关于原点O 的中心对称图形111A B C ∆各顶点坐标:1A ________1B ________1C ________;(2)将ABC ∆绕B 点逆时针旋转90︒,画出旋转后图形22A BC ∆.求ABC ∆在旋转过程中所扫过的图形的面积和点C 经过的路径长.22.(8分)如图,在平面直角坐标系中,一次函数y =﹣x+3的图象与反比例函数y =(x >0,k 是常数)的图象交于A (a ,2),B (4,b )两点.求反比例函数的表达式;点C 是第一象限内一点,连接AC ,BC ,使AC ∥x 轴,BC ∥y 轴,连接OA ,OB .若点P 在y 轴上,且△OPA 的面积与四边形OACB 的面积相等,求点P 的坐标.23.(8分)已知一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球. (1)求从中随机抽取出一个黑球的概率是多少?(2)若往口袋中再放入x 个白球和y 个黑球,从口袋中随机取出一个白球的概率是,求y 与x 之间的函数关系式.24.(10分)计算:2cos30°+27-33 -(12)-225.(10分)2013年我国多地出现雾霾天气,某企业抓住商机准备生产空气净化设备,该企业决定从以下两个投资方案中选择一个进行投资生产,方案一:生产甲产品,每件产品成本为a 元(a 为常数,且40<a <100),每件产品销售价为120元,每年最多可生产125万件;方案二:生产乙产品,每件产品成本价为80元,每件产品销售价为180元,每年可生产120万件,另外,年销售x 万件乙产品时需上交0.5x 2万元的特别关税,在不考虑其它因素的情况下:(1)分别写出该企业两个投资方案的年利润y 1(万元)、y 2(万元)与相应生产件数x (万件)(x 为正整数)之间的函数关系式,并指出自变量的取值范围; (2)分别求出这两个投资方案的最大年利润;(3)如果你是企业决策者,为了获得最大收益,你会选择哪个投资方案?26.(12分)如图,在顶点为P 的抛物线y=a (x-h )2+k (a≠0)的对称轴1的直线上取点A (h ,k+14a),过A 作BC ⊥l 交抛物线于B 、C 两点(B 在C 的左侧),点和点A 关于点P 对称,过A 作直线m ⊥l .又分别过点B ,C 作直线BE ⊥m 和CD ⊥m ,垂足为E ,D .在这里,我们把点A 叫此抛物线的焦点,BC 叫此抛物线的直径,矩形BCDE 叫此抛物线的焦点矩形.(1)直接写出抛物线y=14x 2的焦点坐标以及直径的长. (2)求抛物线y=14x 2-32x+174的焦点坐标以及直径的长.(3)已知抛物线y=a (x-h )2+k (a≠0)的直径为32,求a 的值.(4)①已知抛物线y=a (x-h )2+k (a≠0)的焦点矩形的面积为2,求a 的值. ②直接写出抛物线y=14x 2-32x+174的焦点短形与抛物线y=x 2-2mx+m 2+1公共点个数分别是1个以及2个时m 的值.27.(12分)计算:﹣22+(π﹣2018)0﹣2sin60°+|13参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】试题分析:通过猜想得出数据,再代入看看是否符合即可.解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和为3×10=30,30+4×3=42,故选A.点评:此题是定义新运算题型.通过阅读规则,得出一般结论.解题关键是对号入座不要找错对应关系.2.B【解析】试题分析:∵23,∴1<2,在1到2之间,故选B.考点:估算无理数的大小.3.A【解析】试题分析:根据几何体的主视图可判断C不合题意;根据左视图可得B、D不合题意,因此选项A正确,故选A.考点:几何体的三视图4.C【解析】【分析】依据题意,三根木条的长度分别为x m,x m,(10-2x) m,在根据三角形的三边关系即可判断.【详解】解:由题意可知,三根木条的长度分别为x m,x m,(10-2x) m,∵三根木条要组成三角形,∴x-x<10-2x<x+x,解得:55 2x<<.故选择C. 【点睛】本题主要考察了三角形三边的关系,关键是掌握三角形两边之和大于第三边,两边之差的绝对值小于第三边. 5.D 【解析】由﹣x <1得,∴x >﹣1,由3x ﹣5≤1得,3x≤6,∴x≤2,∴不等式组的解集为﹣1<x≤2,故选D 6.B 【解析】 【分析】根据题意得到△AOB 是等边三角形,求出∠AOB 的度数,根据圆周角定理计算即可. 【详解】解:∵OA=AB ,OA=OB , ∴△AOB 是等边三角形, ∴∠AOB=60°, ∴∠ACB=30°, 故选B . 【点睛】本题考查的是圆周角定理和等边三角形的判定,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键. 7.B 【解析】 【分析】先利用三角函数求出∠BAE=45°,则,∠DAE=45°,然后根据扇形面积公式,利用图中阴影部分的面积=S 矩形ABCD ﹣S △ABE ﹣S 扇形EAD 进行计算即可. 【详解】解:∵AE=AD=2,而,∴cos ∠BAE=AB AE =2,∴∠BAE=45°,∴,∠BEA=45°.∵AD ∥BC ,∴∠DAE=∠BEA=45°,∴图中阴影部分的面积=S 矩形ABCD ﹣S △ABE ﹣S 扇形EAD 12﹣2452360π⋅⋅1﹣2π. 故选B . 【点睛】本题考查了扇形面积的计算.阴影面积常用的方法:直接用公式法;和差法;割补法.求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积. 8.A 【解析】 【分析】根据平行线的性质及圆周角定理的推论得出点M 的轨迹是以EF 为直径的半圆,进而求出半径即可得出答案,注意分两种情况讨论. 【详解】当点D 与B 重合时,M 与F 重合,当点D 与A 重合时,M 与E 重合,连接BD ,FM ,AD ,EM , ∵2,33CF CM CE EF AB BC CD CA AB ===== ∴//,//,2FM BD EM AD EF =,FMC BDC CME CDA ∴∠=∠∠=∠∵AB 是直径90BDA ∴∠=︒即90BDC CDA ∠+∠=︒ ∴90FMC CME ∠+∠=︒∴点M 的轨迹是以EF 为直径的半圆, ∵2EF =∴以EF 为直径的圆的半径为1 ∴点M 运动的路径长为1801=180ππg g 当1'3CM CD =时,同理可得点M 运动的路径长为12π故选:A . 【点睛】本题主要考查动点的运动轨迹,掌握圆周角定理的推论,平行线的性质和弧长公式是解题的关键. 9.A由题意(),3A m m -,因为O e 与反比例函数ky x=都是关于直线y x =-对称,推出A 与B 关于直线y x =-对称,推出()3,B m m -,可得31m m =-,求出m 即可解决问题;【详解】Q 函数3y x =-与ky x=的图象在第二象限交于点()1,A m y , ∴点(),3A m m -O Q e 与反比例函数ky x=都是关于直线y x =-对称, A ∴与B 关于直线y x =-对称,()3,B m m ∴-, 31m m ∴=-,12m ∴=-∴点13,22A ⎛⎫- ⎪⎝⎭133224k ∴=-⨯=-故选:A . 【点睛】本题考查反比例函数与一次函数的交点问题,反比例函数的图像与性质,圆的对称性及轴对称的性质.解题的关键是灵活运用所学知识解决问题,本题的突破点是发现A ,B 关于直线y x =-对称. 10.B 【解析】分析:本题可根据数轴的性质画出数轴:实心圆点包括该点用“≥”,“≤”表示,空心圆点不包括该点用“<”,“>”表示,大于向右小于向左.点睛:不等式组的解集为−1⩽x<3在数轴表示−1和3以及两者之间的部分:故选B.点睛:本题考查在数轴上表示不等式解集:把每个不等式的解集在数轴上表示出来(>,≥向右画;< ,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】根据实数比较大小的方法,可得<|-3|=3<-(-π),所以最大的数是:-(-π).故选B.【点睛】此题主要考查了实数大小比较的方法,及判断无理数的范围,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.12.D【解析】试题分析:根据众数的定义:出现次数最多的数,中位数定义:把所有的数从小到大排列,位置处于中间的数,即可得到答案.众数出现次数最多的数,85出现了2次,次数最多,所以众数是:85,把所有的数从小到大排列:76,82,84,85,85,91,位置处于中间的数是:84,85,因此中位数是:(85+84)÷2=84.5,故选D.考点:众数,中位数点评:此题主要考查了众数与中位数的意义,关键是正确把握两种数的定义,即可解决问题二、填空题:(本大题共6个小题,每小题4分,共24分.)13.x=1【解析】分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.详解:两边都乘以x+4,得:3x=x+4,解得:x=1,检验:x=1时,x+4=6≠0,所以分式方程的解为x=1,故答案为:x=1.点睛:此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.14.6【解析】此题涉及多边形内角和和外角和定理多边形内角和=180(n-2), 外角和=360º所以,由题意可得180(n-2)=2×360º解得:n=615.5【解析】【分析】本题先根据垂径定理构造出直角三角形,然后在直角三角形中已知弦长和弓形高,根据勾股定理求出半径,从而得解.【详解】解:如图,设圆心为O,弦为AB,切点为C.如图所示.则AB=8cm,CD=2cm.连接OC,交AB于D点.连接OA.∵尺的对边平行,光盘与外边缘相切,∴OC⊥AB.∴AD=4cm.设半径为Rcm,则R2=42+(R-2)2,解得R=5,∴该光盘的半径是5cm.故答案为5【点睛】此题考查了切线的性质及垂径定理,建立数学模型是关键.16.4610【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】60000小数点向左移动4位得到6,所以60000用科学记数法表示为:6×1, 故答案为:6×1. 【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.17.m (x+2)(x ﹣2) 【解析】 【分析】提取公因式法和公式法相结合因式分解即可. 【详解】原式()24,m x =-()()22.m x x =+-故答案为()()22.m x x +- 【点睛】本题主要考查因式分解,熟练掌握提取公因式法和公式法是解题的关键.分解一定要彻底. 18.a (2x+y )(2x-y ) 【解析】 【分析】首先提取公因式a ,再利用平方差进行分解即可. 【详解】 原式=a (4x 2-y 2) =a (2x+y )(2x-y ), 故答案为a (2x+y )(2x-y ). 【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.576名 【解析】试题分析:根据统计图可以求得本次调查的人数和体重落在B 组的人数,从而可以将条形统计图补充完整,进而可以求得我校初三年级体重介于47kg 至53kg 的学生大约有多少名. 试题解析:本次调查的学生有:32÷16%=200(名),体重在B 组的学生有:200﹣16﹣48﹣40﹣32=64(名),补全的条形统计图如右图所示,我校初三年级体重介于47kg 至53kg 的学生大约有:1800×64200=576(名), 答:我校初三年级体重介于47kg 至53kg 的学生大约有576名.20.(1)抛物线的表达式为2142y x x =--+;(2)1tan 3∠PAC =;(3)P 点的坐标是5(3,)2-.【解析】 【分析】 分析:(1)由题意易得点A 、C 的坐标分别为(-1,0),(0,1),将这两点坐标代入抛物线212y x bx c =-++列出方程组,解得b 、c 的值即可求得抛物线的解析式;(2)如下图,作PH ⊥AC 于H ,连接OP ,由已知条件先求得PC=2,AC=42S △APC ,可求得2OA=OC 得到∠CAO=15°,结合CP ∥OA 可得∠PCA=15°,即可得到2,由此可得AH=32Rt △APH 中由tan ∠PAC=PHAH即可求得所求答案了; (3)如图,当四边形AOPQ 为符合要求的平行四边形时,则此时PQ=AO=1,且点P 、Q 关于抛物线的对称轴x=-1对称,由此可得点P 的横坐标为-3,代入抛物线解析即可求得此时的点P 的坐标. 详解:(1)∵直线y=x+1经过点A 、C ,点A 在x 轴上,点C 在y 轴上 ∴A 点坐标是(﹣1,0),点C 坐标是(0,1), 又∵抛物线过A ,C 两点,∴()21440,2 4.b c c ⎧-⨯--+=⎪⎨⎪=⎩解得14b c =-⎧⎨=⎩, ∴抛物线的表达式为2142y x x =--+; (2)作PH ⊥AC 于H ,∵点C 、P 在抛物线上,CP//AO , C (0,1),A (-1,0)∴P (-2,1),AC=42, ∴PC=2,AC PH PC CO ⋅=⋅, ∴PH=2,∵A (﹣1,0),C (0,1), ∴∠CAO=15°. ∵CP//AO ,∴∠ACP=∠CAO=15°, ∵PH ⊥AC , ∴CH=PH=2,∴AH 42232=-=. ∴PH 1tan PAC AH 3∠==;(3)∵221114(1)4222y x x x =--+=-++, ∴抛物线的对称轴为直线1x =-,∵以AP ,AO 为邻边的平行四边形的第四个顶点Q 恰好也在抛物线上, ∴PQ ∥AO ,且PQ=AO=1. ∵P ,Q 都在抛物线上, ∴P ,Q 关于直线1x =-对称, ∴P 点的横坐标是﹣3, ∵当x=﹣3时,()()215y 33422=-⋅---+=, ∴P 点的坐标是53,2⎛⎫- ⎪⎝⎭.点睛:(1)解第2小题的关键是:作出如图所示的辅助线,构造出Rt △APH ,并结合题中的已知条件求出PH 和AH 的长;(2)解第3小题的关键是:根据题意画出符合要求的示意图,并由PQ ∥AO ,PQ=AO 及P 、Q 关于抛物线的对称轴对称得到点P 的横坐标. 【详解】 请在此输入详解!21.(1)1(3,3)A -,1(4,1)B -,1(0,2)C -;(2)作图见解析,面积71724π=+,172l =. 【解析】 【分析】(1)由ABC ∆在平面直角坐标系中的位置可得A 、B 、C 的坐标,根据关于原点对称的点的坐标特点即可得1A 、1B 、1C 的坐标;(2)由旋转的性质可画出旋转后图形22A BC ∆,利用面积的和差计算出22∆A BC S ,然后根据扇形的面积公式求出2扇形CBC S ,利用ABC ∆旋转过程中扫过的面积222S A BC CBC S S ∆+=扇形进行计算即可.再利用弧长公式求出点C 所经过的路径长. 【详解】解:(1)由ABC ∆在平面直角坐标系中的位置可得:(3,3)-A ,(4,1)B -,(0,2)C ,∵111A B C ∆与ABC ∆关于原点对称, ∴1(3,3)A -,1(4,1)B -,1(0,2)C - (2)如图所示,22A BC ∆即为所求,∵(4,1)B -,(0,2)C ,∴22(40)(12)17=--+-=BC , ∴2扇形CBC S 2290(17)173604πππ⋅⨯===BC , ∵22∆A BC S 1117421213142222=⨯-⨯⨯-⨯⨯-⨯⨯=, ∴ABC ∆在旋转过程中所扫过的面积:222扇形∆+=A BC CBC S S S 71724π=+ 点C 所经过的路径:901717ππ⨯==l .【点睛】本题考查的是图形的旋转、及扇形面积和扇形弧长的计算,根据已知得出对应点位置,作出图形是解题的关键.22. (1) 反比例函数的表达式为y =(x >0);(2) 点P 的坐标为(0,4)或(0,﹣4)【解析】 【分析】(1)根据点A(a,2),B(4,b)在一次函数y=﹣x+3的图象上求出a、b的值,得出A、B两点的坐标,再运用待定系数法解答即可;(2)延长CA交y轴于点E,延长CB交x轴于点F,构建矩形OECF,根据S四边形OACB=S矩形OECF﹣S△OAE ﹣S△OBF,设点P(0,m),根据反比例函数的几何意义解答即可.【详解】(1)∵点A(a,2),B(4,b)在一次函数y=﹣x+3的图象上,∴﹣a+3=2,b=﹣×4+3,∴a=2,b=1,∴点A的坐标为(2,2),点B的坐标为(4,1),又∵点A(2,2)在反比例函数y=的图象上,∴k=2×2=4,∴反比例函数的表达式为y=(x>0);(2)延长CA交y轴于点E,延长CB交x轴于点F,∵AC∥x轴,BC∥y轴,则有CE⊥y轴,CF⊥x轴,点C的坐标为(4,2)∴四边形OECF为矩形,且CE=4,CF=2,∴S四边形OACB=S矩形OECF﹣S△OAE﹣S△OBF=2×4﹣×2×2﹣×4×1=4,设点P的坐标为(0,m),则S△OAP=×2•|m|=4,∴m=±4,∴点P的坐标为(0,4)或(0,﹣4).【点睛】此题考查了反比例函数与一次函数的交点问题,涉及的知识有:坐标与图形性质,直线与坐标轴的交点,待定系数法求函数解析式,熟练掌握待定系数法是解本题的关键.23.(1).(2).【解析】试题分析:(1)根据取出黑球的概率=黑球的数量÷球的总数量得出答案;(2)根据概率的计算方法得出方程,从求出函数关系式.试题解析:(1)取出一个黑球的概率(2)取出一个白球的概率与的函数关系式为:.考点:概率24.37【解析】【分析】根据实数的计算,先把各数化简,再进行合并即可.【详解】原式=3233334-37【点睛】此题主要考查实数的计算,解题的关键是熟知特殊三角函数的化简与二次根式的运算.25.(1)y1=(120-a)x(1≤x≤125,x为正整数),y2=100x-0.5x2(1≤x≤120,x为正整数);(2)110-125a (万元),10(万元);(3)当40<a<80时,选择方案一;当a=80时,选择方案一或方案二均可;当80<a<100时,选择方案二.【解析】【分析】(1)根据题意直接得出y 1与y 2与x 的函数关系式即可;(2)根据a 的取值范围可知y 1随x 的增大而增大,可求出y 1的最大值.又因为﹣0.5<0,可求出y 2的最大值;(3)第三问要分两种情况决定选择方案一还是方案二.当2000﹣200a >1以及2000﹣200a <1. 【详解】解:(1)由题意得:y 1=(120﹣a )x (1≤x≤125,x 为正整数), y 2=100x ﹣0.5x 2(1≤x≤120,x 为正整数); (2)①∵40<a <100,∴120﹣a >0, 即y 1随x 的增大而增大,∴当x=125时,y 1最大值=(120﹣a )×125=110﹣125a (万元) ②y 2=﹣0.5(x ﹣100)2+10, ∵a=﹣0.5<0,∴x=100时,y 2最大值=10(万元); (3)∵由110﹣125a >10, ∴a <80,∴当40<a <80时,选择方案一; 由110﹣125a=10,得a=80,∴当a=80时,选择方案一或方案二均可; 由110﹣125a <10,得a >80, ∴当80<a <100时,选择方案二. 考点:二次函数的应用.26.(1)4(1)4(3)23(4)①a=±12;②当时,1个公共点,当<m≤1或5≤m <时,1个公共点, 【解析】 【分析】(1)根据题意可以求得抛物线y=14x 1的焦点坐标以及直径的长; (1)根据题意可以求得抛物线y=14x 1-32x+174的焦点坐标以及直径的长;(3)根据题意和y=a (x-h )1+k (a≠0)的直径为32,可以求得a 的值;(4)①根据题意和抛物线y=ax 1+bx+c (a≠0)的焦点矩形的面积为1,可以求得a 的值;②根据(1)中的结果和图形可以求得抛物线y=14x1-32x+174的焦点矩形与抛物线y=x1-1mx+m1+1公共点个数分别是1个以及1个时m的值.【详解】(1)∵抛物线y=14x1,∴此抛物线焦点的横坐标是0,纵坐标是:0+1144⨯=1,∴抛物线y=14x1的焦点坐标为(0,1),将y=1代入y=14x1,得x1=-1,x1=1,∴此抛物线的直径是:1-(-1)=4;(1)∵y=14x1-32x+174=14(x-3)1+1,∴此抛物线的焦点的横坐标是:3,纵坐标是:1+1144⨯=3,∴焦点坐标为(3,3),将y=3代入y=14(x-3)1+1,得3=14(x-3)1+1,解得,x1=5,x1=1,∴此抛物线的直径时5-1=4;(3)∵焦点A(h,k+14a),∴k+14a=a(x-h)1+k,解得,x1=h+12a,x1=h-12a,∴直径为:h+12a-(h-12a)=1a=32,解得,a=±23,即a的值是23±;(4)①由(3)得,BC=1 a,又CD=A'A=12a.所以,S=BC•CD=1a•12a=212a=1.解得,a=±12;②当时,1个公共点,当<m≤1或5≤m<1个公共点,理由:由(1)知抛,物线y=14x1-32x+174的焦点矩形顶点坐标分别为:B(1,3),C(5,3),E(1,1),D(5,1),当y=x1-1mx+m1+1=(x-m)1+1过B(1,3)时,或,过C(5,3)时,(舍去)或,∴当时,1个公共点;当<m≤1或5≤m<时,1个公共点.由图可知,公共点个数随m的变化关系为当m<当1个公共点;当<m≤1时,1个公共点;当1<m<5时,3个公共点;当5≤m<时,1个公共点;当1个公共点;当m>时,无公共点;由上可得,当或1个公共点;当<m≤1或5≤m<时,1个公共点.【点睛】考查了二次函数综合题,解答本题的关键是明确题意,知道什么是抛物线的焦点、直径、焦点四边形,找出所求问题需要的条件,利用数形结合的思想和二次函数的性质、矩形的性质解答.27.-4【解析】分析:第一项根据乘方的意义计算,第二项非零数的零次幂等于1,第三项根据特殊角锐角三角函数值计算,第四项根据绝对值的意义化简.详解:原式=-4+1-2×2点睛:本题考查了实数的运算,熟练掌握乘方的意义,零指数幂的意义,及特殊角锐角三角函数,绝对值的意义是解答本题的关键.。
2020年北京市延庆县初三升学模拟考试(一)初中数学

2020年北京市延庆县初三升学模拟考试(一)初中数学数 学 试 卷第一卷 〔选择题32分〕一、选择题〔共8个小题,每题4分,共32分〕以下各题均有四个选项,其中只有一个是符合题意的,用铅笔把〝机读答题卡〞上对应题目答案的相应字母涂黑。
1.-3的相反数是A3 B.31 C. 31- D-3 2.蜜蜂建筑的蜂房即牢固又省料,蜂房的巢壁厚约为0.000073米 , 用科学记数法表示为 A4103.7-⨯米 B. 5103.7-⨯米C. 4103.7⨯米 D5103.7⨯米 3.如图,直线a 与直线b 互相平行,那么x y -的值是A.20 B.80C.120D.1804. 如图,在ABC △中,90C =∠,50B =∠,10AB =,那么BC 的长为A.10tan 50 B.10cos50 C.10sin 50D.10cos505.3的值〔 〕A .在5和6之间B .在6和7之间C .在7和8之间D .在8和9之间6. 某公园打算砌一个形状如图〔1〕所示的喷水池,后来有人建议改为图〔2〕的形状,且外圆的直径不变,喷水池边沿的宽度、高度不变,你认为砌喷水池的边沿x303y abCBAA.图〔1〕需要的材料多 B.图〔2〕需要的材料多C.图〔1〕、图〔2〕需要的材料一样多 D.无法确定图〔1〕 图〔2〕7. 在全国 〝创建文明都市〞综合评比中,某市各项综合指标名次如图:那么图中五个数据的众数和平均数依次是 A 、32,36B 、45,32C 、36,45D 、45,368.如图,ABC △中,90301B C AB ∠=∠==,,, 将ABC △绕顶点A 旋转180,点C 落在C '处,那么CC '的长为A.23 B.25C.42D.42007年延庆县初三升学模拟考试〔一〕数 学 试 卷第二卷 〔非机读卷88分〕ABC'B '30二.填空题〔共4小题,每题4分,共16分〕 9. 在函数121-=x y 中, 自变量 x 的取值范畴是 . 10.关于实数a 、b 定义一种新运算〝⊕〞:,12-+=⊕ab a b a 那么a b ⊕ 。
2020年北京延庆初三一模数学试题及答案(WORD版)

延庆区2019-2020学年第二学期练习卷初 三 数 学 试 题一、 选择题:(共8个小题,每小题2分,共16分)下面各题均有四个选项,其中只有一个是符合题意的. 1.最近,科学家发现一种新型病毒,其最大直径约为0.00012mm , 将0.00012用科学记数法表示为A .1.2×10-3B .1.2×10-4C .1.2×104D .12×103 2.下列各组图形中,△ A'B'C'与 △ABC 成中心对称是A .B .C. D .3. 下列立体图形的主视图、左视图、俯视图都一样的是A .B .C .D .4.若分式21x 有意义,则x 的取值范围是 A .x >-2 B .x <-2 C .x =-2 D .x ≠-25. 数轴上A ,B ,C ,D 四点中,有可能在以原点为圆心,以6为半径的圆上的点是 A .点A B .点B C .点C D .点DDC B A6.如图所示,△ABC中AB边上的高线是A.线段DA B.线段CAC.线段CD D.线段BD 7.下列实数中,无理数的个数是①0.333②17③5④π⑤6.18118111811118……A. 1个B.2个C.3个D.4个8.如图,在⊙O中,点C在优弧AB上,将弧BC沿直线BC折叠后刚好经过弦AB的中点D.若⊙O的半径为5,AB=4,则BC的长是A.32B.23C.235D.265二、填空题(共8个小题,每题2分,共16分)9.因式分解:a3-9a=.10.如果a+b=2,那么代数式22212b a ba b a ab b-⎛⎫+⋅⎪-++⎝⎭的值是.11.如图,∠1,∠2,∠3,∠4 是五边形ABCDE的4个外角,若∠A=100°,则∠1+∠2+∠3+∠4 = .12.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,点E在边BC上,AE与BD相交于点G,若AG : GE=3 : 1,则EC : BC= .DCBA13.把光盘、含60°角的三角板和直尺如图摆放,AB =2,则光盘的直径是. 14.将含有30°角的直角三角板如图放置在平面直角坐标系中,OB 在x 轴上,将三角板绕原点O 顺时针旋转75°,若OA =4,则点A 的对应点A ′的坐标为_____.15.如图,小明在A 时测得某树的影长为3米,B 时又测得该树的影长为12米, 若两次日照的光线互相垂直,则树的高度为_____米.16.小明的爸爸想给妈妈送张美容卡作为生日礼物,小明家附近有3家美容店,爸爸不知如何选择,于是让小明对3家店铺顾客的满意度做了调查:合计美容店A 53 28 19 100 美容店B 50 40 10 100 美容店C65269100(说明:顾客对于店铺的满意度从高到低,依次为3个笑脸,2个笑脸,1个笑脸)小明选择将 (填“A ”、“ B ”或“C ”)美容店推荐给爸爸,能使妈妈获得满意体验可能性最大.三、解答题(本题共68分)17.计算:()0123tan 30113π---+-.18.解不等式组:()13352x x x x ⎧-<-⎪⎨+⎪⎩,≥.19.关于x 的一元二次方程0122=-+x mx 有两个不相等的实数根. (1)求m 的取值范围;(2)若方程的两个根都是有理数,写出一个满足条件的m 的值,并求出此时方程的根. 20.已知,如图,点A 是直线l 上的一点. 求作:正方形ABCD ,使得点B 在直线l 上.(要求保留作图痕迹,不用写作法) 请你说明,∠BAD =90°的依据是什么?21.四边形ABCD 中,∠A =∠B = 90°,点E 在边AB 上,点F 在AD 的延长线上,且点E 与点F 关于直线 CD 对称,过点E 作EG ∥AF 交CD 于点G ,连接 FG ,DE . (1)求证:四边形DEGF 是菱形;(2)若AB =10,AF =BC =8,求四边形DEGF 的面积.22.如图,AB 是⊙O 的直径,点C 是⊙O 上的一点,点D 是弧BC 的中点,连接AC ,BD ,过点D 作AC 的垂线EF ,交AC 的延长线于点E ,交AB 的延长线于点F . (1)依题意补全图形;(2)判断直线EF 与⊙O 的位置关系,并说明理由; (3)若AB =5,BD =3,求线段BF 的长.23.在平面直角坐标系xOy 中,将点A (2,4)向下平移2个单位得到点C ,反比例函数xmy =(m ≠0)的图象经过点C ,过点C 作CB ⊥x 轴于点B . (1)求m 的值;(2)一次函数y =kx+b (k <0)的图象经过点C ,交x 轴于点D线段CD ,BD ,BC 围成的区域(不含边界)为G ; 若横、纵坐标都是整数的点叫做整点. ①b =3时,直接写出区域G 内的整点个数.②若区域G 内没有整点,结合函数图象,确定k 的取值范围.24.为了发展学生的数学核心素养,培养学生的综合能力,某市开展了初三学生数学 学业水平测试.在这次测试中,从甲、乙两校各随机抽取30名学生的测试成绩进行 调查分析. 收集数据甲校 94 82 77 76 77 88 90 88 85 86 88 89 84 92 8788 80 53 89 91 91 86 68 75 94 84 76 69 83 92乙校 83 64 91 88 71 92 88 92 86 61 78 91 84 92 9274 75 93 82 57 86 89 89 94 83 84 81 94 72 90整理、描述数据 按如下分数段整理、描述这两组样本数据:50≤x≤5960≤x≤6970≤x≤7980≤x≤89 90≤x≤100甲校 1 2 5 15 7 乙校1210(说明:成绩80分及以上为优秀,60~79分为合格,60分以下为不合格) 分析数据 两组样本数据的平均数、中位数、众数如下表所示:学校 平均数 中位数 众数 甲校 83.4 86 88 乙校83.2(1)请你补全表格;(2)若甲校有300名学生,估计甲校此次测试的优秀人数为____; (3)可以推断出____校学生成绩的比较好,理由为________________.25.如图,AB 是⊙O 的弦,AB =5cm ,点P 是弦AB 上的一个定点,点C 是弧AB 上的一个动点,连接CP 并延长,交⊙O 于点D .x学校人数 成绩小明根据学习函数的经验,分别对AC,PC,PD长度之间的关系进行了探究.下面是小明的探究过程:(1)对于点C在弧AB上的不同位置,画图、测量,得到了线段AC,PC,PD的长度的几组值,如下表:位置1 位置2 位置3 位置4 位置5 位置6 位置7 位置8 位置9 AC/cm 0 0.37 1.00 0.82 2.10 3.00 3.50 3.91 5.00 PC/cm 1.00 0.81 0.69 0.75 1.26 2.11 2.50 3.00 4.00 PD/cm 4.00 5.00 5.80 6.00 3.00 1.90 1.50 1.32 1.00的长度这三个量中,确定___的长度是自变量,其他两条线段的(2)请你在同一平面直角坐标系xOy中,画(1)中所确定的两个函数的图象;(3)结合函数图象,解决问题:①当PC=PD时,AC的长度约为cm;②当△APC为等腰三角形时,PC的长度约为cm.26.在平面直角坐标系xOy中,抛物线2+3y ax bx a=+(a≠0)过点A(1,0). (1)求抛物线的对称轴;(2)直线y=-x+4与y轴交于点B,与该抛物x/cm y/cm123456654321OOyx–1–2–3–4–5–6123456–1123456线的对称轴交于点C ,现将点B 向左平移一个单位到点D ,如果该抛物线与线段CD 有交点,结合函数的图象,求a 的取值范围.27.如图1,在等腰直角△ABC 中,∠A =90°,AB =AC=3,在边AB 上取一点D (点D不与点A ,B 重合),在边AC 上取一点E ,使AE =AD ,连接DE . 把△ADE 绕点A 逆时针方向旋转α(0°<α<360°),如图2.(1)请你在图2中,连接CE 和BD ,判断线段CE 和BD 的数量关系,并说明理由; (2)请你在图3中,画出当α =45°时的图形,连接CE 和BE ,求出此时△CBE 的面积;(3)若AD =1,点M 是CD 的中点,在△ADE 绕点A 逆时针方向旋转的过程中,线段AM 的最小值是________________.28.对于平面内的点P 和图形M ,给出如下定义:以点P 为圆心,以r 为半径作⊙P ,使图1图3图2得图形M上的所有点都在⊙P的内部(或边上),当r最小时,称⊙P为图形M的P点控制圆,此时,⊙P的半径称为图形M的P点控制半径.已知,在平面直角坐标系中,正方形OABC的位置如图所示,其中点B(2,2).(1)已知点D(1,0),正方形OABC的D点控制半径为r1,正方形OABC的A点控制半径为r2,请比较大小:r1 r2;(2)连接OB,点F是线段OB上的点,直线l:y=3x+b;若存在正方形OABC的F 点控制圆与直线l有两个交点,求b的取值范围.延庆区 2019-2020 学年一模答案初 三 数 学一、选择题:1.B2.D . 3C . 4.D . 5.A . 6.C 7.C . 8. B二、填空题 (共 8 个小题,每题 2 分,共 16 分)9. a(a+3)(a-3) 10.1211.280° 12.2:3 13.4314.(22,22-) 15.6 16C .三、解答题(本题共 68 分) 17.232- 18.5x ≥ 19.(1)1m >-且m ≠0;(2)m =3;11x =-,213x =.20.解:如图所示,正方形ABCD 即为所求; 由尺规作图可知,AE =AF ,EH =FH ,又∵AH=AH,∴△AEH≌△AFH(SSS),∴∠EAH=∠FAH,∵∠EAH+∠FAH=180°,∴∠EAH=∠FAH=90°,即∠BAD=90°.21.解:(1)连接EF,∵点E与点F关于直线CD 对称,∴CD是EF的垂直平分线,∴DE=DF,GE=GF,∠EDG=∠FDG,∵EG∥AF,∴∠FDG=∠EGD,∴∠EDG=∠EGD,∴DE=GE,∴DE=DF=GE=GF,∴四边形DEGF是菱形;(2)连接CF,CE,∵∠A=∠B=90°,∴∠A +∠B =180°, ∴AF ∥BC , 又∵AF =BC =8, ∴四边形ABCF 是矩形, ∴CF =AB =10,∵CD 是EF 的垂直平分线, ∴CE =CF =10, ∴BE =221086-=, ∴AE =10-6=4,设DF =DE =x ,则AD =8-x ,在Rt △ADE 中,由勾股定理得:()22248x x +-=, 解得:x =5,即DF =5,∴四边形DEGF 的面积=DF·AE =5×4=20.22解:(1)如图所示;(2)直线EF是⊙O的切线;理由:如图,连接BC,OD交于点H,∵AB是直径,∴∠ACB=90°,∵∠E=90°,∴BC∥EF,∵点D是弧BC的中点,∴OD⊥BC,∴OD⊥EF,∴直线EF是⊙O的切线;(3)如图,∵AB=5,BD=3,∴OB=OD=52,设OH=x,则DH=52x,在Rt△OHB中,由勾股定理得:22252BH x,在Rt△BHD中,由勾股定理得:222532BH x,∴222255322x x,解得:710x ,∴710OH,95DH,∵O是AB中点,H是BC中点,∴AC=2OH=75,易证四边形HCED是矩形,则95CE DH,∴AE=165,∵BC∥EF,∴AC ABAE AF,即7551655BF,∴457BF.23解:(1)将点A(2,4)向下平移2 个单位得到点C,则C(2,2),将C(2,2)代入myx=,得4m xy==;(2)①当b=3时,一次函数y=kx+b过点(0,3),如图1所示,由图象可得,区域G内的整点为(3,1),只有一个;②由图1可知,当直线CD 过点(3,1)时,区域G 内恰好没有整点,代入C (2,2)和(3,1)得:2231k b k b +=⎧⎨+=⎩,解得:14k b =-⎧⎨=⎩,∴若区域G 内没有整点,k 的取值范围为:1k ≤-. 24.(1)5,12;86,92;(2)220;(3)乙,理由见解析.25(1)AC ;(2)见解析;(3)①2.9,②0.69cm 或1cm 或0.8cm . 26(1)x =2;(2)2a ≤-或12a ≥. 【解析】 【分析】(1)代入(1,0)可得b =-4a ,然后根据抛物线对称轴公式计算即可; (2)首先求出抛物线过点(1,0),(3,0),然后分a <0和a >0两种情况,分别作出简图,结合图象根据抛物线与线段CD 有交点得出不等式,即可求出a 取值范围.【详解】解:(1)把(1,0)代入y = ax 2 + bx +3a 得:0=a+b+3a , ∴b =-4a ,∴抛物线的对称轴为:x =22ba-=;(2)由(1)可知,抛物线解析式为:24313y ax ax a a x x ,对称轴为:x =2,∴抛物线过点(1,0),(3,0), 当x =2时,y =-x+4=2, ∴C (2,2),当a <0时,如图,由该抛物线与线段 CD 有交点可得:当x =2时,2432yax ax a,即4832a a a , 解得:2a ≤-;当a >0时,由题意得:B (0,4), ∴D (-1,4),如图,由该抛物线与线段 CD 有交点可得:当x =-1时,2434y ax ax a,即434a a a , 解得:12a ≥, 综上所述,a 取值范围为:2a ≤-或12a ≥.27(1)CE =BD ,理由见解析;(2)图形见解析,92CBES ;(3)1. 【解析】 【分析】(1)连接CE 和BD ,求出∠EAC =∠DAB ,即可利用SAS 证明△AEC ≌△ADB ,进而得到CE =BD ;(2)连接CE 和BE ,延长AD 交BC 于F ,首先求出∠BAF =∠CAF =∠EAC =45°,然后可得AF =BF =CF ,∠EAB =135°,进而证明AE ∥BC ,再根据12CBESBC AF 进行计算; (3)判断出在△ADE 绕点A 逆时针方向旋转的过程中,点M 在以G 为圆心,12长为半径的圆上,即可得到点M 与点E 重合时AM 取最小值. 【详解】解:(1)CE =BD ; 理由:连接CE 和BD ,如图2所示,由题意可知,△ABC 和△ADE 都是等腰直角三角形, ∵∠EAD =∠CAB =90°, ∴∠EAC =∠DAB , 又∵AE =AD ,AC =AB ,∴△AEC≌△ADB(SAS),∴CE=BD;(2)当α =45°时,连接CE和BE,如图所示,延长AD交BC于F,∵α =45°,△ABC和△ADE都是等腰直角三角形,∴∠BAF=∠CAF=∠EAC=45°,∴AF=BF=CF,∠EAB=135°,∴∠EAB+∠ABC=135°+45°=180°,∴AE∥BC,∵BC=223332+=,∴AF=132 22 BC,∴1132932222 CBES BC AF;(3)如图4,当点M不在AC上时,取AC中点G,连接GM,∵M是CD′的中点,∴GM=111 222 AD AD,当点M在AC上时,由M是CD′的中点可得GM=12,∴在△ADE绕点A逆时针方向旋转的过程中,点M在以G为圆心,12长为半径的圆上,∴当点M与点E重合时AM取最小值,此时AM=AE=1.28(1)<;(2)2234242b-<<(1)据控制半径的定义求出r1和r2即可解决问题;(2)如图所示,圆O和圆B分别是以O,B为圆心,以OB长为半径的圆,分别求出直线l与圆O相切,直线l与圆B相切时b值,得到两种极限情况下的b值,即可得到b 取值范围.【详解】解:(1)由题意得:r1=BD=CD22125+=r2=AC=22222+=∴r1<r2;(2)如图所示,圆O和圆B分别是以O,B为圆心,以OB长为半径的圆,当直线l :y b =+与圆O 相切于点M 时,连接OM ,可得OM 与直线l 垂直,则直线OM 的解析式为:3y x =-,设M (x ,x ), ∵OM =OB , ∴OM 22223223x ,∴x =x =∴M (),将()代入y b =+得:(b +,解得:b =当直线l :y b =+与圆B 相切于点N 时,连接BN ,同理可求出此时2b =-∴b 的取值范围为:2b -<<。
2020-2021北京延庆县第一中学初三数学上期中第一次模拟试题(附答案)

2020-2021北京延庆县第一中学初三数学上期中第一次模拟试题(附答案)一、选择题1.如图,BC 是半圆O 的直径,D ,E 是»BC上两点,连接BD ,CE 并延长交于点A ,连接OD ,OE ,如果40DOE ∠=︒,那么A ∠的度数为( )A .35°B .40°C .60°D .70°2.如图,将矩形 ABCD 绕点 A 顺时针旋转到矩形 AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是( )A .68°B .20°C .28°D .22°3.在平面直角坐标系中,二次函数y=x 2+2x ﹣3的图象如图所示,点A (x 1,y 1),B (x 2,y 2)是该二次函数图象上的两点,其中﹣3≤x 1<x 2≤0,则下列结论正确的是( )A .y 1<y 2B .y 1>y 2C .y 的最小值是﹣3D .y 的最小值是﹣44.若2245a a x -+-=,则不论取何值,一定有( )A .5x >B .5x <-C .3x ≥-D .3x ≤-5.如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB 的面积为( )A .6B .7C .8D .9 6.如图,Rt AOB V 中,AB OB ⊥,且AB OB 3==,设直线x t =截此三角形所得阴影部分的面积为S ,则S 与t 之间的函数关系的图象为下列选项中的( )A .B .C .D .7.若关于x 的方程240kx x -+=有实数根,则k 的取值范围是( )A .k 16≤B .1k 16≤C .k 16≤且k 0≠D .1k 16≤且k 0≠ 8.若关于x 的一元二次方程ax 2+bx ﹣1=0(a ≠0)有一根为x =2019,则一元二次方程a (x ﹣1)2+b (x ﹣1)=1必有一根为( )A .12019B .2020C .2019D .20189.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中涂色部分构成中心对称图形.该小正方形的序号是( )A .①B .②C .③D .④ 10.求二次函数2(0)y ax bx c a =++≠的图象如图所示,其对称轴为直线1x =-,与x轴的交点为()1,0x 、()2,0x ,其中101x <<,有下列结论:①0abc >;②232x -<<-;③421a b c -+<-;④()21a b am bm m ->+≠-;⑤13a >;其中,正确的结论有( )A .5B .4C .3D .211.一元二次方程x 2+2x +2=0的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根12.长方形的周长为24cm ,其中一边长为()x cm ,面积为2ycm 则长方形中y 与x 的关系式为( )A .2y x =B .2(12)y x =-C .(12)y x x =-D .2(12)y x =-二、填空题13.二次函数y =ax 2+bx +c 的图象如图11所示,且P =|2a +b|+|3b -2c|,Q =|2a -b|-|3b +2c|,则P ,Q 的大小关系是______.14.如图,将正六边形ABCDEF 放置在直角坐标系内,A(﹣2,0),点B 在原点,把正六边形ABCDEF 沿x 轴正半轴作无滑动的连续翻转,每次翻转60°,经过2020次翻转之后,点C 的坐标是_____.15.《田亩比类乘除捷法》是我国古代数学家杨辉的著作,其中有一个数学问题:“直田积八百六十四步,只云长阔共六十步,问长多阔几何”.意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多多少步?根据题意得,长比宽多______步.16.如图,Rt △ABC 中,∠A =90°,AB =4,AC =6,D 、E 分别是AB 、AC 边上的动点,且CE =3BD ,则△BDE 面积的最大值为_____.17.如图,量角器的0度刻度线为AB ,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C ,直尺另一边交量角器于点A ,D ,量得10AD cm =,点D 在量角器上的读数为60o ,则该直尺的宽度为____________cm .18.如图,把正方形铁片OABC 置于平面直角坐标系中,顶点A 的坐标为(3,0),点P (1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…,则正方形铁片连续旋转2017次后,点P 的坐标为____________________.19.Rt △ABC 中,∠C =90°,若直角边AC =5,BC =12,则此三角形的内切圆半径为________.20.如图,在扇形AOB 中,∠AOB=90°,点C 为OA 的中点,CE ⊥OA 交»AB 于点E ,以点O 为圆心,OC 的长为半径作»CD交OB 于点D ,若OA=2,则阴影部分的面积为 .三、解答题21.如图,ABC ∆是边长为4cm 的等边三角形,边AB 在射线OM 上,且6OA cm =,点D 从点O 出发,沿OM 的方向以1cm/s 的速度运动,当D 不与点A 重合时,将ACD ∆绕点C 逆时针方向旋转60°得到BCE ∆,连接DE.(1)如图1,求证:CDE ∆是等边三角形;(2)如图2,当6<t<10时,DE 是否存在最小值?若存在,求出DE 的最小值;若不存在,请说明理由.(3)当点D 在射线OM 上运动时,是否存在以D ,E ,B 为顶点的三角形是直角三角形?若存在,求出此时t 的值;若不存在,请说明理由.22.如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC的三个顶点坐标分别为A(1,4),B(1,1),C(3,1).(1)画出△ABC关于x轴对称的△A1B1C1;(2)画出△ABC绕点O逆时针旋转90°后的△A2B2C2;(3)在(2)的条件下,求线段BC扫过的面积(结果保留π).23.2021年我省开始实施“ 3+1+2”高考新方案,其中语文、数学、外语三门为统考科目(必考),物理和历史两个科目中任选 1门,另外在思想政治、地理、化学、生物四门科目中任选 2门,共计6门科目,总分750 分,假设小丽在选择科目时不考虑主观性.(1)小丽选到物理的概率为;(2)请用“画树状图”或“列表”的方法分析小丽在思想政治、地理、化学、生物四门科目中任选 2门选到化学、生物的概率.24.工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体底面面积为12dm2时,裁掉的正方形边长多大?(2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长多大时,总费用最低,最低为多少?25.如图,Rt△ABC中,∠C=90o,BE是它的角平分线,D在AB边上,以DB为直径的半圆O经过点E.(1)试说明:AC是圆O的切线;(2)若∠A=30o,圆O的半径为4,求图中阴影部分的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】连接CD,由圆周角定理得出∠BDC=90°,求出∠DCE=20°,再由直角三角形两锐角互余求解即可,【详解】解:连接CD,如图,∵BC是半圆O的直径,∴∠BDC=90°,∴∠ADC=90°,∵∠DOE=40°,∴∠DCE=20°,∴∠A=90°−∠DCE=70°,故选:D.【点睛】本题考查了圆周角定理、直角三角形的性质;熟练掌握圆周角定理是解题的关键.2.D解析:D【解析】试题解析:∵四边形ABCD为矩形,∴∠BAD=∠ABC=∠ADC=90°,∵矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α,∴∠BAB′=α,∠B′AD′=∠BAD=90°,∠D′=∠D=90°,∵∠2=∠1=112°,而∠ABD=∠D′=90°,∴∠3=180°-∠2=68°,∴∠BAB′=90°-68°=22°,即∠α=22°.故选D.3.D解析:D【解析】试题分析:抛物线y=x2+2x﹣3与x轴的两交点横坐标分别是﹣3、1;抛物线的顶点坐标是(﹣1,﹣4),对称轴为x=﹣1.选项A,无法确定点A、B离对称轴x=﹣1的远近,无法判断y1与y2的大小,该选项错误;选项B,无法确定点A、B离对称轴x=﹣1的远近,无法判断y1与y2的大小,该选项错误;选项C,y的最小值是﹣4,该选项错误;选项D,y 的最小值是﹣4,该选项正确.故答案选D.考点:二次函数图象上点的坐标特征;二次函数的最值.4.D解析:D【解析】【分析】由﹣2a2+4a﹣5=﹣2(a﹣1)2﹣3可得:x≤﹣3.【详解】∵x=﹣2a2+4a﹣5=﹣2(a﹣1)2﹣3≤﹣3,∴不论a取何值,x≤﹣3.故选D.【点睛】本题考查了配方法的应用,熟练运用配方法解答本题的关键.5.D解析:D【解析】【分析】由正方形的边长为3,可得弧BD的弧长为6,然后利用扇形的面积公式:S扇形DAB=1lr2,计算即可.【详解】解:∵正方形的边长为3,∴弧BD 的弧长=6,∴S 扇形DAB =11lr =22×6×3=9. 故选D .【点睛】本题考查扇形面积的计算. 6.D解析:D【解析】【分析】Rt △AOB 中,AB ⊥OB ,且AB=OB=3,所以很容易求得∠AOB=∠A=45°;再由平行线的性质得出∠OCD=∠A ,即∠AOD=∠OCD=45°,进而证明OD=CD=t ;最后根据三角形的面积公式,解答出S 与t 之间的函数关系式,由函数解析式来选择图象.【详解】解:∵Rt △AOB 中,AB ⊥OB ,且AB=OB=3,∴∠AOB=∠A=45°,∵CD ⊥OB ,∴CD ∥AB ,∴∠OCD=∠A ,∴∠AOD=∠OCD=45°,∴OD=CD=t ,∴S △OCD =12×OD×CD=12t 2(0≤t≤3),即S=12t 2(0≤t≤3). 故S 与t 之间的函数关系的图象应为定义域为[0,3],开口向上的二次函数图象; 故选D .【点睛】本题主要考查的是二次函数解析式的求法及二次函数的图象特征,解答本题的关键是根据三角形的面积公式,解答出S 与t 之间的函数关系式,由函数解析式来选择图象.7.B解析:B【解析】【分析】当0k =时,代入方程验证即可,当0k ≠时,根据方程的判别式△≥0可得关于k 的不等式,解不等式即得k 的取值范围,问题即得解决.【详解】解:当0k =时,40x -+=,此时4x =,有实数根;当0k ≠时,∵方程240kx x -+=有实数根,∴△2(1)440k =--⨯⨯…,解得:116k …,此时116k …且0k ; 综上,116k ….故选B. 【点睛】本题考查了一元二次方程的根的判别式,熟知一元二次方程的根的判别式与根的关系是解题的关键.8.B解析:B【解析】【分析】对于一元二次方程a (x-1)2+b (x-1)-1=0,设t=x-1得到at 2+bt-1=0,利用at 2+bt-1=0有一个根为t=2019得到x-1=2019,从而可判断一元二次方程a (x-1)2+b (x-1)=1必有一根为x=2020.【详解】对于一元二次方程a (x-1)2+b (x-1)-1=0,设t=x-1,所以at 2+bt-1=0,而关于x 的一元二次方程ax 2+bx-1=0(a≠0)有一根为x=2019,所以at 2+bt-1=0有一个根为t=2019,则x-1=2019,解得x=2020,所以一元二次方程a (x-1)2+b (x-1)=1必有一根为x=2020.故选B .【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.9.D解析:D【解析】【分析】根据中心对称图形的概念,如果把一个图形绕某一点旋转180度后能与自身重合,这个图形是中心对称图形.将④涂黑后,与图中阴影部分构成的图形绕第三个正方形的中心旋转180°后,这个图形能与自身重合,是中心对称图.【详解】解:将④涂黑后,与图中阴影部分构成的图形绕第三个正方形的中心旋转180°后,这个图形能与自身重合,是中心对称图.故选:D.【点睛】本题考查的是利用旋转设计图案,中心对称图形是要寻找对称中心,旋转180度后与原图重合.10.C解析:C【解析】【分析】由抛物线开口方向得a >0,由抛物线的对称轴为直线12b x a=-=-得2b a =>0,由抛物线与y 轴的交点位置得c <0,则abc <0;由于抛物线与x 轴一个交点在点(0,0)与点(1,0)之间,根据抛物线的对称轴性得到抛物线与x 轴另一个交点在点(-3,0)与点(-2,0)之间,即有-3<2x <-2;抛物线的对称轴为直线1x =-,且c <-1,2x =-时,421a b c -+<-;抛物线开口向上,对称轴为直线1x =-,当1x =-时,y a b c =-+最小值,当x m =得:2y am bm c =++,且1m ≠-,∴y a b c =-+<最小值,即a b -<2am bm +;对称轴为直线12b x a=-=-得2b a =,由于1x =时,0y >,则a b c ++>0,所以2a a c ++>0,解得13a c >-,然后利用1c <-得到13a >-. 【详解】∵抛物线开口向上,∴a>0, ∵抛物线的对称轴为直线12b x a=-=-,∴b=2a>0, ∵抛物线与y 轴的交点在x 轴下方,∴c<0,∴abc<0,所以①错误;∵抛物线2y ax bx c =++与x 轴一个交点在点(0,0)与点(1,0)之间,而对称轴为1x =-,由于抛物线与x 轴一个交点在点(0,0)与点(1,0)之间,根据抛物线的对称轴性,∴抛物线与x 轴另一个交点在点(-3,0)与点(-2,0)之间,即有-3<2x <-2,所以②正确;∵抛物线的对称轴为直线1x =-,且c <-1,∴当2x =-时,421a b c -+<-, 所以③正确;∵抛物线开口向上,对称轴为直线1x =-,∴当1x =-时,y a b c =-+最小值, 当x m =代入2y ax bx c =++得:2y am bm c =++, ∵1m ≠-,∴y a b c =-+<最小值,即a b -<2am bm +,所以④错误; ∵对称轴为直线12b x a =-=-,∴2b a =,∵由于1x =时,0y >,∴a b c ++>0,所以2a a c ++>0,解得13a c >-,根据图象得1c <-,∴13a >-,所以⑤正确. 所以②③⑤正确, 故选:C .【点睛】本题考查了二次函数的图象与系数的关系,以及抛物线与x 轴、y 轴的交点,二次函数y=ax 2+bx+c (a≠0),a 决定抛物线开口方向;c 的符号由抛物线与y 轴的交点的位置确定;b 的符号由a 及对称轴的位置确定;当x =1时,y =a b c ++;当1x =-时,y a b c =-+.11.D解析:D【解析】【分析】求出b 2-4ac 的值,根据b 2-4ac 的正负即可得出答案.【详解】x 2+2x+2=0,这里a=1,b=2,c=2,∵b 2−4ac=22−4×1×2=−4<0,∴方程无实数根,故选D.【点睛】此题考查根的判别式,掌握运算法则是解题关键12.C解析:C【解析】【分析】根据周长关系求出另一边的长,再用面积公式即可表示y 与x 的函数.【详解】∵长方形的周长为24cm ,其中一边长为()x cm ,∴另一边为12-x ,故面积2ycm 则长方形中y 与x 的关系式为(12)y x x =- 故选C【点睛】此题主要考查函数的表示,解题的关键是熟知长方形的周长与面积公式.二、填空题13.P >Q 【解析】∵抛物线的开口向下∴a <0∵∴b >0∴2a-b <0∵∴b+2a=0x=-1时y=a-b+c <0∴∴3b-2c >0∵抛物线与y 轴的正半轴相交∴c >0∴3b+2c >0∴P=3b-2cQ=b解析:P >Q【解析】∵抛物线的开口向下,∴a <0, ∵02b a-> ∴b >0,∴2a-b <0, ∵02b a-= ∴b+2a=0, x=-1时,y=a-b+c <0. ∴102b bc --+< ∴3b-2c >0, ∵抛物线与y 轴的正半轴相交,∴c >0,∴3b+2c >0,∴P=3b-2c ,Q=b-2a-3b-2c=-2a-2b-2c ,∴Q-P=-2a-2b-2c-3b+2c=-2a-5b=-4b <0∴P >Q ,故答案是:P >Q .【点睛】本题考查了二次函数的图象与系数的关系,去绝对值,二次函数的性质.熟记二次函数的性质是解题的关键.14.(40382)【解析】【分析】先求出开始时点C 的横坐标为OC =1根据正六边形的特点每6次翻转为一个循环组循环用2020除以6根据商和余数的情况确定出点C 的位置然后求出翻转B 前进的距离连接CE 过点D 作解析:(4038,【解析】【分析】先求出开始时点C 的横坐标为12OC =1,根据正六边形的特点,每6次翻转为一个循环组循环,用2020除以6,根据商和余数的情况确定出点C 的位置,然后求出翻转B 前进的距离,连接CE ,过点D 作DH ⊥CE 于H ,则CE ⊥EF ,∠CDH =∠EDH =60°,CH =EH ,求出CE =2CH =2×CDsin60°=C 的坐标.【详解】∵六边形ABCDEF为正六边形,∴∠AOC=120°,∴∠DOC=120°﹣90°=30°,∴开始时点C的横坐标为:12OC=12×2=1,∵正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转,每次翻转60°,∴每6次翻转为一个循环组循环,∵2020÷6=336…4,∴为第336循环组的第4次翻转,点C在开始时点E的位置,如图所示:∵A(﹣2,0),∴AB=2,∴翻转B前进的距离=2×2020=4040,∴翻转后点C的横坐标为:4040﹣2=4038,连接CE,过点D作DH⊥CE于H,则CE⊥EF,∠CDH=∠EDH=60°,CH=EH,∴CE=2CH=2×CDsin60°=2×2×32=3,∴点C的坐标为(4038,3),故答案为:(4038,3【点睛】本题考查了正六边形的性质、坐标与图形、翻转的性质、含30°角直角三角形的性质、三角函数等知识;根据每6次翻转为一个循环组,确定出翻转最后点C所在的位置是解题的关键.15.12【解析】【分析】设长为x步宽为(60-x)步根据长方形的面积公式列出方程进行求解即可得【详解】设长为x步宽为(60-x)步x(60-x)=864解得x1=36x2=24(舍去)∴当x=36时60解析:12【解析】【分析】设长为x步,宽为 (60-x) 步,根据长方形的面积公式列出方程进行求解即可得.【详解】设长为x步,宽为(60-x) 步,x(60-x)=864 ,解得,x1=36,x2=24(舍去),∴当x=36 时,60-x=24 ,∴长比宽多:36-24=12 (步),故答案为:12.【点睛】本题考查了一元二次方程的应用,弄清题意,找准等量关系列出方程是解题的关键. 16.【解析】【分析】设BD=x则EC=3xAE=6﹣3x根据S△DEB=·BD·AE得到关于S与x的二次函数解析式利用配方法变形为顶点式即可【详解】解:设BD=x则EC=3xAE=6﹣3x∵∠A=90°解析:3 2【解析】【分析】设BD=x,则EC=3x,AE=6﹣3x,根据S△DEB=12·BD·AE得到关于S与x的二次函数解析式,利用配方法变形为顶点式即可.【详解】解:设BD=x,则EC=3x,AE=6﹣3x,∵∠A=90°,∴EA⊥BD,∴S△DEB=12•x(6﹣3x)=﹣32x2+3x=﹣32(x﹣1)2+32,∴当x=1时,S最大值=3 2 .故答案为:32.【点睛】本题主要考查二次函数的最值问题,解此题的关键在于根据题意设出未知数,根据题意列出函数解析式.17.【解析】【分析】连接OCODOC与AD交于点E根据圆周角定理有根据垂径定理有:解直角即可【详解】连接OCODOC与AD交于点E直尺的宽度:故答案为【点睛】考查垂径定理熟记垂径定理是解题的关键【解析】【分析】连接OC,OD,OC与AD交于点E,根据圆周角定理有130,2BAD BOD∠=∠=︒根据垂径定理有:15,2AE AD == 解直角OAE △即可. 【详解】 连接OC ,OD ,OC 与AD 交于点E ,130,2BAD BOD ∠=∠=︒ 10 3.cos303AE OA ==︒ 5tan 303,3OE AE =⋅︒= 直尺的宽度:105533 3.333CE OC OE =-== 533【点睛】 考查垂径定理,熟记垂径定理是解题的关键.18.(60532)【解析】【分析】根据前四次的坐标变化总结规律从而得解【详解】第一次P1(52)第二次P2(81)第三次P3(101)第四次P4(131)第五次P5(172)…发现点P 的位置4次一个循环解析:(6053,2).【解析】【分析】根据前四次的坐标变化总结规律,从而得解.【详解】第一次P 1(5,2),第二次P 2(8,1),第三次P 3(10,1),第四次P 4(13,1),第五次P 5(17,2),…发现点P 的位置4次一个循环,∵2017÷4=504余1, P 2017的纵坐标与P 1相同为2,横坐标为5+3×2016=6053,∴P 2017(6053,2),故答案为(6053,2).考点:坐标与图形变化﹣旋转;规律型:点的坐标.19.2【解析】【分析】设ABBCAC 与⊙O 的切点分别为DFE ;易证得四边形OECF 是正方形;那么根据切线长定理可得:CE=CF=12(AC+BC-AB )由此可求出r的长【详解】解:如图;在Rt△ABC∠解析:2【解析】【分析】设AB、BC、AC与⊙O的切点分别为D、F、E;易证得四边形OECF是正方形;那么根据切线长定理可得:CE=CF=(AC+BC-AB),由此可求出r的长.【详解】解:如图;在Rt△ABC,∠C=90°,AC=5,BC=12;根据勾股定理AB=四边形OECF中,OE=OF,∠OEC=∠OFC=∠C=90°;∴四边形OECF是正方形;由切线长定理,得:AD=AE,BD=BF,CE=CF;∴CE=CF=(AC+BC-AB);即:r=(5+12-13)=2.故答案为2.20.【解析】试题解析:连接OEAE∵点C为OA的中点∴∠CEO=30°∠EOC=60°∴△AEO为等边三角形∴S扇形AOE=∴S阴影=S扇形AOB-S扇形COD-(S扇形AOE-S△COE)===解析:3212π+.【解析】试题解析:连接OE、AE,∵点C为OA的中点,∴∠CEO=30°,∠EOC=60°,∴△AEO为等边三角形,∴S 扇形AOE =260223603ππ⨯=, ∴S 阴影=S 扇形AOB -S 扇形COD -(S 扇形AOE -S △COE )=2290290121136036032πππ⨯⨯---⨯(=32432ππ-+=122π+ 三、解答题21.(1)详见解析;(2)存在,;(3)当t=2或14s 时,以D 、E 、B 为顶点的三角形是直角三角形.【解析】试题分析:(1)由旋转的性质结合△ABC 是等边三角形可得∠DCB=60°,CD=CE ,从而可得△CDE 是等边三角形;(2)由(1)可知△CDE 是等边三角形,由此可得DE=CD ,因此当CD ⊥AB 时,CD 最短,则DE 最短,结合△ABC 是等边三角形,AC=4即可求得此时DE=CD= (3)由题意需分0≤t <6,6<t <10和t >10三种情况讨论,①当0≤t <6时,由旋转可知,∠ABE=60°,∠BDE <60°,由此可知:此时若△DBE 是直角三角形,则∠BED=90°;②当6<t <10s 时,由性质的性质可知∠DBE=120°>90°,由此可知:此时△DBE 不可能是直角三角形;③当t >10s 时,由旋转的性质可知,∠DBE=60°,结合∠CDE=60°可得∠BDE=∠CDE+∠BDC=60°+∠BDC>60°,由此可得∠BED<60°,由此可知此时若△BDE是直角三角形,则只能是∠BDE=90°;这样结合已知条件即可分情况求出对应的t 的值了. 试题解析:(1)∵将△ACD 绕点C 逆时针方向旋转60°得到△BCE ,∴∠DCE=60°,DC=EC ,∴△CDE 是等边三角形;(2)存在,当6<t <10时,由(1)知,△CDE 是等边三角形,∴DE=CD ,由垂线段最短可知,当CD ⊥AB 时,CD 最小,此时∠ADC=90°,又∵∠ACD=60°,∴∠ACD=30°,∴ AD=12AC=2,∴==∴ DE=23(cm);(3)存在,理由如下:①当0s≤t<6s时,由旋转可知,∠ABE=60°,∠BDE<60°,∴此时若△DBE是直角三角形,则∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEC=60°,∴∠CEB=∠BED-∠DEC=30°,∴∠CDA=∠CEB=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴t=2÷1=2(s);②当6s<t<10s时,由性质的性质可知∠DBE=120°>90°,∴此时△DBE不可能是直角三角形;③当t>10s时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14cm,∴t=14÷1=14(s);综上所述:当t=2s或14s时,以D、E、B为顶点的三角形是直角三角形.点睛:(1)解第2小题的关键是:抓住点D在运动过程中,△DBE是等边三角形这一点得到DE=CD,从而可知当CD⊥AB时,CD最短,则DE最短,由此即可由已知条件解得DE的最小值;(2)解第3小题的关键是:根据点D的不同位置分为三段时间,结合已知条件首先分析出在每个时间段内△BDE中哪个角能够是直角,然后再结合已知条件进行解答即可求得对应的t的值了.22.(1)作图见解析;(2)作图见解析;(3)2π.【解析】【分析】(1)利用轴对称的性质画出图形即可;(2)利用旋转变换的性质画出图形即可;(3)BC 扫过的面积=22OCC OBB S S -扇形扇形,由此计算即可;【详解】(1)△ABC 关于x 轴对称的△A 1B 1C 1如图所示;(2)△ABC 绕点O 逆时针旋转90°后的△A 2B 2C 2如图所示;(3)BC 扫过的面积=22OCC OBB S S -扇形扇形=()()22222290?·1390?·11360360ππ++-=2π.【点睛】本题考查了利用轴对称和旋转变换作图,扇形面积公式等知识,熟练掌握网格结构准确找出对应点的位置是解题的关键.23.(1)12;(2)16 【解析】【分析】(1)由题意可知小丽只有两种可选择:物理或历史,即可求解;(2)从所有等可能结果中找到同时包含生物和化学的结果数,再根据概率公式计算可得.【详解】(1)因为小丽只有两种可选择:物理或历史,所以小丽选到物理的概率为12(2)设思想政治为 A , 地理为 B , 化学为 C , 生物为 D ,画出树状图如下:共有 12 种等可能情况, 选中化学、生物的有2 种,∴P (选中化学、生物)=212=16. 【点睛】本题考查列表法与树状图法,解答本题的关键是明确题意,写出所有的可能性,求出相应的概率.24.(1)作图见解析;裁掉的正方形的边长为2dm,底面积为12dm2;(2)当裁掉边长为2.5dm的正方形时,总费用最低,最低费用为25元.【解析】试题分析:(1)由题意可画出图形,设裁掉的正方形的边长为xdm,则题意可列出方程,可求得答案;(2)由条件可求得x的取值范围,用x可表示出总费用,利用二次函数的性质可求得其最小值,可求得答案.试题解析:(1)如图所示:设裁掉的正方形的边长为xdm,由题意可得(10﹣2x)(6﹣2x)=12,即x2﹣8x+12=0,解得x=2或x=6(舍去),答:裁掉的正方形的边长为2dm,底面积为12dm2;(2)∵长不大于宽的五倍,∴10﹣2x≤5(6﹣2x),解得0<x≤2.5,设总费用为w元,由题意可知w=0.5×2x(16﹣4x)+2(10﹣2x)(6﹣2x)=4x2﹣48x+120=4(x﹣6)2﹣24,∵对称轴为x=6,开口向上,∴当0<x≤2.5时,w随x的增大而减小,∴当x=2.5时,w有最小值,最小值为25元,答:当裁掉边长为2.5dm的正方形时,总费用最低,最低费用为25元.考点:1、二次函数的应用;2、一元二次方程的应用25.(1)见解析;(2)图中阴影部分的面积为8833π.【解析】【分析】(1)由OB=OE,利用等边对等角得到一对角相等,再由BE为角平分线得到一对角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行得到OE与BC平行,利用两直线平行同位角相等得到OE⊥AC,即可得证;(2)由∠A的度数求出∠AOE度数,利用30°直角三角形的性质求出OA的长,利用勾股定理求出AE的长,阴影部分面积=直角三角形AOE面积-扇形OED面积,求出即可.【详解】解:(1)∵OB=OE,∴∠BEO=∠EBO,∵BE平分∠CBO,∴∠EBO=∠CBE,∴∠BEO=∠CBE,∴EO∥BC,∵∠C=90°,∴∠AEO=∠C=90°,则AC是圆O的切线;(2)在Rt△AEO中,∠A=30°,OE=4,∴OA=2OE=8,∠AOE=60°,根据勾股定理得:2243,OA OE-=则S阴影=S△AOE-S扇形EOD=216048 44383. 23603ππ⨯⨯⨯=【点睛】此题考查了切线的判定,以及扇形面积的计算,涉及的知识有:等腰三角形的性质,平行线的判定与性质,含30°直角三角形的性质,以及勾股定理,熟练掌握切线的判定方法是解本题的关键.。
2024北京延庆区初三一模数学试卷和答案
b a 21-2-12024北京延庆初三一模数 学2024.04一、选择题:(共16分,每小题2分)第1—8题均有四个选项,符合题意的选项只有一个.1.右图是某几何体的三视图,该几何体是(A )圆柱 (B )圆锥 (C )长方体 (D )三棱柱2.截止2024年2月18日,在春节期间延庆区共接待游客1320000人,火盆锅、十字花柿为火热的延庆旅游春节档增添了流量.将1320000用科学记数法表示应为(A )710132.0⨯ (B )71032.1⨯ (C )61032.1⨯ (D )5102.13⨯3.如图,直线b a ∥,若∠1=30°,∠2=50°,则∠A 的度数为(A )︒20 (B )︒30 (C )︒40 (D )︒504.下列图形,既是中心对称图形又是轴对称图形的是(A ) (B ) (C ) (D )5.正七边形的外角和是(A )︒180 (B )︒360 (C )︒900 (D )︒12606.实数a ,b 在数轴上的对应点的位置如图所示,下列结论正确的是(A )a >-1 (B )b <1 (C )a >b (D)a+b >07.不透明的盒子中装有黑白两个小球,除颜色外两个小球无其他差别.从中随机摸出一个小球,放回并摇动,再从中随机摸出一个小球,那么第一次摸出白球,第二次摸出黑球的概率是考生须知1.本试卷共8页,共三道大题,28道小题,满分100分,考试时间120分钟.2.在试卷和答题卡上正确填写学校名称、姓名和考号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色签字笔作答.21a Ab(A )21 (B )31 (C )41 (D )438.小明和弟弟周末去图书馆.二人先后从家出发沿同一条路匀速去往图书馆,小明用10min 到达图书馆,弟弟比他早出发2min ,但是在小明到达时弟弟还距离图书馆30m .设小明和弟弟所走的路程分别为1y ,2y ,其中1y ,2y 与时间x 之间的函数关系如图所示.则下列结论正确的是①小明家与图书馆之间的距离为750m ;②当小明出发时,弟弟已经离家120m ;③小明每分钟比弟弟多走10m ; ④小明出发7分钟后追上弟弟.(A )①② (B )①③ (C )②③ (D )①②④二、填空题 (共16分,每小题2分)9.若代数式41-x 有意义,则实数x 的取值范围是 .10.分解因式:=-23xy x . 11.方程xx 1132=-的解为 .12.在平面直角坐标系xOy 中,若点)1(1y A ,,)3(2y B ,在反比例函数)0(>=k xky 的图象上,则1y _____2y (填“>”“=”或“<”). 13.如图,□ABCD 中,延长BC 至E ,使得BC CE 21=.若CF =2,则DF 的长为 .14.某次射击训练中,在同一条件下,甲、乙两名运动员五次射击成绩如下表:甲86777乙95768甲、乙二人射击成绩的平均数分别为甲x ,乙x ,方差分别为2甲s ,2乙s ,则甲x 乙x ,2甲s 2乙s(填“>”“<”或“=”).15.如图,PA ,PB 与⊙O 分别相切于A ,B 两点,连接OA,OB .若∠APB =48°,则∠AOB 的度数为 .16.小明是某蛋糕店的会员,他有一张会员卡,在该店购买的商品均按定价打八五折.周末他去蛋糕店,发现店内正在举办特惠活动:任选两件商品,第二件打七折,如果两件商品不同价,则按照低价商品的价格打折,并且特惠活动不能使用会员卡.小明打算在该店购买两个面包,他计算后发现,使用会员卡与参加特惠活动两者的花费相差0.9元,则 花费较少(直接填写序号:①使用会员卡;②参加特惠活动);两个FED CBA面包的定价相差 元.三、解答题(共68分;17-20题,每小题5分;21题6分;22题5分;23题6分;24题5分;25-26题,每小题6分;27-28题,每小题7分)17.计算:231(845sin 41-++-︒-.18.解不等式组:⎪⎩⎪⎨⎧>+≥+.22312x x x x ,19.已知032=--x x ,求代数式2)1()4(++-x x x 的值.20.已知关于x 的一元二次方程01342=++-m x x 有实数根,且m 为正整数,求m 的值及此时方程的根.21.如图,在矩形ABCD 中,对角线AC 的垂直平分线与边BC ,AD 分别交于点E ,F ,连接AE ,CF .(1)求证:四边形AECF 是菱形;(2)连接OB ,若4=AF ,15tan =∠AEB ,求OB 的长.22.在平面直角坐标系xOy 中,一次函数)0(≠+=k b kx y 的图象经过点A (0,1)和点B (3,2).(1)求这个一次函数的表达式;(2)当x <3时,对于x 的每一个值,函数)0(1≠-=m mx y 的值小于一次函数y =kx +b 的值,直接写出m 的取值范围.23.如图,⊙O 是△ABC 的外接圆,⊙O 的直径AD 交BC 于点E ,点D 为BC ︵的中点,连接BD .(1)求证:∠DBC =∠BAD ;(2)过点C 作CF ⊥BD ,交BD 的延长线于点F ,若23cos =∠DBC ,DF =3,求AC 的长.OBECDF A AD24.某校七、八年级各有400名学生,为了解他们每学期参加社会实践活动的时间情况,现从七、八年级各随机抽取20名学生进行调查,下面给出部分信息.a .七年级20名学生参加社会实践活动时间的数据如下:3,4,8,9,6,8,10,11,5,7,4,11,9,6,7,9,10,9,10,5b .八年级20名学生参加社会实践活动时间的数据的频数分布直方图如下:(数据分为5组:3.5≤x <5.5,5.5≤x <7.5,7.5≤x <9.5,9.5≤x <11.5,11.5≤x <13.5)c .八年级20名学生参加社会实践活动时间的数据在7.5≤x <9.5这一组的是:时间/h 89人数42根据以上信息,解答下列问题:(1)补全b 中的频数分布直方图;(2)七年级20名学生参加社会实践活动时间的数据的众数是 ;八年级20名学生参加社会实践活动时间的数据的中位数是 ;(3)为鼓励学生积极参加社会实践活动,对七、八年级在本学期参加社会实践活动时间不小于8小时的同学进行表彰,估计这两个年级共有多少同学受表彰?25.如图,已知∠ABC ,点D 是边AB 上一点,且DB =6cm ,点P 是线段DB 上的动点,过点P 作BC 的垂线,垂足为E ,连接DE .设DP =x ,DE =y .通过分析发现可以用函数来刻画y 与x 之间的关系,请将以下过程补充完整:/hEP D CBA(1)选点、画图、测量,得到x 与y 的几组数值,数据如下:x / cm 0123456y / cm2.02.22.83.54.35.1m(说明:补全表格时相关数值保留一位小数);(2)自变量x 的取值范围是 ;(3)在平面直角坐标系xOy 中,画出此函数的图象;(4)结合函数图象解决问题:当DE =2DP 时,DE 的长约为 cm .26.在平面直角坐标系xOy 中,点A (3,m ),点B (5,n )在抛物线2(0)y ax bx c a =++>上.设抛物线的对称轴为直线x t =.(1)若m =n ,求t 的值;(2)点)(0p x C ,在该抛物线上,若对于100<<x ,都有p n m <<,求t 的取值范围.27.在△ABC 中,AC = BC ,∠ACB =90°,点D 在线段AC 上(点D 与点A 、点C 不重合),连接BD ,过点D 作DB 的垂线交直线AB 于点E ,过点A 作AB 的垂线交直线DE 于点F .(1)如图1,当点D 在线段AC 上时,①求证:∠ABD=∠AFD ;②用等式表示线段AB ,AD ,AF 之间的数量关系并证明.(2)如图2,当点D 在线段AC 的延长线上时,依题意补全图形,并直接用等式表示线段AB ,AD ,AF 之间的数量关系.28.我们规定:将图形M 先向右平移a (a >0)个单位,得到图形M ',再作出图形M '关于直线x =b 的对称图形M '',则称图形M ''是图形M 的a ,b 平对图形.(1)已知点B (1,2),若a =3,b =1,则点B '的坐标是 ;点B ''的坐标是 ; (2)已知点C (0,3),它的平对图形C ''(4,3),求出a 与b 的数量关系;(3)已知⊙O 的半径为1,其中a ≥1,若存在实数b ,使⊙O 的平对图形与直线y =ax +b 有公共点,直接写出b 的最小值及相应的a 的值.FE DC BA图2图1参考答案第一部分 选择题一、选择题(共16分,每小题2分)题号12345678答案DCADBBCA第二部分 非选择题二、填空题:(共16分,每小题2分)9.4≠x 10.()()x x y x y +- 11.1=x 12.>13.4 14.=,< 15.132 16.①,6三、解答题(共68分)17.解:231(845sin 41-++-︒- 2322224++-⨯=5=.18.解:⎪⎩⎪⎨⎧>+≥+②①.223,12x x x x 由①得,1-≥x ; 由②得,1<x ;∴原不等式组的解集为:11<≤-x .19.解:2)1()4(++-x x x 12422+++-=x x x x 1222+-=x x 1)(22+-=x x .∵032=--x x ,∴32=-x x .∴原式=7.20.解:∵ 关于x 的方程01342=++-m x x 有实数根,∴△≥0.∵ a =1,b =-4,c =3m +1,∴01212)13(41642≥-=+-=-=∆m m ac b .……………………………4分……………………………5分……………………………5分……………………………4分……………………………2分……………………………5分……………………………4分……………………………3分……………………………2分OBECDF A ∴1≤m .∵ m 为正整数, ∴1=m .∴此时的方程为:0442=+-x x .∴方程的解为:221==x x .21.(1)证明:∵矩形ABCD ,∴AF ∥EC,.∴∠FAC=∠ACE .∵EF 的垂直平分AC ,∴AO =CO ,∠AOF=∠EOC=90°.∴△AOF ≌△EOC .∴AF =EC .∴四边形AECF 为平行四边形.∵∠AOF=90°,∴平行四边形AECF 为菱形.(2)解:∵ 菱形AECF ,∴ AF =AE=EC=4.∵ 矩形ABCD ,∴∠ABC=90°. ∵ 15tan =∠AEB ,∴ABEB=设BE=x ,则x 15,在Rt △ABC 中,由勾股定理得222AE BE AB =+,∴ x=1.∴ BE=1,BC =5.在Rt △ABC 中,由勾股定理得222AC BC AB =+,∴102=AC .∴1021==AC OB .22.解:(1)∵一次函数)0(≠+=k b kx y 的图象经过点A (0,1)和点B (3,2),∴⎩⎨⎧+==.32,1b k b ……………………………5分……………………………4分……………………………3分……………………………3分……………………………6分∴⎪⎩⎪⎨⎧==.31,1k b ∴一次函数表达式为131+=x y .(2)m 的取值范围是113m ≤≤.23.(1)证明:∵点D 为BC ︵的中点,∴弧CD =弧BD .∴∠DBC =∠BAD . (2)∵cos DBC =∠, ∴∠DBC =30°.∵AD 是⊙O 的直径,AD ⊥BC ,∴∠ABD =90°.∴∠ABC =60°.∵弧AB =弧AC ,∴AB =AC .∴△ABC 是等边三角形.∴AC =BC .∵∠DBC =∠DAC =30°,∴∠BAD =30°.∴∠BDA =∠ADC =60°.∴∠CDF =60°.∵CF ⊥BD ,∴∠DCF =30°.∵DF =3,∴DC =6.∴AD =12.∴AC =BC=∴AC 24.解:(1)图略;(2)七年级20名学生参加社会实践活动时间的数据的众数是 9 ;……………………………3分……………………………5分……………………………1分……2分……3分FA……………………………6分……………………………2分八年级20名学生参加社会实践活动时间的数据的中位数是8.5 ;(3)估计这两个年级共有500名同学受表彰.25.解:(1)表中的m 的值为 6.0 ;(2)x 的取值范围是60≤≤x ;(3)(3)DE 的长约为 2.4 cm .26.(1)解:∵点A (3,m ),点B (5,n )在抛物线2(0)y ax bx c a =++>上,且m =n ,抛物线的对称轴为x=t ,∴5-t =t -3.∴t =4.(2)∵点A (3,m ),点B (5,n ),点)(0p x C ,在抛物线2(0)y ax bx c a =++>上,∴c b a m ++=39, c b a n ++=525, c bx ax p ++=020.∵ p n m <<, ∴n m <且p n <.①当n m <时,有c b a c b a ++<++52539, ∴b a b a 52539+<+. ∴08>+b a . ∴a b 8->. ∵0>a .∴0<-a . ∴42<-ab. …………………………5分……………………1分……………………5分……………………6分……………………2分……………………3分……………………3分……………………4分 ∵t ab =-2,∴4<t . ②当p n <时,有c bx ax c b a ++<++020525,∴a ax bx b 255200-<-.∴)5)(5()5(000-+<-x x a x b .∵100<<x ,∴)5(0+<x a b .∴2520+>-x a b.∴3≥t .综上:43<≤t .27.(1)①证明:∵DB ⊥DE ,AF ⊥AB ,∴∠BDE =∠EAF=90°.∴∠DBE+∠DEB =∠AFE+∠AEF .∵∠DEB =∠AEF ,∴∠DBE =∠AFE .②过点D 作DG ⊥AC ,交AB 于G ,∵AC = BC ,∠ACB =90°,∴∠DAG =∠DGA =45°.∴AD =DG ,∠DGB =∠DAF=135°.∵∠ADG =∠BDF =90°,∴∠DAF =∠BDG .∴△DAF ≌△BDG .∴AF =BG .在Rt △ADG 中,由勾股定理得,AD AG 2=.∵AB=AG+BG ,∴AF AD AB +=2.(2)........................2分 (5)分……………………4分……………………6分……………………5分AF AD AB -=2.28.解:(1)点B '的坐标是(4,2);点B ''的坐标是 (-2,2) ;(2)∵ 点C (0,3),它的平对图形C ''(4,3),∴设C (0,3)向右平移a 个单位长度,得到)3,(a C ',C '关于直线x =b 的对称图形C '',∴4-b =b -a .∴2b -a=4.(3)b 的最小值为321-,相应的a 的值为1.E FA BCD ……………6分…………2分……………………7分……………………4分……………7分。
2019-2020延庆初三1模数学试卷-含参考答案
延庆区2019-2020学年第二学期练习卷初三数学考生须知1.本试卷共8页,共三道大题,28道小题,满分100分,考试时间120分钟.2.在试卷和答题卡上认真填写学校名称、姓名和学号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色签字笔作答.下面各题均有四个选项,其中只有一个是符合题意的.1.最近,科学家发现了一种新型病毒,其最大直径约为0.00012mm,将0.00012用科学记数法表示为A.1.2×10-3B.1.2×10-4C.1.2×104D.12×1032.下列各组图形中,△A'B'C'与△ABC成中心对称的是A.B.C.D.3.下列立体图形的主视图、左视图、俯视图都一样的是A.B.C.D.4.若分式21x有意义,则x的取值范围是A.x>-2 B.x<-2 C.x=-2 D.x≠-25. 数轴上A ,B ,C ,D四点中,有可能在以原点为圆心,以6为半径的圆上的点是 A .点A B .点B C .点C D .点D6. 如图所示,△ABC 中AB 边上的高线是A .线段DAB .线段CAC .线段CDD .线段BD7. 下列实数中,无理数的个数是①0.333②17③5 ④π ⑤6.18118111811118……A . 1个B .2个C .3个D .4个8.如图,在⊙O 中,点C 在优弧AB 上,将弧BC 沿直线BC 折叠后刚好经过弦AB 的 中点D .若⊙O 的半径为5,AB =4,则BC 的长是 A .32 B .23C .235D .265 二、填空题 (共8个小题,每题2分,共16分) 9.因式分解:a 3-9a= . 10.如果a +b =2,那么代数式22212b a ba b a ab b -⎛⎫+⋅ ⎪-++⎝⎭的值是 . 11.如图,∠1,∠2,∠3,∠4 是五边形ABCDE 的4个外角,若∠A =100°, 则∠1+∠2+∠3+∠4 = .CBADC B A12.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,点E在边BC上,AE与BD相交于点G,若AG : GE=3 : 1,则EC : BC= .13.把光盘、含60°角的三角板和直尺如图摆放,AB=2,则光盘的直径是.14.将含有30°角的直角三角板如图放置在平面直角坐标系中,OB在x轴上,将三角板绕原点O顺时针旋转75°,若OA=4,则点A的对应点A′的坐标为_____.15.如图,小明在A时测得某树的影长为3米,B时又测得该树的影长为12米,若两次日照的光线互相垂直,则树的高度为_____米.16.小明的爸爸想给妈妈送张美容卡作为生日礼物,小明家附近有3家美容店,爸爸不知如何选择,于是让小明对3家店铺顾客的满意度做了调查:合计美容店A53 28 19 100美容店B50 40 10 100美容店C65 26 9 100(说明:顾客对于店铺的满意度从高到低,依次为3个笑脸,2个笑脸,1个笑脸)小明选择将(填“A”、“ B”或“C”)美容店推荐给爸爸,能使妈妈获得满意体验可能性最大.三、解答题(本题共68分)17.计算:()0123tan 30113π---+-o .18.解不等式组:()13352x x x x ⎧-<-⎪⎨+⎪⎩,≥. 19.关于x 的一元二次方程0122=-+x mx 有两个不相等的实数根. (1)求m 的取值范围;(2)若方程的两个根都是有理数,写出一个满足条件的m 的值,并求出此时方程的根. 20.已知,如图,点A 是直线l 上的一点. 求作:正方形ABCD ,使得点B 在直线l 上.(要求保留作图痕迹,不用写作法) 请你说明,∠BAD =90°的依据是什么?21.四边形ABCD 中,∠A =∠B = 90°,点E 在边AB 上,点F 在AD 的延长线上,且点E 与点F 关于直线 CD 对称,过点E 作EG ∥AF 交CD 于点G ,连接 FG ,DE . (1)求证:四边形DEGF 是菱形;(2)若AB =10,AF =BC =8,求四边形DEGF 的面积.22.如图,AB 是⊙O 的直径,点C 是⊙O 上的一点,点D 是弧BC 的中点,连接AC ,BD ,过点D 作AC 的垂线EF ,交AC 的延长线于点E ,交AB 的延长线于点F . (1)依题意补全图形;(2)判断直线EF 与⊙O 的位置关系,并说明理由; (3)若AB =5,BD =3,求线段BF 的长.23.在平面直角坐标系xOy 中,将点A (2,4)向下平移2个单位得到点C ,反比例函数xmy(m ≠0)的图象经过点C ,过点C 作CB ⊥x 轴于点B . (1)求m 的值;(2)一次函数y =kx+b (k <0)的图象经过点C ,交x 轴于点D线段CD ,BD ,BC 围成的区域(不含边界)为G ; 若横、纵坐标都是整数的点叫做整点. ①b =3时,直接写出区域G 内的整点个数.②若区域G 内没有整点,结合函数图象,确定k 的取值范围.24.为了发展学生的数学核心素养,培养学生的综合能力,某市开展了初三学生的数学 学业水平测试.在这次测试中,从甲、乙两校各随机抽取了30名学生的测试成绩进行 调查分析. 收集数据甲校 94 82 77 76 77 88 90 88 85 86 88 89 84 92 8788 80 53 89 91 91 86 68 75 94 84 76 69 83 92乙校 83 64 91 88 71 92 88 92 86 61 78 91 84 92 9274 75 93 82 57 86 89 89 94 83 84 81 94 72 90整理、描述数据 按如下分数段整理、描述这两组样本数据:(说明:成绩80分及以上为优秀,60~79分为合格,60分以下为不合格) 分析数据 两组样本数据的平均数、中位数、众数如下表所示:(1)请你补全表格;(2)若甲校有300名学生,估计甲校此次测试的优秀人数为____; (3)可以推断出____校学生成绩的比较好,理由为________________.25.如图,AB 是⊙O 的弦,AB =5cm ,点P 是弦AB 上的一个定点,点C 是弧AB 上的一个动点,连接CP 并延长,交⊙O 于点D .小明根据学习函数的经验,分别对AC ,PC ,PD 长度之间的关系进行了探究. 下面是小明的探究过程:(1)对于点C 在弧AB 上的不同位置,画图、测量,得到了线段AC ,PC ,PD 的长度的几组值,如下表:位置1 位置2 位置3 位置4 位置5 位置6 位置7 位置8 位置9AC /cm 0 0.37 1.00 0.82 2.10 3.00 3.50 3.91 5.00 PC /cm 1.00 0.81 0.69 0.75 1.26 2.11 2.50 3.00 4.00 PD /cm 4.005.005.806.003.001.901.501.321.00在AC ,PC ,PD 的长度这三个量中,确定___的长度是自变量,其他两条线段的长度都是这个自变量的函数;(2)请你在同一平面直角坐标系xOy 中,画(1)中所确定的两个函数的图象; (3)结合函数图象,解决问题:①当PC =PD 时,AC 的长度约为 cm ; ②当△APC 为等腰三角形时,PC 的长度约为 cm.x /cmy /cm123456654321O26.在平面直角坐标系xOy 中,抛物线2+3y ax bx a =+(a ≠0)过点A (1,0). (1)求抛物线的对称轴;(2)直线y=-x+4与y 轴交于点B ,与该抛物线的对称轴交于点C ,现将点B 向左平移一个单位到点D ,如果该抛物线与线段CD 有交点,结合函数的图象,求a 的取值范围.27.如图1,在等腰直角△ABC 中,∠A =90°,AB =AC=3,在边AB 上取一点D (点D不与点A ,B 重合),在边AC 上取一点E ,使AE =AD ,连接DE . 把△ADE 绕点A 逆时针方向旋转α(0°<α<360°),如图2.(1)请你在图2中,连接CE 和BD ,判断线段CE 和BD 的数量关系,并说明理由; (2)请你在图3中,画出当α =45°时的图形,连接CE 和BE ,求出此时△CBE 的面积;(3)若AD =1,点M 是CD 的中点,在△ADE 绕点A 逆时针方向旋转的过程中,线段AM 的最小值是________________.图1图3图 2Oyx–1–2–3–4–5–6123456–1–2–3–4–5–612345628.对于平面内的点P和图形M,给出如下定义:以点P为圆心,以r为半径作⊙P,使得图形M上的所有点都在⊙P的内部(或边上),当r最小时,称⊙P为图形M的P点控制圆,此时,⊙P的半径称为图形M的P点控制半径.已知,在平面直角坐标系中,正方形OABC的位置如图所示,其中点B(2,2).(1)已知点D(1,0),正方形OABC的D点控制半径为r1,正方形OABC的A点控制半径为r2,请比较大小:r1 r2;(2)连接OB,点F是线段OB上的点,直线l:y=3x+b;若存在正方形OABC的F 点控制圆与直线l有两个交点,求b的取值范围.延庆区2019-2020学年第二学期练习卷初 三 数 学 答 案一、选择题:(共8个小题,每小题2分,共16分)BDCD ACCB二、填空题 (共8个小题,每空2分,共16分) 9.a (a -3) (a +3) 10.12 11.280° 12.2:313.34 14. (22,22-) 15. 6 16.C三、解答题17.()03tan 3011π--+o . 解:原式311=+2=18.解不等式组:()13352x x x x ⎧-<-⎪⎨+⎪⎩,≥. 18.解:解不等式13(3)x x -<-,得4x >. 解不等式52x x +≥,得5x ≥. ∴原不等式组的解集为5x ≥.19. (1)∵关于x 的一元二次方程0122=-+x mx 有两个不相等的实数根,∴Δ>0,且m ≠0.∴4+4m >0. ∴m >-1且m ≠0 (2)答案不唯一20. 如图:依据:直径所对的圆周角是直角.答案不唯一21.(1)∵点E与点F关于直线CD对称,∴FD=ED,FG=EG.∴△FDG≌△EDG.∴∠EDG=∠FDG.∵EG∥AF,∴∠EGD=∠FDG.∴∠EGD=∠EDG.∴ED=EG.∴FD=ED=FG=EG.∴四边形DEGF是菱形.(2)连接FC,EC.∵∠A=∠B= 90°,AF=BC=8,∴四边形ABCF是矩形.∴CE=CF=AB=10.∴BE=6.∴AE=4.设FD=ED=FG=EG=x,则AD=8-x.在Rt△ADE中,42+(8-x)2=x2.∴x=5.∴S=5×4=20 .22.(1)画图(2)相切 ,理由如下:连接OD .∵点D 是弧BC 的中点,∴∠BOD =∠F AE .∴OD ∥AE .∴∠FDO =∠E .∵AE ⊥EF ,∴∠E =90°.∴∠FDO =90°.∴直线EF 是⊙O 的切线.(3)连接AD .∵AB 是⊙O 的直径,∴∠ADB =90°.∵AB =5,BD =3,∴AD =4.∴AE =3.2.设BF=x ,则OF =2.5+x ,AF =5+x . ∴x x +=+52.35.25.2 ∴x =745. ∴BF =745. 23.(1)∵点A (2,4)向下平移2个单位得到点C ,∴点C (2,2).∵反比例函数xm y =(m ≠0)的图象经过点C , ∴m =4(2) ①1②k ≤-124.(1) 5,12,86,92(2)220(3)略25.(1)AC(2)略(3) ①2.88②0.8,0.69,126.(1)∵抛物线2+3y ax bx a =+(a ≠0)过点A (1,0),∴a+b +3a =0.∴b =-4a .∴x =2.(2)a ≥21,a ≤-227.(1)如图,BD =CE .理由如下:∵∠BAC =∠DAE=90°,∴∠DAB =∠EAC .∵AB=AC ,AD=AE ,∴△ADB ≌△AEC .∴BD =CE .(2)如图,此时AE ∥BC .∴△CBE 的面积与△ABC 的面积相等.∵△ABC 的面积为4.5,∴△CBE 的面积4.5.(3)128.(1) <(2)24-32-2<b <24。
2020-2021北京延庆县第一中学初三数学下期末第一次模拟试题(附答案)
2020-2021北京延庆县第一中学初三数学下期末第一次模拟试题(附答案)一、选择题1.在下面的四个几何体中,左视图与主视图不相同的几何体是( )A .B .C .D .2.在△ABC 中(2cosA-2)2+|1-tanB|=0,则△ABC 一定是( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形 3.如图,将△ABC 绕点C (0,1)旋转180°得到△A'B'C ,设点A 的坐标为(,)a b ,则点的坐标为( )A .(,)a b --B .(,1)a b ---C .(,1)a b --+D .(,2)a b --+4.在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书活动.为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示: 册数0 1 2 3 4 人数 4 12 16 17 1关于这组数据,下列说法正确的是( )A .中位数是2B .众数是17C .平均数是2D .方差是2 5.函数31x y x +=-中自变量x 的取值范围是( ) A .x ≥-3 B .x ≥-3且1x ≠ C .1x ≠ D .3x ≠-且1x ≠6.三张外观相同的卡片分别标有数字1,2,3,从中随机一次性抽出两张,则这两张卡片上的数字恰好都小于3的概率是( )A .19B .16C .13D .237.已知二次函数y =ax 2+bx +c ,且a>b>c ,a +b +c =0,有以下四个命题,则一定正确命题的序号是( )①x=1是二次方程ax 2+bx +c=0的一个实数根;②二次函数y =ax 2+bx +c 的开口向下;③二次函数y =ax 2+bx +c 的对称轴在y 轴的左侧;④不等式4a+2b+c>0一定成立.A .①②B .①③C .①④D .③④8.2-的相反数是( )A .2-B .2C .12D .12- 9.已知AC 为矩形ABCD 的对角线,则图中1∠与2∠一定不相等的是( )A .B .C .D .10.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )A .12B .15C .12或15D .1811.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D .若AC =5,BC =2,则sin ∠ACD 的值为( )A .53B .25C .5D .2312.如图,点A ,B 在反比例函数y =(x >0)的图象上,点C ,D 在反比例函数y =(k >0)的图象上,AC ∥BD ∥y 轴,已知点A ,B 的横坐标分别为1;2,△OAC 与△CBD 的面积之和为,则k 的值为( )A .2B .3C .4D .二、填空题13.已知a ,b ,c 是△ABC 的三边长,a ,b 满足|a ﹣7|+(b ﹣1)2=0,c 为奇数,则c=_____.14.如果a 是不为1的有理数,我们把11a -称为a 的差倒数如:2的差倒数是1112=--,-1的差倒数是111(1)2=--,已知14a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,…,依此类推,则 2019a =___________ .15.关于x 的一元二次方程2310ax x --=的两个不相等的实数根都在-1和0之间(不包括-1和0),则a 的取值范围是___________16.如图所示,图①是一个三角形,分别连接三边中点得图②,再分别连接图②中的小三角形三边中点,得图③……按此方法继续下去.在第n 个图形中有______个三角形(用含n 的式子表示)17.九年级三班小亮同学学习了“测量物体高度”一节课后,他为了测得如图所放风筝的高度,进行了如下操作:(1)在放风筝的点A 处安置测倾器,测得风筝C 的仰角∠CBD =60°;(2)根据手中剩余线的长度出风筝线BC 的长度为70米;(3)量出测倾器的高度AB =1.5米.根据测量数据,计算出风筝的高度CE 约为_____米.(精确到0.1米,3≈1.73).18.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =_____.19.如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D 恰好落在BC边上的点F处,那么cos∠EFC的值是.x 在实数范围内有意义,则x的取值范围是_____.20.若式子3三、解答题21.某种蔬菜的销售单价y1与销售月份x之间的关系如图1所示,成本y2与销售月份x之间的关系如图2所示(图1的图象是线段,图2的图象是抛物线)(1)已知6月份这种蔬菜的成本最低,此时出售每千克的收益是多少元?(收益=售价﹣成本)(2)哪个月出售这种蔬菜,每千克的收益最大?简单说明理由.(3)已知市场部销售该种蔬菜4、5两个月的总收益为22万元,且5月份的销售量比4月份的销售量多2万千克,求4、5两个月的销售量分别是多少万千克?22.为了解某县建档立卡贫困户对精准扶贫政策落实的满意度,现从全县建档立卡贫困户中随机抽取了部分贫困户进行了调查(把调查结果分为四个等级:A级:非常满意;B 级:满意;C级:基本满意;D级:不满意),并将调查结果绘制成如下两幅不完整的统计图.请根据统计图中的信息解决下列问题:(1)本次抽样调查测试的建档立卡贫困户的总户数______.(2)图1中,∠α的度数是______,并把图2条形统计图补充完整.(3)某县建档立卡贫困户有10000户,如果全部参加这次满意度调查,请估计非常满意的人数约为多少户?(4)调查人员想从5户建档立卡贫困户(分别记为,,,,a b c d e )中随机选取两户,调查他们对精准扶贫政策落实的满意度,请用列表或画树状图的方法求出选中贫困户e 的概率.23.某旅行团32人在景区A 游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B 游玩.景区B 的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.24.小华想复习分式方程,由于印刷问题,有一个数“?”看不清楚:?1322x x +=--. (1)她把这个数“?”猜成5,请你帮小华解这个分式方程;(2)小华的妈妈说:“我看到标准答案是:方程的增根是2x =,原分式方程无解”,请你求出原分式方程中“?”代表的数是多少?25.已知n 边形的内角和θ=(n-2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n 边形变为(n+x )边形,发现内角和增加了360°,用列方程的方法确定x.26.如图,ABC ∆是边长为4cm 的等边三角形,边AB 在射线OM 上,且6OA cm =,点D 从点O 出发,沿OM 的方向以1cm/s 的速度运动,当D 不与点A 重合时,将ACD ∆绕点C 逆时针方向旋转60°得到BCE ∆,连接DE.(1)如图1,求证:CDE ∆是等边三角形;(2)如图2,当6<t<10时,DE 是否存在最小值?若存在,求出DE 的最小值;若不存在,请说明理由.(3)当点D 在射线OM 上运动时,是否存在以D ,E ,B 为顶点的三角形是直角三角形?若存在,求出此时t 的值;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所得到的图形,细心观察即可求解.【详解】A 、正方体的左视图与主视图都是正方形,故A 选项不合题意;B 、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故B 选项与题意相符;C 、球的左视图与主视图都是圆,故C 选项不合题意;D 、圆锥左视图与主视图都是等腰三角形,故D 选项不合题意;故选B .【点睛】本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图.2.D解析:D【解析】【分析】根据非负数的和为零,可得每个非负数同时为零,根据特殊角三角函数值,可得∠A 、∠B 的度数,根据直角三角形的判定,可得答案.【详解】解:由()2+|1-tanB|=0,得,1-tanB=0.解得∠A=45°,∠B=45°,则△ABC 一定是等腰直角三角形,故选:D .【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.3.D解析:D【解析】试题分析:根据题意,点A 、A′关于点C 对称,设点A 的坐标是(x ,y ),则0122a xb y ++==,,解得2x a y b =-=-+,,∴点A 的坐标是(2)a b --+,.故选D . 考点:坐标与图形变化-旋转.4.A解析:A【解析】试题解析:察表格,可知这组样本数据的平均数为:(0×4+1×12+2×16+3×17+4×1)÷50=;∵这组样本数据中,3出现了17次,出现的次数最多,∴这组数据的众数是3;∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,∴这组数据的中位数为2,故选A.考点:1.方差;2.加权平均数;3.中位数;4.众数.5.B解析:B【解析】分析:本题主要考查自变量的取值范围,函数关系中主要有二次根式和分式两部分.根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,就可以求解.解答:解:∵3x ≥0,∴x+3≥0,∴x≥-3,∵x-1≠0,∴x≠1,∴自变量x的取值范围是:x≥-3且x≠1.故选B.6.C解析:C【解析】【分析】画出树状图即可求解.【详解】解:画树状图得:∵共有6种等可能的结果,而两张卡片上的数字恰好都小于3有2种情况,∴两张卡片上的数字恰好都小于3概率=13;故选:C.【点睛】本题考查的是概率,熟练掌握树状图是解题的关键.7.C解析:C【解析】试题分析:当x=1时,a+b+c=0,因此可知二次方程ax 2+bx +c=0的一个实数根,故①正确;根据a >b >c ,且a+b+c =0,可知a >0,函数的开口向上,故②不正确; 根据二次函数的对称轴为x =-2b a,可知无法判断对称轴的位置,故③不正确; 根据其图像开口向上,且当x =2时,4a+2b+c >a+b+c=0,故不等式4a+2b+c>0一定成立,故④正确.故选:C.8.B解析:B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B .【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .9.D解析:D【解析】【分析】【详解】解:A 选项中,根据对顶角相等,得1∠与2∠一定相等;B 、C 项中无法确定1∠与2∠是否相等;D 选项中因为∠1=∠ACD ,∠2>∠ACD ,所以∠2>∠1.故选:D10.B解析:B【解析】试题分析:根据题意,要分情况讨论:①、3是腰;②、3是底.必须符合三角形三边的关系,任意两边之和大于第三边.解:①若3是腰,则另一腰也是3,底是6,但是3+3=6,∴不构成三角形,舍去. ②若3是底,则腰是6,6.3+6>6,符合条件.成立.∴C=3+6+6=15.故选B .考点:等腰三角形的性质.11.A解析:A【解析】【分析】在直角△ABC中,根据勾股定理即可求得AB,而∠B=∠ACD,即可把求sin∠ACD转化为求sin B.【详解】在直角△ABC中,根据勾股定理可得:AB222252AC BC=+=+=()3.∵∠B+∠BCD=90°,∠ACD+∠BCD=90°,∴∠B=∠ACD,∴sin∠ACD=sin∠B5 ACAB==.故选A.【点睛】本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系,难度适中.12.C解析:C【解析】【分析】由题意,可得A(1,1),C(1,k),B(2,),D(2,k),则△OAC面积=(k-1),△CBD的面积=×(2-1)×(k-)=(k-1),根据△OAC与△CBD的面积之和为,即可得出k的值.【详解】∵AC∥BD∥y轴,点A,B的横坐标分别为1、2,∴A(1,1),C(1,k),B(2,),D(2,k),∴△OAC面积=×1×(k-1),△CBD的面积=×(2-1)×(k-)=(k-1),∵△OAC与△CBD的面积之和为,∴(k-1)+ (k-1)=,∴k=4.故选C.【点睛】本题考查反比例函数系数k的几何意义,三角形面积的计算,解题的关键是用k表示出△OAC与△CBD的面积.二、填空题13.7【解析】【分析】根据非负数的性质列式求出ab 的值再根据三角形的任意两边之和大于第三边两边之差小于第三边求出c 的取值范围再根据c 是奇数求出c 的值【详解】∵ab 满足|a ﹣7|+(b ﹣1)2=0∴a﹣7解析:7【解析】【分析】根据非负数的性质列式求出a 、b 的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c 的取值范围,再根据c 是奇数求出c 的值.【详解】∵a ,b 满足|a ﹣7|+(b ﹣1)2=0,∴a ﹣7=0,b ﹣1=0,解得a=7,b=1,∵7﹣1=6,7+1=8,∴68c <<,又∵c 为奇数,∴c=7,故答案为7.【点睛】本题考查非负数的性质:偶次方,解题的关键是明确题意,明确三角形三边的关系.14.【解析】【分析】利用规定的运算方法分别算得a1a2a3a4…找出运算结果的循环规律利用规律解决问题【详解】∵a1=4a2=a3=a4=…数列以4−三个数依次不断循环∵2019÷3=673∴a2019 解析:34. 【解析】【分析】 利用规定的运算方法,分别算得a 1,a 2,a 3,a 4…找出运算结果的循环规律,利用规律解决问题.【详解】∵a 1=4a 2=11111143a ==---, a 3=211311413a ⎛⎫ ⎪⎝=⎭=---,a 4=31143114a ==--, …数列以4,−1334,三个数依次不断循环, ∵2019÷3=673, ∴a 2019=a 3=34, 故答案为:34. 【点睛】 此题考查规律型:数字的变化类,倒数,解题关键在于掌握运算法则找到规律.15.<a<-2【解析】【分析】【详解】解:∵关于x 的一元二次方程ax2-3x-1=0的两个不相等的实数根∴△=(-3)2-4×a×(-1)>0解得:a >−设f (x )=ax2-3x-1如图∵实数根都在-1解析:94-<a<-2 【解析】【分析】【详解】 解:∵关于x 的一元二次方程ax 2-3x-1=0的两个不相等的实数根∴△=(-3)2-4×a×(-1)>0,解得:a >−94设f (x )=ax 2-3x-1,如图,∵实数根都在-1和0之间,∴-1<−32a -<0, ∴a <−32, 且有f (-1)<0,f (0)<0,即f (-1)=a×(-1)2-3×(-1)-1<0,f (0)=-1<0,解得:a <-2,∴−94<a <-2, 故答案为−94<a <-2. 16.【解析】【分析】分别数出图①图②图③中的三角形的个数可以发现:第几个图形中三角形的个数就是4与几的乘积减去3如图③中三角形的个数为9=4×3-3按照这个规律即可求出第n 各图形中有多少三角形【详解】分 解析:()43n -【解析】【分析】分别数出图①、图②、图③中的三角形的个数,可以发现:第几个图形中三角形的个数就是4与几的乘积减去3.如图③中三角形的个数为9=4×3-3.按照这个规律即可求出第n 各图形中有多少三角形.【详解】分别数出图①、图②、图③中的三角形的个数,图①中三角形的个数为1=4×1-3; 图②中三角形的个数为5=4×2-3; 图③中三角形的个数为9=4×3-3; …可以发现,第几个图形中三角形的个数就是4与几的乘积减去3.按照这个规律,如果设图形的个数为n ,那么其中三角形的个数为4n-3.故答案为4n-3.【点睛】此题主要考查学生对图形变化类这个知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形,数据等条件,通过认真思考,归纳总结出规律,此类题目难度一般偏大,属于难题.17.1【解析】试题分析:在Rt△CBD 中知道了斜边求60°角的对边可以用正弦值进行解答试题解析:在Rt△CBD 中DC=BC•sin60°=70×≈6055(米)∵AB=15∴CE=6055+15≈621解析:1.【解析】试题分析:在Rt △CBD 中,知道了斜边,求60°角的对边,可以用正弦值进行解答. 试题解析:在Rt △CBD 中,.55(米). ∵AB=1.5,∴CE=60.55+1.5≈62.1(米).考点:解直角三角形的应用-仰角俯角问题.18.6【解析】分析:根据BD=CDAB=CD可得BD=BA再根据AM⊥BDDN⊥AB即可得到DN=AM=3依据∠ABD=∠MAP+∠PAB∠ABD=∠P+∠BAP即可得到△APM 是等腰直角三角形进而得到解析:6【解析】分析:根据BD=CD,AB=CD,可得BD=BA,再根据AM⊥BD,DN⊥AB,即可得到DN=AM=32,依据∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,即可得到△APM是等腰直角三角形,进而得到AP=2AM=6.详解:∵BD=CD,AB=CD,∴BD=BA,又∵AM⊥BD,DN⊥AB,∴DN=AM=32,又∵∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,∴∠P=∠PAM,∴△APM是等腰直角三角形,∴AP=2AM=6,故答案为6.点睛:本题主要考查了平行四边形的性质以及等腰直角三角形的性质的运用,解决问题给的关键是判定△APM是等腰直角三角形.19.【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°AF=AD=5根据矩形的性质得到∠EFC=∠BAF根据余弦的概念计算即可由翻转变换的性质可知∠AFE=∠D=90°AF=AD=5∴∠EF解析:.【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF,根据余弦的概念计算即可.由翻转变换的性质可知,∠AFE=∠D=90°,AF=AD=5,∴∠EFC+∠AFB=90°,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF,cos∠BAF==,∴cos∠EFC=,故答案为:.考点:轴对称的性质,矩形的性质,余弦的概念.20.x≥﹣3【解析】【分析】直接利用二次根式的定义求出x的取值范围【详解】解:若式子在实数范围内有意义则x+3≥0解得:x≥﹣3则x的取值范围是:x≥﹣3故答案为:x≥﹣3【点睛】此题主要考查了二次根式解析:x ≥﹣3【解析】【分析】直接利用二次根式的定义求出x 的取值范围.【详解】.在实数范围内有意义,则x +3≥0,解得:x ≥﹣3,则x 的取值范围是:x ≥﹣3.故答案为:x ≥﹣3.【点睛】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.三、解答题21.(1)6月份出售这种蔬菜每千克的收益是2元.(2)5月份出售这种蔬菜,每千克的收益最大.(3)4月份的销售量为4万千克,5月份的销售量为6万千克.【解析】分析:(1)找出当x=6时,y 1、y 2的值,二者作差即可得出结论;(2)观察图象找出点的坐标,利用待定系数法即可求出y 1、y 2关于x 的函数关系式,二者作差后利用二次函数的性质即可解决最值问题;(3)求出当x=4时,y 1﹣y 2的值,设4月份的销售量为t 万千克,则5月份的销售量为(t+2)万千克,根据总利润=每千克利润×销售数量,即可得出关于t 的一元一次方程,解之即可得出结论.详解:(1)当x=6时,y 1=3,y 2=1,∵y 1﹣y 2=3﹣1=2,∴6月份出售这种蔬菜每千克的收益是2元.(2)设y 1=mx+n ,y 2=a (x ﹣6)2+1.将(3,5)、(6,3)代入y 1=mx+n ,3563m n m n +=⎧⎨+=⎩,解得:237m n ⎧=-⎪⎨⎪=⎩, ∴y 1=﹣23x+7; 将(3,4)代入y 2=a (x ﹣6)2+1,4=a (3﹣6)2+1,解得:a=13, ∴y 2=13(x ﹣6)2+1=13x 2﹣4x+13.∴y1﹣y2=﹣23x+7﹣(13x2﹣4x+13)=﹣13x2+103x﹣6=﹣13(x﹣5)2+73.∵﹣13<0,∴当x=5时,y1﹣y2取最大值,最大值为73,即5月份出售这种蔬菜,每千克的收益最大.(3)当t=4时,y1﹣y2=﹣13x2+103x﹣6=2.设4月份的销售量为t万千克,则5月份的销售量为(t+2)万千克,根据题意得:2t+73(t+2)=22,解得:t=4,∴t+2=6.答:4月份的销售量为4万千克,5月份的销售量为6万千克.点睛:本题考查了待定系数法求一次(二次)函数解析式、二次函数的性质以及一元一次方程的应用,解题的关键是:(1)观察函数图象,找出当x=6时y1﹣y2的值;(2)根据点的坐标,利用待定系数法求出y1、y2关于x的函数关系式;(3)找准等量关系,正确列出一元一次方程.22.(1)60;(2)54°;(3)1500户;(4)见解析,2 5 .【解析】【分析】(1)用B级人数除以B级所占百分比即可得答案;(2)用A级人数除以总人数可求出A 级所占百分比,乘以360°即可得∠α的度数,总人数减去A级、B级、D级的人数即可得C级的人数,补全条形统计图即可;(3)用10000乘以A级人数所占百分比即可得答案;(4)画出树状图,得出所有可能出现的结果及选中e的结果,根据概率公式即可得答案.【详解】(1)21÷35%=60(户)故答案为60(2)9÷60×360°=54°,C级户数为:60-9-21-9=21(户),补全条形统计图如所示:故答案为:54°(3)910000150060⨯=(户) (4)由题可列如下树状图:由树状图可知,所有可能出现的结果共有20种,选中e 的结果有8种∴P (选中e )=82205=. 【点睛】本题考查了条形统计图、扇形统计图及概率,概率=所求结果数与所有可能出现的结果数的比值,正确得出统计图中的信息,熟练掌握概率公式是解题关键.23.(1)该旅行团中成人17人,少年5人;(2)①1320元,②最多可以安排成人和少年共12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中当成人10人,少年2人时购票费用最少.【解析】【分析】(1)设该旅行团中成人x 人,少年y 人,根据儿童10人,成人比少年多12人列出方程组求解即可;(2)①根据一名成人可以免费携带一名儿童以及少年8折,儿童6折直接列式计算即可; ②分情况讨论,分别求出在a 的不同取值范围内b 的最大值,得到符合题意的方案,并计算出所需费用,比较即可.【详解】解:(1)设该旅行团中成人x 人,少年y 人,根据题意,得 103212x y x y ++=⎧⎨=+⎩,解得175x y =⎧⎨=⎩. 答:该旅行团中成人17人,少年5人.(2)∵①成人8人可免费带8名儿童,∴所需门票的总费用为:()10081000.851000.6108=1320⨯+⨯⨯+⨯⨯-(元).②设可以安排成人a 人、少年b 人带队,则11715a b ,剟剟. 当1017a 剟时, (ⅰ)当10a =时,10010801200b ⨯+„,∴52b „, ∴2b =最大值,此时12a b +=,费用为1160元.(ⅱ)当11a =时,10011801200b ⨯+„,∴54b „, ∴1b =最大值,此时12a b +=,费用为1180元. (ⅲ)当12a …时,1001200a …,即成人门票至少需要1200元,不合题意,舍去. 当110a <„时,(ⅰ)当9a =时,100980601200b ⨯++„,∴3b ≤,∴3b =最大值,此时12a b +=,费用为1200元.(ⅱ)当8a =时,100880601200b ⨯++„,∴72b ≤,∴3b =最大值,此时1112a b +=<,不合题意,舍去.(ⅲ)同理,当8a <时,12a b +<,不合题意,舍去.综上所述,最多可以安排成人和少年共12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中当成人10人,少年2人时购票费用最少.【点睛】本题主要考查了二元一次方程组的应用,不等式的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.24.(1)0x =;(2)原分式方程中“?”代表的数是-1.【解析】【分析】(1)“?”当成5,解分式方程即可,(2)方程有增根是去分母时产生的,故先去分母,再将x=2代入即可解答.【详解】(1)方程两边同时乘以()2x -得 ()5321x +-=-解得 0x =经检验,0x =是原分式方程的解.(2)设?为m ,方程两边同时乘以()2x -得()+-=-m x321x=是原分式方程的增根,由于2x=代入上面的等式得所以把2()m+-=-3221m=-1所以,原分式方程中“?”代表的数是-1.【点睛】本题考查了分式方程解法和增根的定义及应用.增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.25.(1)甲对,乙不对,理由见解析;(2)2.【解析】试题分析:(1)根据多边形的内角和公式判定即可;(2)根据题意列方程,解方程即可.试题解析:(1)甲对,乙不对.∵θ=360°,∴(n-2)×180°=360°,解得n=4.∵θ=630°,∴(n-2)×180°=630°,解得n=.∵n为整数,∴θ不能取630°.(2)由题意得,(n-2)×180+360=(n+x-2)×180,解得x=2.考点:多边形的内角和.26.(1)详见解析;(2)存在,3;(3)当t=2或14s时,以D、E、B为顶点的三角形是直角三角形.【解析】试题分析:(1)由旋转的性质结合△ABC是等边三角形可得∠DCB=60°,CD=CE,从而可得△CDE 是等边三角形;(2)由(1)可知△CDE是等边三角形,由此可得DE=CD,因此当CD⊥AB时,CD最短,则DE最短,结合△ABC是等边三角形,AC=4即可求得此时DE=CD=23(3)由题意需分0≤t<6,6<t<10和t>10三种情况讨论,①当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,由此可知:此时若△DBE是直角三角形,则∠BED=90°;②当6<t<10s时,由性质的性质可知∠DBE=120°>90°,由此可知:此时△DBE不可能是直角三角形;③当t>10s时,由旋转的性质可知,∠DBE=60°,结合∠CDE=60°可得∠BDE=∠CDE+∠BDC=60°+∠BDC>60°,由此可得∠BED<60°,由此可知此时若△BDE 是直角三角形,则只能是∠BDE=90°;这样结合已知条件即可分情况求出对应的t的值了.试题解析:(1)∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;(2)存在,当6<t<10时,由(1)知,△CDE是等边三角形,∴DE=CD,由垂线段最短可知,当CD⊥AB时,CD最小,此时∠ADC=90°,又∵∠ACD=60°,∴∠ACD=30°,∴ AD=12AC=2,∴ CD=22224223AC AD-=-=,∴ DE=23(cm);(3)存在,理由如下:①当0s≤t<6s时,由旋转可知,∠ABE=60°,∠BDE<60°,∴此时若△DBE是直角三角形,则∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEC=60°,∴∠CEB=∠BED-∠DEC=30°,∴∠CDA=∠CEB=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴t=2÷1=2(s);②当6s<t<10s时,由性质的性质可知∠DBE=120°>90°,∴此时△DBE不可能是直角三角形;③当t>10s时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14cm,∴t=14÷1=14(s);综上所述:当t=2s或14s时,以D、E、B为顶点的三角形是直角三角形.点睛:(1)解第2小题的关键是:抓住点D在运动过程中,△DBE是等边三角形这一点得到DE=CD,从而可知当CD⊥AB时,CD最短,则DE最短,由此即可由已知条件解得DE的最小值;(2)解第3小题的关键是:根据点D的不同位置分为三段时间,结合已知条件首先分析出在每个时间段内△BDE中哪个角能够是直角,然后再结合已知条件进行解答即可求得对应的t的值了.。
2020年北京市延庆县初三模拟考试(一)初中数学
2020年北京市延庆县初三模拟考试(一)初中数学数学试卷一、选择题:〔共8道小题,每题4分,共32分〕在以下各题的四个备选答案中,只有一个是正确的。
1.2的相反数是〔 〕A .2B .2-C .12D .12- 2.2018北京奥运会主会场〝鸟巢〞的座席数是91000个,那个数用科学记数法表示为〔 〕A .50.9110⨯B .39110⨯C .49.110⨯D .39.110⨯ 3.两圆的半径分不为3cm 和2cm ,圆心距为5cm ,那么两圆的位置关系是〔 〕A .外离B .外切C .相交D .内切4.某班第一小组7名同学的毕业升学体育测试成绩〔总分值30分〕依次为:25,23,25,23,27,30,25, 这组数据的中位数和众数分不是〔 〕A .23,25B .23,23C .25,23D .25,255.一个多边形内角和是︒540,那么那个多边形是〔 〕A .四边形B .五边形C .六边形D .七边形6.黑色布袋中放有一套〔五枚〕北京2018年奥运会吉祥物福娃纪念币,取出一枚纪念币,恰好取到 〝迎迎〞的概率是 〔 〕A .251B .201 C .101 D .51 7.假设23(2)0m n -++=,那么2m n +的值为〔 〕A .1-B .4-C .0D .48.以下图是一个正方体的平面展开图,那个正方体是〔 〕A B C D二、填空题〔共4道小题,每题4分,共16分〕9.函数12-=x y 中,自变量x 的取值范畴是10.分解因式:=-a ax 42 ____________11.:关于x 一元二次方程022=+-m x x 有两个实数根,那么m 的取值范畴是_____________12.一个质点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点运动到(01),,然后接着按图中箭头所示方向运动,即(00)(01)(11)(10)→→→→,,,,…,且每秒移动一个单位,那么第35秒时质点所在位置的坐标是_______ 三、解答题〔共5道小题,每题5分,共25分〕13.〔此题总分值5分〕运算: ︒---+-60cos 2)52009()31(401 14.〔此题总分值5分〕:x-2y=0,求222222yxy x x x y x +-⋅-的值. 15.〔此题总分值5分〕解不等式组⎪⎩⎪⎨⎧<-+≥+1214)2(3x x x ,并求出不等式组的非负整数解. 16.〔此题总分值5分〕:如图,B 、C 、E 三点在同一条直线上,AC ∥DE ,AC =CE ,∠ACD =∠B求证:△ABC ≌△CDE17.〔此题总分值5分〕如以下图所示,直线y=kx-2通过M 点,求此直线与x 轴交点坐标和直线与两坐标轴围成三角形的面积.四、 解答题〔共2道小题,共10分〕18.〔此题总分值5分〕在梯形ABCD 中,AD ∥BC ,AC ⊥AB ,AD=CD ,cosB=135,BC=26.求〔1〕cos ∠DAC 的值;〔2〕线段AD 的长.19.〔此题总分值5分〕在Rt △ABC 中,∠C=90 , BC =9, CA =12,∠ABC 的平分线BD 交AC 于点D , DE ⊥DB 交AB 于点E ,⊙O 是△BDE 的外接圆,交BC 于点F〔1〕求证:AC 是⊙O 的切线;〔2〕联结EF,求EFAC的值.五、解答题〔此题总分值6分〕20.为了降低能源消耗,减少环境污染,国务院办公厅下发了〝关于限制生产销售使用塑料购物袋的通知〞〔简称〝限塑令〞〕,并从2008年6月1日起正式实施。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
延庆区2019-2020学年第二学期练习卷初三数学试题考生须知1.本试卷共8页,共三道大题,28道小题,满分100分,考试时间120分钟.2.在试卷和答题卡上认真填写学校名称、姓名和学号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色签字笔作答.下面各题均有四个选项,其中只有一个是符合题意的.1.最近,科学家发现了一种新型病毒,其最大直径约为0.00012mm,将0.00012用科学记数法表示为A.1.2×10-3B.1.2×10-4C.1.2×104D.12×1032.下列各组图形中,△A'B'C'与△ABC成中心对称的是A.B.C.D.3.下列立体图形的主视图、左视图、俯视图都一样的是A.B.C.D.4.若分式21x有意义,则x的取值范围是A.x>-2 B.x<-2 C.x=-2 D.x≠-25. 数轴上A ,B ,C ,D四点中,有可能在以原点为圆心,以6为半径的圆上的点是 A .点A B .点B C .点C D .点D6. 如图所示,△ABC 中AB 边上的高线是A .线段DAB .线段CAC .线段CDD .线段BD7. 下列实数中,无理数的个数是①0.333②17③5 ④π ⑤6.18118111811118……A . 1个B .2个C .3个D .4个8.如图,在⊙O 中,点C 在优弧AB 上,将弧BC 沿直线BC 折叠后刚好经过弦AB 的 中点D .若⊙O 的半径为5,AB =4,则BC 的长是 A .32 B .23C .235D .265 二、填空题 (共8个小题,每题2分,共16分) 9.因式分解:a 3-9a= . 10.如果a +b =2,那么代数式22212b a ba b a ab b -⎛⎫+⋅ ⎪-++⎝⎭的值是 . 11.如图,∠1,∠2,∠3,∠4 是五边形ABCDE 的4个外角,若∠A =100°, 则∠1+∠2+∠3+∠4 = .CBADC B A12.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,点E在边BC上,AE与BD相交于点G,若AG : GE=3 : 1,则EC : BC= .13.把光盘、含60°角的三角板和直尺如图摆放,AB=2,则光盘的直径是.14.将含有30°角的直角三角板如图放置在平面直角坐标系中,OB在x轴上,将三角板绕原点O顺时针旋转75°,若OA=4,则点A的对应点A′的坐标为_____.15.如图,小明在A时测得某树的影长为3米,B时又测得该树的影长为12米,若两次日照的光线互相垂直,则树的高度为_____米.16.小明的爸爸想给妈妈送张美容卡作为生日礼物,小明家附近有3家美容店,爸爸不知如何选择,于是让小明对3家店铺顾客的满意度做了调查:合计美容店A53 28 19 100美容店B50 40 10 100美容店C65 26 9 100(说明:顾客对于店铺的满意度从高到低,依次为3个笑脸,2个笑脸,1个笑脸)小明选择将(填“A”、“ B”或“C”)美容店推荐给爸爸,能使妈妈获得满意体验可能性最大.三、解答题(本题共68分)17.计算:()0123tan 30113π---+-o .18.解不等式组:()13352x x x x ⎧-<-⎪⎨+⎪⎩,≥. 19.关于x 的一元二次方程0122=-+x mx 有两个不相等的实数根. (1)求m 的取值范围;(2)若方程的两个根都是有理数,写出一个满足条件的m 的值,并求出此时方程的根. 20.已知,如图,点A 是直线l 上的一点. 求作:正方形ABCD ,使得点B 在直线l 上.(要求保留作图痕迹,不用写作法) 请你说明,∠BAD =90°的依据是什么?21.四边形ABCD 中,∠A =∠B = 90°,点E 在边AB 上,点F 在AD 的延长线上,且点E 与点F 关于直线 CD 对称,过点E 作EG ∥AF 交CD 于点G ,连接 FG ,DE . (1)求证:四边形DEGF 是菱形;(2)若AB =10,AF =BC =8,求四边形DEGF 的面积.22.如图,AB 是⊙O 的直径,点C 是⊙O 上的一点,点D 是弧BC 的中点,连接AC ,BD ,过点D 作AC 的垂线EF ,交AC 的延长线于点E ,交AB 的延长线于点F . (1)依题意补全图形;(2)判断直线EF 与⊙O 的位置关系,并说明理由; (3)若AB =5,BD =3,求线段BF 的长.23.在平面直角坐标系xOy 中,将点A (2,4)向下平移2个单位得到点C ,反比例函数xmy(m ≠0)的图象经过点C ,过点C 作CB ⊥x 轴于点B . (1)求m 的值;(2)一次函数y =kx+b (k <0)的图象经过点C ,交x 轴于点D线段CD ,BD ,BC 围成的区域(不含边界)为G ; 若横、纵坐标都是整数的点叫做整点. ①b =3时,直接写出区域G 内的整点个数.②若区域G 内没有整点,结合函数图象,确定k 的取值范围.24.为了发展学生的数学核心素养,培养学生的综合能力,某市开展了初三学生的数学 学业水平测试.在这次测试中,从甲、乙两校各随机抽取了30名学生的测试成绩进行 调查分析. 收集数据甲校 94 82 77 76 77 88 90 88 85 86 88 89 84 92 8788 80 53 89 91 91 86 68 75 94 84 76 69 83 92乙校 83 64 91 88 71 92 88 92 86 61 78 91 84 92 9274 75 93 82 57 86 89 89 94 83 84 81 94 72 90整理、描述数据 按如下分数段整理、描述这两组样本数据:(说明:成绩80分及以上为优秀,60~79分为合格,60分以下为不合格) 分析数据 两组样本数据的平均数、中位数、众数如下表所示:(1)请你补全表格;(2)若甲校有300名学生,估计甲校此次测试的优秀人数为____; (3)可以推断出____校学生成绩的比较好,理由为________________.25.如图,AB 是⊙O 的弦,AB =5cm ,点P 是弦AB 上的一个定点,点C 是弧AB 上的一个动点,连接CP 并延长,交⊙O 于点D .小明根据学习函数的经验,分别对AC ,PC ,PD 长度之间的关系进行了探究. 下面是小明的探究过程:(1)对于点C 在弧AB 上的不同位置,画图、测量,得到了线段AC ,PC ,PD 的长度的几组值,如下表:位置1 位置2 位置3 位置4 位置5 位置6 位置7 位置8 位置9AC /cm 0 0.37 1.00 0.82 2.10 3.00 3.50 3.91 5.00 PC /cm 1.00 0.81 0.69 0.75 1.26 2.11 2.50 3.00 4.00 PD /cm 4.005.005.806.003.001.901.501.321.00在AC ,PC ,PD 的长度这三个量中,确定___的长度是自变量,其他两条线段的长度都是这个自变量的函数;(2)请你在同一平面直角坐标系xOy 中,画(1)中所确定的两个函数的图象; (3)结合函数图象,解决问题:①当PC =PD 时,AC 的长度约为 cm ; ②当△APC 为等腰三角形时,PC 的长度约为 cm.x /cmy /cm123456654321O26.在平面直角坐标系xOy 中,抛物线2+3y ax bx a =+(a ≠0)过点A (1,0). (1)求抛物线的对称轴;(2)直线y=-x+4与y 轴交于点B ,与该抛物线的对称轴交于点C ,现将点B 向左平移一个单位到点D ,如果该抛物线与线段CD 有交点,结合函数的图象,求a 的取值范围.27.如图1,在等腰直角△ABC 中,∠A =90°,AB =AC=3,在边AB 上取一点D (点D不与点A ,B 重合),在边AC 上取一点E ,使AE =AD ,连接DE . 把△ADE 绕点A 逆时针方向旋转α(0°<α<360°),如图2.(1)请你在图2中,连接CE 和BD ,判断线段CE 和BD 的数量关系,并说明理由; (2)请你在图3中,画出当α =45°时的图形,连接CE 和BE ,求出此时△CBE 的面积;(3)若AD =1,点M 是CD 的中点,在△ADE 绕点A 逆时针方向旋转的过程中,线段AM 的最小值是________________.图1图3图 2Oyx–1–2–3–4–5–6123456–1–2–3–4–5–612345628.对于平面内的点P和图形M,给出如下定义:以点P为圆心,以r为半径作⊙P,使得图形M上的所有点都在⊙P的内部(或边上),当r最小时,称⊙P为图形M的P点控制圆,此时,⊙P的半径称为图形M的P点控制半径.已知,在平面直角坐标系中,正方形OABC的位置如图所示,其中点B(2,2).(1)已知点D(1,0),正方形OABC的D点控制半径为r1,正方形OABC的A点控制半径为r2,请比较大小:r1 r2;(2)连接OB,点F是线段OB上的点,直线l:y=3x+b;若存在正方形OABC的F 点控制圆与直线l有两个交点,求b的取值范围.延庆区2019-2020 学年一模答案初三数学一、选择题:1.B2.D.3C. 4.D. 5.A. 6.C 7.C.8. B二、填空题(共8 个小题,每题2 分,共16 分)9. a(a+3)(a-3) 10.1211.280°12.2:313.14.(-) 15.6 16C .三、解答题(本题共 68 分)17.2 18.5x ≥ 19.(1)1m >-且m ≠0;(2)m =3;11x =-,213x =.20.解:如图所示,正方形ABCD 即为所求; 由尺规作图可知,AE =AF ,EH =FH , 又∵AH =AH ,∴△AEH ≌△AFH (SSS ), ∴∠EAH =∠FAH , ∵∠EAH +∠FAH =180°,∴∠EAH =∠FAH =90°,即∠BAD =90°.21.解:(1)连接EF,∵点E与点F关于直线CD 对称,∴CD是EF的垂直平分线,∴DE=DF,GE=GF,∠EDG=∠FDG,∵EG∥AF,∴∠FDG=∠EGD,∴∠EDG=∠EGD,∴DE=GE,∴DE=DF=GE=GF,∴四边形DEGF是菱形;(2)连接CF,CE,∵∠A=∠B=90°,∴∠A+∠B=180°,∴AF∥BC,又∵AF=BC=8,∴四边形ABCF是矩形,∴CF=AB=10,∵CD 是EF 的垂直平分线, ∴CE =CF =10, ∴BE =221086-=, ∴AE =10-6=4,设DF =DE =x ,则AD =8-x ,在Rt △ADE 中,由勾股定理得:()22248x x +-=, 解得:x =5,即DF =5,∴四边形DEGF 的面积=DF·AE =5×4=20.22解:(1)如图所示;(2)直线EF 是⊙O 的切线;理由:如图,连接BC ,OD 交于点H , ∵AB 是直径, ∴∠ACB =90°,∵∠E=90°,∴BC∥EF,∵点D是弧BC的中点,∴OD⊥BC,∴OD⊥EF,∴直线EF是⊙O的切线;(3)如图,∵AB=5,BD=3,∴OB=OD=52,设OH=x,则DH=52x -,在Rt△OHB中,由勾股定理得:22252BH x骣琪=-琪桫,在Rt△BHD中,由勾股定理得:222532BH x骣琪=--琪桫,∴222255322x x骣骣琪琪-=--琪琪桫桫,解得:710x ,∴710OH=,95DH=,∵O是AB中点,H是BC中点,∴AC=2OH=75,易证四边形HCED是矩形,则95 CE DH==,∴AE=165,∵BC∥EF,∴AC ABAE AF=,即7551655BF=+,∴457BF=.23解:(1)将点A(2,4)向下平移2 个单位得到点C,则C(2,2),将C(2,2)代入myx=,得4m xy==;(2)①当b=3时,一次函数y=kx+b过点(0,3),如图1所示,由图象可得,区域G内的整点为(3,1),只有一个;②由图1可知,当直线CD过点(3,1)时,区域G内恰好没有整点,代入C(2,2)和(3,1)得:2231k bk b+=⎧⎨+=⎩,解得:14kb=-⎧⎨=⎩,∴若区域G内没有整点,k的取值范围为:1k≤-.24.(1)5,12;86,92;(2)220;(3)乙,理由见解析.25(1)AC ;(2)见解析;(3)①2.9,②0.69cm 或1cm 或0.8cm . 26(1)x =2;(2)2a ≤-或12a ≥. 【解析】 【分析】(1)代入(1,0)可得b =-4a ,然后根据抛物线的对称轴公式计算即可; (2)首先求出抛物线过点(1,0),(3,0),然后分a <0和a >0两种情况,分别作出简图,结合图象根据抛物线与线段CD 有交点得出不等式,即可求出a 的取值范围.【详解】解:(1)把(1,0)代入y = ax 2 + bx +3a 得:0=a+b+3a , ∴b =-4a ,∴抛物线的对称轴为:x =22ba-=; (2)由(1)可知,抛物线解析式为:()()24313y ax ax a a x x =-+=--,对称轴为:x =2,∴抛物线过点(1,0),(3,0), 当x =2时,y =-x+4=2, ∴C (2,2),当a <0时,如图,由该抛物线与线段 CD 有交点可得:当x =2时,2432y ax ax a =-+?,即4832a a a -+?, 解得:2a ≤-;当a >0时,由题意得:B (0,4), ∴D (-1,4),如图,由该抛物线与线段 CD 有交点可得:当x =-1时,2434y ax ax a =-+?,即434a a a ++?, 解得:12a ≥, 综上所述,a 的取值范围为:2a ≤-或12a ≥.27(1)CE =BD ,理由见解析;(2)图形见解析,92CBE S =V ;(3)1.【解析】 【分析】(1)连接CE 和BD ,求出∠EAC =∠DAB ,即可利用SAS 证明△AEC ≌△ADB ,进而得到CE =BD ;(2)连接CE 和BE ,延长AD 交BC 于F ,首先求出∠BAF =∠CAF =∠EAC =45°,然后可得AF =BF =CF ,∠EAB =135°,进而证明AE ∥BC ,再根据12CBE S BC AF =?V 进行计算;(3)判断出在△ADE 绕点A 逆时针方向旋转的过程中,点M 在以G 为圆心,12长为半径的圆上,即可得到点M 与点E 重合时AM 取最小值. 【详解】解:(1)CE =BD ; 理由:连接CE 和BD ,如图2所示,由题意可知,△ABC 和△ADE 都是等腰直角三角形, ∵∠EAD =∠CAB =90°, ∴∠EAC =∠DAB , 又∵AE =AD ,AC =AB , ∴△AEC ≌△ADB(SAS), ∴CE =BD ;(2)当α =45°时,连接CE 和BE ,如图所示,延长AD 交BC 于F , ∵α =45°,△ABC 和△ADE 都是等腰直角三角形,∴∠BAF=∠CAF=∠EAC=45°,∴AF=BF=CF,∠EAB=135°,∴∠EAB+∠ABC=135°+45°=180°,∴AE∥BC,∵BC=223332+=,∴AF=132 22BC=,∴11329322222 CBES BC AF=?创=V;(3)如图4,当点M不在AC上时,取AC中点G,连接GM,∵M是CD′的中点,∴GM=111 222 AD AD¢==,当点M在AC上时,由M是CD′的中点可得GM=12,∴在△ADE绕点A逆时针方向旋转的过程中,点M在以G为圆心,12长为半径的圆上,∴当点M与点E重合时AM取最小值,此时AM=AE=1.28(1)<;(2)2234242b-<<(1)根据控制半径的定义求出r1和r2即可解决问题;(2)如图所示,圆O和圆B分别是以O,B为圆心,以OB长为半径的圆,分别求出直线l与圆O相切,直线l与圆B相切时的b值,得到两种极限情况下的b值,即可得到b 的取值范围.【详解】解:(1)由题意得:r1=BD=CD22125+=r2=AC=22222+=∴r1<r2;(2)如图所示,圆O和圆B分别是以O,B为圆心,以OB长为半径的圆,当直线l:3y x b=+与圆O相切于点M时,连接OM,可得OM与直线l 垂直,则直线OM的解析式为:3y x =,设M(x,33x -),∵OM =OB ,∴OM =22223223x x 骣琪+-=+琪桫,∴6x =-或6x =(舍去), ∴M (6-,2),将(6-,2)代入3y x b =+得:()236b =⨯-+, 解得:42b =,当直线l :3y x b =+与圆B 相切于点N 时,连接BN , 同理可求出此时22342b =--,∴b 的取值范围为:2234242b --<<.初三数学第21页共8页。