最新中考初三数学经典试题及答案
2024年贵州贵阳中考数学试题及答案(1)

2024年贵州贵阳中考数学试题及答案同学你好!答题前请认真阅读以下内容:1.全卷共6页,三个大题,共25小题,满分150分.考试时长120分钟.考试形式为闭卷.2.请在答题卡相应位置作答,在试题卷上答题无效.3.不能使用计算器.一、选择题(本大题共12题,每题3分,共36分.每小题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置填涂)1. 下列有理数中最小的数是( )A. 2-B. 0C. 2D. 42. “黔山秀水”写成下列字体,可以看作是轴对称图形的是( )A. B. C. D.3. 计算23a a +的结果正确的是( )A. 5aB. 6aC. 25aD. 26a 4. 不等式1x <的解集在数轴上的表示,正确的是( )A. B.C.D.5. 一元二次方程220x x -=的解是( )A. 13x =,21x = B. 12x =,20x = C. 13x =,22x =- D. 12x =-,21x =-6.为培养青少年的科学态度和科学思维,某校创建了“科技创新”社团.小红将“科”“技”“创”“新”写在如图所示的方格纸中,若建立平面直角坐标系,使“创”“新”的坐标分别为()2,0-,()0,0,则“技”所在的象限为( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限7.为了解学生的阅读情况,某校在4月23日世界读书日,随机抽取100名学生进行阅读情况调查,每月阅读两本以上经典作品的有20名学生,估计该校800名学生中每月阅读经典作品两本以上的人数为( )A 100人 B. 120人 C. 150人 D. 160人8. 如图,ABCD Y 的对角线AC 与BD 相交于点O ,则下列结论一定正确的是( )A. AB BC =B. AD BC =C. OA OB =D. AC BD^9. 小星同学通过大量重复的定点投篮练习,用频率估计他投中的概率为0.4,下列说法正确的是( )A. 小星定点投篮1次,不一定能投中B. 小星定点投篮1次,一定可以投中C. 小星定点投篮10次,一定投中4次D. 小星定点投篮4次,一定投中1次10. 如图,在扇形纸扇中,若150AOB Ð=°,24OA =,则»AB 长为( )A. 30πB. 25πC. 20πD. 10π11. 小红学习了等式的性质后,在甲、乙两台天平的左右两边分别放入“■”“●”“▲”三种物体,如图所示,天平都保持平衡.若设“■”与“●”的质量分别为x ,y ,则下列关系式正确的是( )A. x y= B. 2x y = C. 4x y = D. 5x y=12. 如图,二次函数2y ax bx c =++的部分图象与x 轴的一个交点的横坐标是3-,顶点坐标为()1,4-,则下列说法正确的是( ).的A. 二次函数图象的对称轴是直线1x =B. 二次函数图象与x 轴的另一个交点的横坐标是2C. 当1x <-时,y 随x 的增大而减小D. 二次函数图象与y 轴交点的纵坐标是3二、填空题(本大题共4题,每题4分,共16分)13.的结果是________.14.如图,在ABC V 中,以点A 为圆心,线段AB 的长为半径画弧,交BC 于点D ,连接AD .若5AB =,则AD 的长为______.15.在元朝朱世杰所著的《算术启蒙》中,记载了一道题,大意是:快马每天行240里,慢马每天行150里,慢马先行12天,则快马追上慢马需要的天数是______.16. 如图,在菱形ABCD 中,点E ,F 分别是BC ,CD 的中点,连接AE ,AF .若4sin 5EAF Ð=,5AE =,则AB 的长为______.三、解答题(本大题共9题,共98分.解答应写出必要的文字说明、证明过程或演算步骤)17. (1)在①22,②2-,③()01-,④122´中任选3个代数式求和;的(2)先化简,再求值:()21122x x -×+,其中3x =.18. 已知点()1,3在反比例函数k y x=的图象上.(1)求反比例函数的表达式;(2)点()3,a -,()1,b ,()3,c 都在反比例函数的图象上,比较a ,b ,c 的大小,并说明理由.19.根据《国家体质健康标准》规定,七年级男生、女生50米短跑时间分别不超过7.7秒、8.3秒为优秀等次.某校在七年级学生中挑选男生、女生各5人进行集训,经多次测试得到10名学生的平均成绩(单位:秒)记录如下:男生成绩:7.61,7.38,7.65,7.38,7.38女生成绩:8.23,8.27,8.16,8.26,8.32根据以上信息,解答下列问题:(1)男生成绩的众数为______,女生成绩的中位数为______;(2)判断下列两位同学的说法是否正确.(3)教练从成绩最好的32名学生代表学校参加比赛,请用画树状图或列表的方法求甲被抽中的概率.20. 如图,四边形ABCD 的对角线AC 与BD 相交于点O ,AD BC ∥,90ABC Ð=°,有下列条件:①AB CD ∥,②AD BC =.(1)请从以上①②中任选1个作为条件,求证:四边形ABCD 是矩形;(2)在(1)的条件下,若3AB =,5AC =,求四边形ABCD 的面积.21.为增强学生的劳动意识,养成劳动的习惯和品质,某校组织学生参加劳动实践.经学校与劳动基地联系,计划组织学生参加种植甲、乙两种作物.如果种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物222根据以上信息,解答下列问题:(1)种植1亩甲作物和1亩乙作物分别需要多少名学生?(2)种植甲、乙两种作物共10亩,所需学生人数不超过55人,至少种植甲作物多少亩?22. 综合与实践:小星学习解直角三角形知识后,结合光的折射规律进行了如下综合性学习.【实验操作】第一步:将长方体空水槽放置在水平桌面上,一束光线从水槽边沿A 处投射到底部B 处,入射光线与水槽内壁AC 的夹角为A Ð;第二步:向水槽注水,水面上升到AC 的中点E 处时,停止注水.(直线NN ¢为法线,AO 为入射光线,OD 为折射光线.)测量数据】如图,点A ,B ,C ,D ,E ,F ,O ,N ,N ¢在同一平面内,测得20cm AC =,45A Ð=°,折射角32DON Ð=°.【问题解决】根据以上实验操作和测量的数据,解答下列问题:(1)求BC 的长;(2)求B ,D 之间的距离(结果精确到0.1cm ).(参考数据:sin 320.52°»,cos320.84°»,tan 320.62°»)23.如图,AB 为半圆O 的直径,点F 在半圆上,点P 在AB 的延长线上,PC 与半圆相切于点C ,与OF 的延长线相交于点D ,AC 与OF 相交于点E ,DC DE =.(1)写出图中一个与DEC Ð相等的角:______;2【(3)若2OA OE =,2DF =,求PB 的长.24.某超市购入一批进价为10元/盒的糖果进行销售,经市场调查发现:销售单价不低于进价时,日销售量y (盒)与销售单价x (元)是一次函数关系,下表是y 与x 的几组对应值.销售单价x /元…1214161820…销售量y /盒…5652484440…(1)求y 与x 的函数表达式;(2)糖果销售单价定为多少元时,所获日销售利润最大,最大利润是多少?(3)若超市决定每销售一盒糖果向儿童福利院赠送一件价值为m 元的礼品,赠送礼品后,为确保该种糖果日销售获得的最大利润为392元,求m 的值.25. 综合与探究:如图,90AOB Ð=°,点P 在AOB Ð的平分线上,PA OA ^于点A .(1)【操作判断】如图①,过点P 作PC OB ^于点C ,根据题意在图①中画出PC ,图中APC Ð的度数为______度;(2)问题探究】如图②,点M 在线段AO 上,连接PM ,过点P 作PN PM ^交射线OB 于点N ,求证:2OM ON PA +=;(3)【拓展延伸】点M 在射线AO 上,连接PM ,过点P 作PN PM ^交射线OB 于点N ,射线NM 与射线PO 相交于点F ,若3ON OM =,求OP OF的值.【参考答案同学你好!答题前请认真阅读以下内容:1.全卷共6页,三个大题,共25小题,满分150分.考试时长120分钟.考试形式为闭卷.2.请在答题卡相应位置作答,在试题卷上答题无效.3.不能使用计算器.一、选择题(本大题共12题,每题3分,共36分.每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B铅笔在答题卡相应位置填涂)【1题答案】【答案】A【2题答案】【答案】B【3题答案】【答案】A【4题答案】【答案】C【5题答案】【答案】B【6题答案】【答案】A【7题答案】【答案】D【8题答案】【答案】B【9题答案】【答案】A【10题答案】【答案】C【11题答案】【答案】C【12题答案】二、填空题(本大题共4题,每题4分,共16分)【13题答案】【14题答案】【答案】5【15题答案】【答案】20【16题答案】三、解答题(本大题共9题,共98分.解答应写出必要的文字说明、证明过程或演算步骤)【17题答案】【答案】(1)见解析(2)12x-,1【18题答案】【答案】(1)3 yx =(2)a c b<<,理由见解析【19题答案】【答案】(1)7.38,8.26(2)小星的说法正确,小红的说法错误(3)2 3【20题答案】【答案】(1)见解析(2)12【21题答案】【答案】(1)种植1亩甲作物和1亩乙作物分别需要5、6名学生(2)至少种植甲作物5亩【22题答案】【答案】(1)20cm(2)3.8cm【23题答案】1(2)163(3)163【24题答案】【答案】(1)280y x =-+(2)糖果销售单价定为25元时,所获日销售利润最大,最大利润是450元(3)2【25题答案】【答案】(1)画图见解析,90(2)见解析 (3)23或832024年贵州贵阳中考数学试题及答案同学你好!答题前请认真阅读以下内容:1.全卷共6页,三个大题,共25小题,满分150分.考试时长120分钟.考试形式为闭卷.2.请在答题卡相应位置作答,在试题卷上答题无效.3.不能使用计算器.一、选择题(本大题共12题,每题3分,共36分.每小题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置填涂)1. 下列有理数中最小的数是( )A. 2-B. 0C. 2D. 42. “黔山秀水”写成下列字体,可以看作是轴对称图形的是( )A. B. C. D.3. 计算23a a +的结果正确的是( )A. 5aB. 6aC. 25aD. 26a 4. 不等式1x <的解集在数轴上的表示,正确的是( )A. B.C.D.5. 一元二次方程220x x -=的解是( )A. 13x =,21x = B. 12x =,20x = C. 13x =,22x =- D. 12x =-,21x =-6.为培养青少年的科学态度和科学思维,某校创建了“科技创新”社团.小红将“科”“技”“创”“新”写在如图所示的方格纸中,若建立平面直角坐标系,使“创”“新”的坐标分别为()2,0-,()0,0,则“技”所在的象限为( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限7.为了解学生的阅读情况,某校在4月23日世界读书日,随机抽取100名学生进行阅读情况调查,每月阅读两本以上经典作品的有20名学生,估计该校800名学生中每月阅读经典作品两本以上的人数为( )A 100人 B. 120人 C. 150人 D. 160人8. 如图,ABCD Y 的对角线AC 与BD 相交于点O ,则下列结论一定正确的是( )A. AB BC =B. AD BC =C. OA OB =D. AC BD^9. 小星同学通过大量重复的定点投篮练习,用频率估计他投中的概率为0.4,下列说法正确的是( )A. 小星定点投篮1次,不一定能投中B. 小星定点投篮1次,一定可以投中C. 小星定点投篮10次,一定投中4次D. 小星定点投篮4次,一定投中1次10. 如图,在扇形纸扇中,若150AOB Ð=°,24OA =,则»AB 长为( )A. 30πB. 25πC. 20πD. 10π11. 小红学习了等式的性质后,在甲、乙两台天平的左右两边分别放入“■”“●”“▲”三种物体,如图所示,天平都保持平衡.若设“■”与“●”的质量分别为x ,y ,则下列关系式正确的是( )A. x y= B. 2x y = C. 4x y = D. 5x y=12. 如图,二次函数2y ax bx c =++的部分图象与x 轴的一个交点的横坐标是3-,顶点坐标为()1,4-,则下列说法正确的是( ).的A. 二次函数图象的对称轴是直线1x =B. 二次函数图象与x 轴的另一个交点的横坐标是2C. 当1x <-时,y 随x 的增大而减小D. 二次函数图象与y 轴交点的纵坐标是3二、填空题(本大题共4题,每题4分,共16分)13.的结果是________.14.如图,在ABC V 中,以点A 为圆心,线段AB 的长为半径画弧,交BC 于点D ,连接AD .若5AB =,则AD 的长为______.15.在元朝朱世杰所著的《算术启蒙》中,记载了一道题,大意是:快马每天行240里,慢马每天行150里,慢马先行12天,则快马追上慢马需要的天数是______.16. 如图,在菱形ABCD 中,点E ,F 分别是BC ,CD 的中点,连接AE ,AF .若4sin 5EAF Ð=,5AE =,则AB 的长为______.三、解答题(本大题共9题,共98分.解答应写出必要的文字说明、证明过程或演算步骤)17. (1)在①22,②2-,③()01-,④122´中任选3个代数式求和;的(2)先化简,再求值:()21122x x -×+,其中3x =.18. 已知点()1,3在反比例函数k y x=的图象上.(1)求反比例函数的表达式;(2)点()3,a -,()1,b ,()3,c 都在反比例函数的图象上,比较a ,b ,c 的大小,并说明理由.19.根据《国家体质健康标准》规定,七年级男生、女生50米短跑时间分别不超过7.7秒、8.3秒为优秀等次.某校在七年级学生中挑选男生、女生各5人进行集训,经多次测试得到10名学生的平均成绩(单位:秒)记录如下:男生成绩:7.61,7.38,7.65,7.38,7.38女生成绩:8.23,8.27,8.16,8.26,8.32根据以上信息,解答下列问题:(1)男生成绩的众数为______,女生成绩的中位数为______;(2)判断下列两位同学的说法是否正确.(3)教练从成绩最好的32名学生代表学校参加比赛,请用画树状图或列表的方法求甲被抽中的概率.20. 如图,四边形ABCD 的对角线AC 与BD 相交于点O ,AD BC ∥,90ABC Ð=°,有下列条件:①AB CD ∥,②AD BC =.(1)请从以上①②中任选1个作为条件,求证:四边形ABCD 是矩形;(2)在(1)的条件下,若3AB =,5AC =,求四边形ABCD 的面积.21.为增强学生的劳动意识,养成劳动的习惯和品质,某校组织学生参加劳动实践.经学校与劳动基地联系,计划组织学生参加种植甲、乙两种作物.如果种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物222根据以上信息,解答下列问题:(1)种植1亩甲作物和1亩乙作物分别需要多少名学生?(2)种植甲、乙两种作物共10亩,所需学生人数不超过55人,至少种植甲作物多少亩?22. 综合与实践:小星学习解直角三角形知识后,结合光的折射规律进行了如下综合性学习.【实验操作】第一步:将长方体空水槽放置在水平桌面上,一束光线从水槽边沿A 处投射到底部B 处,入射光线与水槽内壁AC 的夹角为A Ð;第二步:向水槽注水,水面上升到AC 的中点E 处时,停止注水.(直线NN ¢为法线,AO 为入射光线,OD 为折射光线.)测量数据】如图,点A ,B ,C ,D ,E ,F ,O ,N ,N ¢在同一平面内,测得20cm AC =,45A Ð=°,折射角32DON Ð=°.【问题解决】根据以上实验操作和测量的数据,解答下列问题:(1)求BC 的长;(2)求B ,D 之间的距离(结果精确到0.1cm ).(参考数据:sin 320.52°»,cos320.84°»,tan 320.62°»)23.如图,AB 为半圆O 的直径,点F 在半圆上,点P 在AB 的延长线上,PC 与半圆相切于点C ,与OF 的延长线相交于点D ,AC 与OF 相交于点E ,DC DE =.(1)写出图中一个与DEC Ð相等的角:______;2【(3)若2OA OE =,2DF =,求PB 的长.24.某超市购入一批进价为10元/盒的糖果进行销售,经市场调查发现:销售单价不低于进价时,日销售量y (盒)与销售单价x (元)是一次函数关系,下表是y 与x 的几组对应值.销售单价x /元…1214161820…销售量y /盒…5652484440…(1)求y 与x 的函数表达式;(2)糖果销售单价定为多少元时,所获日销售利润最大,最大利润是多少?(3)若超市决定每销售一盒糖果向儿童福利院赠送一件价值为m 元的礼品,赠送礼品后,为确保该种糖果日销售获得的最大利润为392元,求m 的值.25. 综合与探究:如图,90AOB Ð=°,点P 在AOB Ð的平分线上,PA OA ^于点A .(1)【操作判断】如图①,过点P 作PC OB ^于点C ,根据题意在图①中画出PC ,图中APC Ð的度数为______度;(2)问题探究】如图②,点M 在线段AO 上,连接PM ,过点P 作PN PM ^交射线OB 于点N ,求证:2OM ON PA +=;(3)【拓展延伸】点M 在射线AO 上,连接PM ,过点P 作PN PM ^交射线OB 于点N ,射线NM 与射线PO 相交于点F ,若3ON OM =,求OP OF的值.【参考答案同学你好!答题前请认真阅读以下内容:1.全卷共6页,三个大题,共25小题,满分150分.考试时长120分钟.考试形式为闭卷.2.请在答题卡相应位置作答,在试题卷上答题无效.3.不能使用计算器.一、选择题(本大题共12题,每题3分,共36分.每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B铅笔在答题卡相应位置填涂)【1题答案】【答案】A【2题答案】【答案】B【3题答案】【答案】A【4题答案】【答案】C【5题答案】【答案】B【6题答案】【答案】A【7题答案】【答案】D【8题答案】【答案】B【9题答案】【答案】A【10题答案】【答案】C【11题答案】【答案】C【12题答案】二、填空题(本大题共4题,每题4分,共16分)【13题答案】【14题答案】【答案】5【15题答案】【答案】20【16题答案】三、解答题(本大题共9题,共98分.解答应写出必要的文字说明、证明过程或演算步骤)【17题答案】【答案】(1)见解析(2)12x-,1【18题答案】【答案】(1)3 yx =(2)a c b<<,理由见解析【19题答案】【答案】(1)7.38,8.26(2)小星的说法正确,小红的说法错误(3)2 3【20题答案】【答案】(1)见解析(2)12【21题答案】【答案】(1)种植1亩甲作物和1亩乙作物分别需要5、6名学生(2)至少种植甲作物5亩【22题答案】【答案】(1)20cm(2)3.8cm【23题答案】1(2)163(3)163【24题答案】【答案】(1)280y x =-+(2)糖果销售单价定为25元时,所获日销售利润最大,最大利润是450元(3)2【25题答案】【答案】(1)画图见解析,90(2)见解析 (3)23或83。
最新浙教版九年级数学中考试题(含答案)

2022年初中毕业升学适应性检测数学试题卷一、选择题(本题有10小题, 每小题3分, 共30分)1.的相反数是.. )A.3B.C.D.2.计算的结果是.. )A. B. C. D.3.如图是由5个大小相同的小正方体摆成的几何体,它的俯视图是()A./B./C./D./4.不透明的袋子中有3个白球和2个红球, 这些球除颜色外无其他差别, 从袋子中随机摸出1个球, 恰好是白球的概率()A. B. C. D.5.已知, 则一定有, “□”中应填的符号是.. )A. B. C. D.6.某市2018年底森林覆盖率为63%. 为贯彻落实“绿水青山就是金山银山”的发展理念, 该市大力开展植树造林活动, 2020年底森林覆盖率达到68%, 如果这两年森林覆盖率的年平均增长率为x, 那么, 符合题意的方程是.. )A. B.C. D.7.将抛物线向左平移1个单位, 再向下平移2个单位得到的抛物线必定经过.. )A. B. C. D.8.已知线段AB,下列尺规作图中,PQ与AB的交点O不一定是AB的中点的是.. )A.AB.BC.CD.D9.如图,是圆锥的母线,已知底面圆直径,圆锥的侧面积为,则的值为.. )A. B. C. D.10.如图,平行四边形的顶点在轴的正半轴上,点在对角线上,反比例函数的图像经过、两点.已知平行四边形的面积是,则点的坐标为. )A. B. C. D.二、填空题(本题有6小题, 每小题4分, 共24分)11.因式分解: ______.12.使有意义的x的取值范围是______.13.如图是小明某一天测得的7次体温情况的折线统计图,这组数据的中位数是______.14.我国明代数学读本《算法统宗》一书中有这样一道题: 一支竿子一条索, 索比竿子长一托, 对折索子来量竿, 却比竿子短一托. 如果1托为5尺, 那么索长为_______尺. (其大意为: 现有一根竿和一条绳索, 如果用绳索去量竿, 绳索比竿长5尺;如果将绳索对折后再去量竿, 就比竿短5尺, 则绳索长几尺. )15.如图,在等腰三角形中,,,为的中点,为上任意一点,则的范围是______.16.已知关于, 的二元一次方程组(, 为实数).(1)若, 则/值是__________;(2)若, 同时满足, , 则的值是__________.三、解答题(本题有8小题, 第17~19题每题6分, 第20, 21题每题8分, 第22, 23题每题10分, 第24题12分, 共66分, 各小题都必须写出解答过程)17.计算: .18.解方程:.19.在“双减政策”下,某校开展学生社团活动,组建摄影社、国学社、篮球社、科技制作社四个社团.每名学生最多只能报一个社团,也可以不报.为了估计各社团人数,现在该校随机抽取50名学生做问卷调查,得到如图所示的两个不完全统计图.结合以上信息, 回答下列问题:(1)请你补全条形统计图, 并在图上标明具体数据;(2)计算参与科技制作社团所在扇形的圆心角度数;(3)已知该校共有学生3000人, 请你估计全校有多少学生报名参加篮球社团活动. 20.如图,在的方格纸中,的顶点均在格点上,请按要求画图.(仅用无刻度的直尺,且不能用直尺的直角,保留作图痕迹)(1)在图1中, 找一格点, 使四边形是中心对称图形, 并补全该四边形;(2)在图2中, 在上作点, 使得.21.甲、乙两地/路程为290千米,一辆汽车早上8:00从甲地出发,匀速向乙地行驶,途中休息一段时间后,按原速继续前进,当离甲地路程为240千米时接到通知,要求中午12:00准时到达乙地.设汽车出发小时后离甲地的路程为千米,图中折线表示接到通知前与之间的函数关系.(1)根据图象可知, 休息前汽车行驶的速度为千米/小时;(2)求线段DE所表示的y与x之间的函数表达式;(3)接到通知后, 汽车仍按原速行驶能否准时到达?请说明理由.22.如图,在中,,以的边为直径作,交于点,过点作,垂足为点.(1)试证明DE是O的切线;(2)若的半径为5, , 求此时的长.23.如图,抛物线与x轴,y轴分别交于A,D,C三点,已知点A(4,0),点C(0,4).若该抛物线与正方形OABC交于点G且CG:GB=3:1.(1)求抛物线的解析式和点D的坐标;(2)若线段OA, OC上分别存在点E, F, 使EF⊥FG.已知OE=m, OF=t.①当t为何值时, m有最大值?最大值是多少?②若点E与点R关于直线FG对称, 点R与点Q关于直线OB对称. 问是否存在t, 使点Q 恰好落在抛物线上?若存在, 直接写出t的值;若不存在, 请说明理由.24.如图,矩形,点是对角线上的动点(不与、重合),连接,作交射线于点.已知,.设的长为.(1)如图1, 于点, 交于点. 求证: ;(2)试探究: 是否是定值?若是, 请求出这个值;若不是, 请说明理由;(3)当是等腰三角形时, 请求出所有的值.2022年初中毕业升学适应性检测数学试题卷一、选择题(本题有10小题, 每小题3分, 共30分)【1题答案】【答案】A【2题答案】【答案】D【3题答案】【答案】D【4题答案】【答案】C【5题答案】【答案】B【6题答案】【答案】B【7题答案】【答案】B【8题答案】【答案】C【9题答案】【答案】D【10题答案】【答案】B二、填空题(本题有6小题, 每小题4分, 共24分)【11题答案】【答案】()()22y y +-【12题答案】【答案】2x ≥【13题答案】【答案】36.8【14题答案】【答案】20【15题答案】 372t ≤≤【16题答案】【答案.. ①... ②.8三、解答题(本题有8小题, 第17~19题每题6分, 第20, 21题每题8分, 第22, 23题每题10分, 第24题12分, 共66分, 各小题都必须写出解答过程)【17题答案】【答案】1【18题答案】【答案】32 x=【19题答案】【答案】(1)补全条形统计图见解析, 图上标明具体数据15, 10 (2)参与科技制作社团所在扇形的圆心角度数为86.4︒(3)全校有600学生报名参加篮球社团活动【20题答案】【答案】(1)见解析(2)见解析【21题答案】【答案】(1)80;(2);(3)不能, 理由见解析.【22题答案】【答案】(1)详见解析;(2)3DE=【23题答案】【答案】(1), 点D的坐标为(-1, 0);(2)①当时, m有最大值, ;②存在, 当时点恰好落在抛物线上【24题答案】【答案】(1)见解析(2)的值为定值, 这个值为(3)x值为145或8。
新中考初三数学试卷及答案

一、选择题(每题4分,共20分)1. 下列选项中,不是有理数的是()A. 3.14B. -1/2C. 0D. √22. 下列选项中,绝对值最小的是()A. -3B. -2C. 1D. 03. 下列方程中,解为x=2的是()A. x + 3 = 5B. x - 2 = 3C. 2x + 1 = 6D. 3x - 4 = 24. 下列函数中,图象是一条直线的是()A. y = 2x + 1B. y = x^2C. y = |x|D. y = √x5. 在直角坐标系中,点A(2,3)关于y轴的对称点是()A.(-2,3)B.(2,-3)C.(-2,-3)D.(2,3)二、填空题(每题4分,共20分)6. 若a=5,则a-2的值为______。
7. 计算:(-3)^2 + 4 - (-2) = ______。
8. 分数3/4与-5/6相加的结果是______。
9. 已知x + 2 = 5,则x的值为______。
10. 在直角三角形ABC中,∠C=90°,AB=5,BC=3,则AC的长度为______。
三、解答题(每题10分,共40分)11. (10分)解下列方程:(1)2x - 5 = 11(2)3(x + 2) - 4 = 2x + 112. (10分)计算下列各式的值:(1)(2x - 3)(x + 4) + (x + 2)^2(2)(3/2)^3 - (2/3)^213. (10分)在直角坐标系中,点P的坐标为(-2,3),点Q在y轴上,且PQ 的长度为5,求点Q的坐标。
14. (10分)若函数f(x) = 2x - 3,求f(2)的值。
四、应用题(每题10分,共20分)15. (10分)某工厂生产一批产品,如果每天生产20件,需要10天完成;如果每天生产30件,需要8天完成。
问:这批产品共有多少件?16. (10分)某商店进购一批货物,进价为每件100元,售价为每件150元。
为了促销,商店决定打八折销售。
初三数学试卷(含答案)

初三数学试卷(含答案)一、选择题(每小题3分,共30分)1. 若a²4a+4=0,则a的值为()A. 2B. 2C. 0D. 2或22. 下列各式中,正确的是()A. (a+b)²=a²+b²B. (a+b)³=a³+b³C. (a+b)²=a²+2ab+b²D. (a+b)³=a³+3ab²+b³3. 下列各式中,正确的是()A. (a+b)²=(a+b)(a+b)B. (a+b)³=(a+b)(a+b)(a+b)C.(a+b)⁴=(a+b)(a+b)(a+b)(a+b) D.(a+b)⁵=(a+b)(a+b)(a+b)(a+b)(a+b)4. 若a²4a+4=0,则a的值为()A. 2B. 2C. 0D. 2或25. 下列各式中,正确的是()A. (a+b)²=a²+b²B. (a+b)³=a³+b³C. (a+b)²=a²+2ab+b²D. (a+b)³=a³+3ab²+b³6. 下列各式中,正确的是()A. (a+b)²=(a+b)(a+b)B. (a+b)³=(a+b)(a+b)(a+b)C.(a+b)⁴=(a+b)(a+b)(a+b)(a+b) D.(a+b)⁵=(a+b)(a+b)(a+b)(a+b)(a+b)7. 若a²4a+4=0,则a的值为()A. 2B. 2C. 0D. 2或28. 下列各式中,正确的是()A. (a+b)²=a²+b²B. (a+b)³=a³+b³C. (a+b)²=a²+2ab+b²D. (a+b)³=a³+3ab²+b³9. 下列各式中,正确的是()A. (a+b)²=(a+b)(a+b)B. (a+b)³=(a+b)(a+b)(a+b)C.(a+b)⁴=(a+b)(a+b)(a+b)(a+b) D.(a+b)⁵=(a+b)(a+b)(a+b)(a+b)(a+b)10. 若a²4a+4=0,则a的值为()A. 2B. 2C. 0D. 2或2二、填空题(每小题3分,共30分)11. 若a²4a+4=0,则a的值为______。
湖北九年级中考数学试卷【含答案】

湖北九年级中考数学试卷【含答案】专业课原理概述部分一、选择题1. 下列哪个数是负数?()A. -5B. 0C. 3D. 82. 如果 a > b,那么下列哪个式子成立?()A. a b > 0B. a + b > 0C. a b > 0D. a / b > 03. 下列哪个数是偶数?()A. 21B. 34C. 47D. 504. 下列哪个数是无理数?()A. √16B. √25C. √2D. √95. 下列哪个式子是正确的?()A. (a + b)^2 = a^2 + b^2B. (a b)^2 = a^2 b^2C. (a + b)(a b) = a^2 b^2D. (a + b)(a + b) = a^2 + b^2二、判断题1. 0是正数。
()2. 任何数乘以0都等于0。
()3. 1是质数。
()4. 2的平方根是2。
()5. 任何数乘以1都等于它本身。
()三、填空题1. -3的相反数是______。
2. 5的平方是______。
3. 12的立方是______。
4. 100的平方根是______。
5. 9和15的最小公倍数是______。
四、简答题1. 请解释什么是负数。
2. 请解释什么是偶数。
3. 请解释什么是无理数。
4. 请解释什么是质数。
5. 请解释什么是最大公因数。
五、应用题1. 如果一个数是9,那么它的相反数是多少?2. 如果一个数是16,那么它的平方根是多少?3. 如果一个数是24,那么它的立方是多少?4. 如果两个数分别是4和6,那么它们的最大公因数是多少?5. 如果两个数分别是8和12,那么它们的最小公倍数是多少?六、分析题1. 请分析负数和正数之间的关系。
2. 请分析偶数和奇数之间的关系。
七、实践操作题1. 请计算-5 + 3的结果。
2. 请计算12 7的结果。
八、专业设计题1. 设计一个函数,使其输入一个正整数n,输出从1到n的所有偶数。
2. 设计一个函数,使其输入一个正整数n,输出从1到n的所有奇数。
最新中考数学试题及答案

最新中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 0.5B. √2C. 2/3D. 3.14答案:B2. 一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 5和-5D. 以上都不是答案:C3. 一个等腰三角形的底边长为6,两腰长为5,那么这个三角形的周长是:A. 16B. 17C. 18D. 19答案:A4. 如果一个函数的图像是一条直线,那么这个函数是:A. 一次函数B. 二次函数C. 三次函数D. 无法确定答案:A5. 一个数的立方根是2,那么这个数是:A. 8B. 6C. 4D. 2答案:A6. 一个数的平方是25,那么这个数是:A. 5B. -5C. ±5D. 25答案:C7. 一个圆的半径是3,那么这个圆的面积是:A. 9πB. 18πC. 27πD. 36π答案:C8. 一个直角三角形的两直角边长分别为3和4,那么斜边长是:A. 5B. 6C. 7D. 8答案:A9. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 10答案:A10. 下列哪个选项是二次根式?A. √3B. √(-1)C. √(2/3)D. √(2x)答案:D二、填空题(每题4分,共20分)1. 一个数的平方是16,那么这个数是______。
答案:±42. 一个数的绝对值是7,那么这个数是______。
答案:±73. 一个等腰三角形的底边长为8,两腰长为10,那么这个三角形的周长是______。
答案:284. 一个圆的半径是4,那么这个圆的面积是______。
答案:16π5. 一个直角三角形的两直角边长分别为6和8,那么斜边长是______。
答案:10三、解答题(每题10分,共50分)1. 已知一个直角三角形的两直角边长分别为3和4,求斜边长。
答案:根据勾股定理,斜边长为√(3²+4²)=√(9+16)=√25=5。
初三数学中考测试题及答案

初三数学中考测试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是无理数?A. -3B. 0.3C. πD. √42. 若a,b,c是三角形的三边长,且满足a + b > c,a - b < c,那么这个三角形的类型是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定3. 一个数的平方根是2,那么这个数是:A. 4B. -4C. 2D. -24. 以下哪个方程的解是x=1?A. x + 1 = 2B. x - 1 = 2C. x^2 = 1D. 2x = 25. 函数y = 2x + 3的斜率是:A. 2B. 3C. -2D. -3二、填空题(每题2分,共10分)6. 一个直角三角形的两条直角边分别为3和4,其斜边长为________。
7. 一个数的立方根是2,那么这个数是________。
8. 一个数的倒数是1/3,这个数是________。
9. 一个圆的半径为5,其面积是________。
10. 一个数的绝对值是5,这个数可以是________或________。
三、计算题(每题5分,共15分)11. 计算下列表达式的值:(3x - 2) / (x + 1),当x = 2时。
12. 解方程:2x + 5 = 3x - 2。
13. 计算下列多项式的乘积:(2x^2 - 3x + 1)(3x + 1)。
四、解答题(每题10分,共20分)14. 一个长方体的长、宽、高分别是5cm、4cm和3cm,请计算它的表面积和体积。
15. 某工厂生产一批零件,每个零件的成本为20元,销售价格为30元,如果工厂计划获利10000元,需要生产多少个零件?五、应用题(每题15分,共30分)16. 某班级有40名学生,其中30人参加了数学竞赛,20人参加了物理竞赛,有5人同时参加了数学和物理竞赛。
求:a. 只参加数学竞赛的学生人数。
b. 只参加物理竞赛的学生人数。
c. 没有参加任何竞赛的学生人数。
初三数学试卷的试题及答案

一、选择题(每题4分,共40分)1. 若a、b是方程x² - 5x + 6 = 0的两个根,则a² + b²的值为:A. 1B. 4C. 5D. 62. 在直角坐标系中,点A(2,3)关于x轴的对称点为:A. (2,-3)B. (-2,3)C. (2,-3)D. (-2,-3)3. 若sinθ = 0.8,且θ在第二象限,则cosθ的值为:A. -0.6B. 0.6C. -0.9D. 0.94. 下列函数中,y = x² - 4x + 4的图像是:A. 抛物线开口向上B. 抛物线开口向下C. 直线D. 圆5. 在等腰三角形ABC中,AB = AC,若∠BAC = 40°,则∠ABC的度数为:A. 40°B. 50°C. 60°D. 70°6. 若x + y = 5,xy = 6,则x² + y²的值为:A. 17B. 25C. 26D. 357. 下列不等式中,正确的是:A. 3x > 2xB. 2x < 3xC. 3x ≥ 2xD. 2x ≤ 3x8. 若a、b、c是等差数列,且a + b + c = 15,a² + b² + c² = 45,则ab + bc + ca的值为:A. 15B. 25C. 35D. 459. 在△ABC中,若a = 3,b = 4,c = 5,则△ABC是:A. 直角三角形B. 等腰三角形C. 等边三角形D. 一般三角形10. 若x² - 2x - 3 = 0,则x² - 5x + 6的值为:A. 1B. 2C. 3D. 4二、填空题(每题5分,共25分)11. 若sinα = 0.6,cosα = 0.8,则tanα = _______。
12. 若等差数列{an}中,a1 = 3,公差d = 2,则第10项an = _______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年中考数学经典试题集一、填空题:1、已知01x ≤≤.(1)若62=-y x ,则y 的最小值是 ; (2).若223x y +=,1xy =,则x y -= .答案:(1)-3;(2)-1.2、用m 根火柴可以拼成如图1所示的x 个正方形,还可以拼成如图2所示的2y 个正方形,那么用含x 的代数式表示y ,得y =_____________.答案:y =53x -51.3、已知m 2-5m -1=0,则2m 2-5m +1m 2= .答案:28.4、____________________范围内的有理数经过四舍五入得到的近似数3.142.答案:大于或等于3.1415且小于3.1425.5、如图:正方形ABCD 中,过点D 作DP 交AC 于点M 、 交AB 于点N ,交CB 的延长线于点P ,若MN =1,PN =3,则DM 的长为 .答案:2.6、在平面直角坐标系xOy 中,直线3+-=x y 与两坐标轴围成一个△AOB。
现将背面完全相同,正面分别标有数1、2、3、21、31的5张卡片洗匀后,背面朝上,从中任取一张,将该卡片上的数作为点P 的横坐标,将该数的倒数作为点P 的纵坐标,则点P 落在△AOB 内的概率为 . 答案:53. 7、某公司销售A 、B 、C 三种产品,在去年的销售中,高新产品C 的销售金额占总销售金额的40%。
由于受国际金融危机的影响,今年A 、B 两种产品的销售金额都将比去年减少20%,因而高新产品C 是今年销售的重点。
若要使今年的总销售金额与去年持平,那么今年高新产品C 的销售金额应比去年增加 %. 答案:30.8、小明背对小亮按小列四个步骤操作:(1)分发左、中、右三堆牌,每堆牌不少于两张,且各堆牌现有的张数相同; (2)从左边一堆拿出两张,放入中间一堆;(3)从右边一堆拿出两张,放入中间一堆;(4)左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆,当小亮知道小明操作的步骤后,便准确地说出中间一堆牌现有的张数,你认为中间一堆牌现有的张数是 . 答案:6.9、某同学在使用计算器求20个数的平均数时,错将88误输入为8,那么由此求出的平均数与实际平均数的差为 . … ……图1 图2第19题图P N M DCB A答案:-4.10、在平面直角坐标系中,圆心O 的坐标为(-3,4),以半径r 在坐标平面内作圆, (1)当r 时,圆O 与坐标轴有1个交点; (2)当r 时,圆O 与坐标轴有2个交点; (3)当r 时,圆O 与坐标轴有3个交点; (4)当r 时,圆O 与坐标轴有4个交点; 答案:(1)r=3; (2)3<r <4; (3)r=4或5; (4)r >4且r ≠5.二、选择题:1、图(二)中有四条互相不平行的直线L 1、L2、L3、L 4所截出的七个角。
关于这七个角的度数关系,下列何者正确?( )A .742∠∠∠+=B .613∠∠∠+=C .︒∠∠∠180641=++D .︒∠∠∠360532=++ 答案:C.2、在平行四边形ABCD 中,AB =6,AD =8,∠B 是锐角,将△ACD 沿对角线AC 折叠,点D 落在△ABC 所在平面内的点E 处。
如果AE 过BC 的中点,则平行四边形ABCD 的面积等于( ) A 、48 B 、610 C 、712 D 、224答案:C.3、如图,⊙O 中弦AB 、CD 相交于点F ,AB =10,AF =2。
若CF ∶DF =1∶4,则CF 的长等于( )A 、2B 、2C 、3D 、22 答案:B.4、如图:△ABP 与△CDP 是两个全等的等边三角形,且PA ⊥PD 。
有下列四个结论:①∠PBC=150;②AD∥BC;③直线PC 与AB 垂直;④四边形ABCD 是轴对称图形。
其中正确结论的个数为( )CA 、1B 、2C 、3D 、4 第10题图PDCBA答案:D.5、如图,在等腰Rt△ABC 中,∠C=90º,AC=8,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD=CE ,连接DE 、DF 、EF 。
在此运动变化的过程中,下列结论:① △D FE 是等腰直角三角形; ② 四边形CDFE 不可能为正方形;③ DE 长度的最小值为4;④ 四边形CDFE 的面积保持不变;⑤△CDE 面积的最大值为8。
其中正确的结论是( )A .①②③B .①④⑤C .①③④D .③④⑤ 答案:B.三、解答题:16、若a 、b 、c 为整数,且1=-+-a c b a ,求a c c b b a -+-+-的值. 答案:2.17、方程0120092007)20082=-⨯-x x (的较大根为a ,方程020*******=--x x 的较小根为b ,求2009)(b a +的值.解:把原来的方程变形一下,得到:(2008x )²-(2008-1)(2008+1)X-1=0 2008²x²-2008²x +x-1=0 2008²x(x-1)+(x-1)=0 (2008²x +1)(x-1)=0x=1或者-1/2008²,那么a=1. 第二个方程:直接十字相乘,得到: (X+1)(X-2009)=0所以X=-1或2009,那么b=-1. 所以a+b=1+(-1)=0,即2009)(b a +=0.18、在平面直角坐标系内,已知点A (0,6)、点B (8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P 、Q 移动的时间为t 秒.(1) 求直线AB 的解析式;(2) 当t 为何值时,以点A 、P 、Q 为顶点的三角形△AOB 相似?EFDCBA(3) 当t=2秒时,四边形OPQB 的面积多少个平方单位? 解:(1)设直线AB 的解析式为:y=kx+b 将点A (0,6)、点B (8,0)代入得⎩⎨⎧+=+⨯=bk bk 8006解得⎪⎩⎪⎨⎧=-=643b k直线AB 的解析式为: 643+-=x y (2) 设点P 、Q 移动的时间为t 秒,OA=6,OB=8. ∴勾股定理可得,AB=10 ∴AP=t ,AQ=10-2t 分两种情况,① 当△APQ ∽△AOB 时AB AO AQ AP =,106210=-t t ,1133=t . ② 当△AQP ∽△AOB 时AB AO AP AQ =,106210=-t t ,1330=t . 综上所述,当1133=t 或1330=t 时,以点A 、P 、Q 为顶点的三角形△AOB 相似.(3) 当t=2秒时,四边形OPQB 的面积,AP=2,AQ=6过点Q 作QM ⊥OA 于M △AMQ ∽△AOB∴OB QM AB AQ =,8106QM =,QM=4.8 △APQ 的面积为:8.48.422121=⨯⨯=⨯QM AP (平方单位)∴四边形OPQB 的面积为:S △AOB -S △APQ =24-4.8=19.2(平方单位)19、某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小也相同。
安全检查中,对4道门进行了测试:当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生;当同时开启一道正门和一道侧门时,4分钟内可以通过800名学生。
(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况时因学生拥挤,出门的效率将降低20%。
安全检查规定:在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离。
假设这栋教学大楼每间教室最多有45名学生,问:建造的这4道门是否符合安全规定?请说明理由。
解:(1)设平均每分钟一道正门可以通过x 名学生,一道侧门可以通过y 名学生,由题意得:⎩⎨⎧=+=+800)(4560)2(2y x y x解得:⎩⎨⎧==80120y x答:平均每分钟一道正门可以通过120名学生,一道侧门可以通过80名学生。
xB(2)这栋楼最多有学生4×8×45=1440(名)拥挤时5分钟4道门能通过:%)201)(80120(25-+⨯=1600(名)∵1600>1440∴建造的4道门符合安全规定。
20、已知抛物线42)4(2++-+-=m x m x y 与x 轴交于点A (1x ,0)、B (2x ,0)两点,与y 轴交于点C ,且1x <2x ,1x +22x =0。
若点A 关于y 轴的对称点是点D 。
(1)求过点C 、B 、D 的抛物线的解析式;(2)若P 是(1)中所求抛物线的顶点,H 是这条抛物线上异于点C 的另一点,且△HBD 与△CBD 的面积相等,求直线PH 的解析式。
解:(1)由题意得:⎪⎪⎩⎪⎪⎨⎧>+=++-=∆--=⋅-=+=+032)42(4)4(4240222212121m m m m x x m x x x x由①②得:821-=m x ,42+-=m x将1x 、2x 代入③得:42)4)(82(--=+--m m m整理得:01492=+-m m∴1m =2,2m =7 ∵1x <2x∴82-m <4+-m ∴m <4∴2m =7(舍去)∴1x =-4,2x =2,点C 的纵坐标为:42+m =8 ∴A 、B 、C 三点的坐标分别是A (-4,0)、B (2,0)、C (0,8)又∵点A 与点D 关于y 轴对称∴D (4,0)设经过C 、B 、D 的抛物线的解析式为:)4)(2(--=x x a y 将C (0,8)代入上式得:)40)(20(8--=a ∴a =1∴所求抛物线的解析式为:862+-=x x y (2)∵862+-=x x y =1)3(2--x ∴顶点P (3,-1)设点H 的坐标为H (0x ,0y)∵△BCD 与△HBD 的面积相等 ∴∣0y ∣=8∵点H 只能在x 轴的上方,故0y =8将0y =8代入862+-=x x y 中得:0x =6或0x =0(舍去) ∴H (6,8)设直线PH 的解析式为:b kx y +=则NCBy⎩⎨⎧=+-=+8613b k b k解得:k =3 b =-10∴直线PH 的解析式为:103-=x y21、已知:如图,在直角梯形ABCD 中,AD∥BC,∠ABC=90º,DE⊥AC 于点F ,交BC 于点G ,交AB 的延长线于点E ,且AE=AC 。
(1)求证:BG=FG ;(2)若AD=DC=2,求AB 的长。
证明:(1)连结EC ,证明略(2)证明⊿AEC 是等边三角形,AB=322、某电视机生产厂家去年销往农村的某品牌电视机每台的售价y (元)与月份x 之间满足函数关系260050+-=x y ,去年的月销售量p (万台)与月份x 之间成一次函数关系,(1(2)由于受国际金融危机的影响,今年1、2月份该品牌电视机销往农村的售价都比去年12月份下降了%m ,且每月的销售量都比去年12月份下降了%5.1m 。