第二章 静电场与导体

合集下载

电磁学02静电场中的导体与介质

电磁学02静电场中的导体与介质

A q -q
-q+q
UA
q'
4 0 R0
q ' 4 0R1
q q '
4 0 R2
0
可得 q ( q) 1(9略)
例4 接地导体球附近有一点电荷,如图所示。
求:导体上感应电荷的电量
R
解: 接地 即 U0
o
感应电荷分布在表面,
l
q
电量设为:Q’(分布不均匀!)
由导体等势,则内部任一点的电势为0
选择特殊点:球心o计算电势,有:
1) Dds
S
1 (
r
1) q0内
l i mq内
V0V
1 (
r
1) limq0内 V0V
1 (
r
1)0
00 0。 40
[例2] 一无限大各向同性均匀介质平板厚度为 d
表明:腔内的场与腔外(包括壳的外表面)
物理 内涵
的电荷及分布无关。
在腔内 E 腔 外表 E 腔 面外 0带
电 量 的电 体 的
二.腔内有带电体时
q
① 带电量: Q腔内 q (用高斯定理易证)
表面
23
② 腔内的电场: 不为零。
由空腔内状况决定,取决于:
*腔内电量q;
*腔内带电体及腔内壁的 几何因素、介质。
平行放置一无限大的不带电导体平板。
0 1 2 求:导体板两表面的面电荷密度。
E2 • E1 解: 设导体电荷密度为 1、 2 ,
E0 电荷守恒: 1 + 2 = 0
(1)
导体内场强为零:E0 +E1‐E2 = 0
0 1 2 0 20 20 20
(1)、(2)解得:

第2章静电场

第2章静电场

“立个球面”的立体角=? 2. “任意曲面”dS对“某点”所张的立体角 (1) 以R0为半径的“球面”
3. “立体角”的重要结论
散度方程微分形式的引出:
请注意:此处的ρ 是指自由电荷的体密度ρvf !
(强调)散度方程
• 物理意义: 它们描述了静电场的发散性,给出了通过封闭面的 电通量与面内所围电荷量之间的关系; • 积分形式说明: 任意封闭面的电通量=面内所围电荷总量; 电通量为0,则封闭面内不包含电荷,即面内无源; 进而说明:静电场具有通量源,即自由电荷。 • 微分形式说明: 静电场(电位移)散度=该点处电荷体密度; 进而,静电场具有散度源,即自由电荷的体密度。
例2. 求电荷分布
已知真空中电场分布,求各处电荷分布的体密度. 分析: 由电场分布可知, 球对称, 电场只有径向分量; 可以直接运用散度方程求解; 仍要分球内和球外两种情况;
作业
• 试计算电荷面密度为σ 的无限大平面周围 的电场。
静电场的旋度方程
• 首先应注意,这是静电场,不是任意电场; • 积分形式: 电场沿任意闭合曲线的积分为0; C指任意闭合曲线; C自身方向与C所围曲面方向满足右手规则; 积分式即电场的环流量; • 微分形式: 静电场的旋度为0 无论在有源区还是无源区; 电荷是静电场的什么源?体密度是什么源?
真空中距离为R的两点电荷q1,q2 q1对q2的作用力,电荷量正比,距离平方反比 矢量方向:q1指向q2 真空中介电常数(Dielectric Constant)
1 12 0 8.85 10 ( F / m) 9 4 9 10
真空中静止点电荷的电场强度
q 2受到的电场力:F R, q1 , q2


总结1:
库仑定律(真空中静止电荷电场)

大学物理电磁学第二章 导体周围的静电场汇总

大学物理电磁学第二章   导体周围的静电场汇总

VO
q
4
0l
dS q 1 S 4 0R 4 ol 4 0R
dS 1 q Q
S
4 0 l R
例5 求金属球的感生电荷。
q
S R
仿上题解题技巧,可得
l
O
V0
1
4
0
q l
q/ R
0
q/
R l
q
q/
2.1.5 平行板导体组例题
解: 根据静电平衡条件有:
例1 求每板表面的电荷密度 在A内:
第二章 有导体时的静电场
本章主要内容:
导体的静电平衡及静电平衡条件,静电场中导体 的电学性质; 电容器及其联接; 电场的能量; 简单介绍静电的应用。
§2.1 静电场中的导体
2.1.1 静电平衡
本节讨论的导体主要是指金属导体,金属导体内部有大量 的自由电子,自由电子时刻作无规则的热运动。
导体刚放入电场
(2) 两球间的电势差(电压)绝
对值与球形电容器的电荷Q成正比,
证明如下。
球壳间
E
Q
4 0r 2
eˆr
-
-
+ + r+
-
-
R2
+ +
R1
-
+
+ +
-
-
-
U
Q R2
R1 4 0
dr r2
Q
4
0
1 R1
1 R2
2、平行板电容器
A
(1) 电荷在两平板相对面内 均匀分布,两面电荷等值异号。
(2) 两枝间的电压与板内壁的 B
+
+Q C -Q

赵凯华-电磁学-第三版-第二章-静电场中的导体和电介质

赵凯华-电磁学-第三版-第二章-静电场中的导体和电介质

R2 R1 R0
解: 1)导体电荷只分布在表面上 球A的电荷只可能在球的表面
B
Q
Aq
o
壳电B荷有可两能个分表布面在内、外两个表面R(2具体R1分布?)R0
由于A、B同心放置
带电体系具有球对称性
电量在表面上均匀分布(满足E内=0要求)
电量在表面上均匀分布 Q q
电量q在球A表面上均匀分
R 1
4 0
9109 m 103 RE 1F
106 F
法拉单位过大, 常用单位: 1nF 109 F
1pF 1012 F
二.导体组的电容
由静电屏蔽:导体壳内部的电场只由腔内的电 量和几何条件及介质决定电位差仅与电荷 Q,几何尺寸有关,不受外部电场的影响,可
以定义电容。

UB

Qq
E dr
Qq
R2
4 0r R2 4 0 R2
例3 如图所示,接地导体球附近有一点电荷 。
求:导体上感应电荷的电量
解: 接地,即 U 0
设:感应电量为 Q
R
由于导体是个等势体
O
l
q
O点的电势也为零 ,则
Q q 0 40 R 40l
Q Rq l
腔内无电场,E腔内=0 腔内电势处处相等
S
证明: 在导体壳内紧贴内表面作高斯面S

E ds 0 高斯定理 S
Qi 内表面 0
1.处处没有电荷
与等位矛盾 证明了上述 两个结论
2.内表面有一部分是正 则 会 从 正 电 荷 向 负 电荷,一部分是负电荷 电荷发出电力线
这就是物质对静电场的响应---第二章的研究内容:电场中的导体感应、 电解质极化, 并且分析感应、极化电荷对静电场的影响---静电场与物质的 相互作用(影响)

静电场中的导体与电介质

静电场中的导体与电介质

§2 静电场中的导体和电介质§2-1 静电场中的导体1. 导体的静电平衡条件当电荷静止不动时,电场散布不随转变,该体系就达到了静电平衡。

在导体中存在自由电荷,它们在电场的作用下可以移动,从而改变电荷的散布……导体内自由电荷无宏观运动的状态。

导体的静电平衡的必要条件是其体内图2-1导体的静电平衡场强处处为零。

从静电平衡的条件动身可以取得以下几点推论:推论1)导体是等位体,导体表面是等位面:2)导体表面周围的场强处处与它的表面垂直:因为电力线处处与等位面正交,所以导体外的场强必与它的表面垂直。

(注意:本章所用的方式与第一章不同,而是假定这种平衡以达图2-2导体对等位面的控制作用到,以平衡条件动身结合静电场的普遍规律分析问题。

)2.电荷散布1) 体内无电荷,电荷只散布在导体的表面上:当带电导体处于静电平衡时,导体内部不存在净电荷(即电荷的体密度)电荷仅散布在导体的表面。

可以用高斯定理来证明:设导体内有净电荷,则可在导体内部作一闭合的曲面,将包围起来,依静电条件知S面上处处, 即由高斯定理必有q=02) 面电荷密度与场强的关系:当导体静电平衡时,导体表面周围空间的 与该处导体表面的面电荷密度 有如下关系:论证: 在电荷面密度为 的点取面元设 点为导体表面之外周围空间的点,面元。

充分小,可以为 上的面电荷密度 是均匀的,以为横截面作扁圆柱形高斯面(S ),上底面过P 点,把电荷q= 包围起来. 通太高斯面的电通量是:3) 表面曲率的影响、尖端放电导体电荷如何散布,定量分析研究较复杂,这不仅与这个导体的形状有关,还和它周围有何种带电体有关。

对孤立导体,电荷的散布有以下定性的规律:图2-3导体表面场强与电荷面密度曲率较大的地方(凸出而尖锐处),电荷密度e 较大;曲率较小的地方(较平坦处)电荷密度e 较小;曲率为负的地方(凹进去向)电荷密度e 更小。

1) 端放电的利和弊3 导体壳(腔内无带电体情况)大体性质:当导体壳内无带电体时,在静电平衡当导体壳内无 带电体时,在静电平衡下:导体壳内表面上处处无电荷,电荷仅散布在外 表面;空腔内无带电场,空腔内电位处处相等。

第二章 静电场中的导体和电介质:电容器的电容

第二章 静电场中的导体和电介质:电容器的电容
D 0 E P 0 r E E
P e 0 E
§2.8 电容器的电容
一.孤立导体的电容
q C V
单位:F(法拉)
C是与导体的尺寸和形状以及周围的电介质有 关,与q,V无关的常数。
1F 10 F 10 PF
6 12
例1 .求半径为R的孤立导体球的电容。
q1:q2: · :qn = C1:C2: · :Cn · · · ·
q qi (V A VB ) C i ,
i 1 i 1
n
n
n q C Ci VA VB i 1
并联电容器的总电容等 于各电容器的电容之和 2. 串联
C Ci
i 1
n
A +
VA +q –q +q –q 。
q dA udq dq C
从开始极板上无电荷直到极板上电量为Q的过 程中,电源作的功为
2 q 1 Q 1Q dq 0 qdq C C 2 C
A dA 0
Q
Q CU
U为极板上电量为Q时两板间的电势差
1 Q2 1 1 2 A CU QU 2 C 2 2
E
0
( r R1 , r R2 )
λ er 2πεr
B A
( R1 r R2 )
2
VA VB
R E dl R Edr
1
λdr R1 2πεr
R2
R2 q R2 λ ln ln 2πε R1 2πεL R1
q 2πεL C V A VB ln( R2 / R1 )
②所求的C = q/VA–VB一定与q和VA–VB无关,仅 由电容器本身的性质决定。

第二章-静电场与导体

第二章-静电场与导体

第二章静电场与导体教学目的要求:1、深入理解并掌握导体的静电平衡条件及静电平衡时导体的基本性质,加深对高斯定理和环路定理的理解,结合应用电场线这一工具,会讨论静电平衡的若干现象,会结合静电平衡条件去理解静电感应、静电屏蔽等现象,并会利用前章的知识求解电场中有导体存在时的场强和电势分布。

2、确理解电容的概念,并能计算几种特殊形式的电容器的电容值。

3、进一步领会静电能的概念、会计算一些特殊带电导体的静电能。

4、深刻理解电场能量的概念,会计算电场能。

教学重点:1、静电场中的导体2、电容和电容器教学难点:1、静电场的唯一定理§2.1 静电场中的导体§2.2 电容和电容器§2.3 静电场的能量§2.1 静电场中的导体1、导体的特征功函数(1)金属导体的特征金属可以看作固定在晶格点阵上的正离子(实际上在作微小振动)和不规则运动的自由电子的集合。

①大量自由电子的运动与理想气体中分子的运动相同,服从经典的统计规律。

②自由电子在电场作用下将作定向运动,从而形成金属中的电流。

③自由电子的平均速率远大与定向运动速率。

(2)功函数金属表面存在一种阻止自由电子从金属逸出的作用,电子欲从金属内部逸出到外部,就要克服阻力作功。

一个电子从金属内部跑到金属外部必须作的最小功称为逸出功,亦称功函数。

2、导体的静电平衡条件(1)什么是静电感应?当某种原因(带电或置于电场中)使导体内部存在电场时,自由电子受到电场力的作用而作定向运动,使导体一侧因电子的聚集而出现负电荷布另一侧因缺少电子而有正电荷分布,这就是静电感应,分布在导体上的电荷便是感应电荷。

(2)静电平衡状态当感应电荷在导体内产生的场与外场完全抵消时,电子的定向运动终止,导体处于静电平衡状态。

(3)静电平衡条件所有场源包括导体上的电荷共同产生的电场的合场强在导体内部处处为零。

静电平衡时:①导体是等势体。

②导体外表面附近的电场强度与导体表面垂直。

电磁学第二章习题答案

电磁学第二章习题答案

习题五(第二章 静电场中的导体和电介质)1、在带电量为Q 的金属球壳内部,放入一个带电量为q 的带电体,则金属球壳内表面所带的电量为q ,外表面所带电量为 q +Q 。

2、带电量Q 的导体A 置于外半径为R 的导体 球壳B 内,则球壳外离球心r 处的电场强度大小204/r Q E πε=,球壳的电势R Q V 04/πε=。

3、导体静电平衡的必要条件是导体内部场强为零。

4、两个带电不等的金属球,直径相等,但一个是空心,一个是实心的。

现使它们互相接触,则这两个金属球上的电荷( B )。

(A)不变化 (B)平均分配 (C)空心球电量多 (D)实心球电量多5、半径分别R 和r 的两个球导体(R >r)相距很远,今用细导线把它们连接起来,使两导体带电,电势为U 0,则两球表面的电荷面密度之比σR /σr 为 ( B )(A) R/r (B) r/R (C) R 2/r 2 (D) 16、有一电荷q 及金属导体A ,且A 处在静电平衡状态,则( C )(A)导体内E=0,q 不在导体内产生场强;、(B)导体内E ≠0,q 在导体内产生场强; (C)导体内E=0,q 在导体内产生场强; (D)导体内E ≠0,q 不在导体内产生场强。

7、如图所示,一内半径为a ,外半径为b 的金属球壳,带有电量Q , 在球壳空腔内距离球心为r 处有一点电荷q ,设无限远 处为电势零点。

试求:、(1)球壳外表面上的电荷;(2)球心O 点处由球壳内表面上电荷产生的电势; (3)球心O 点处的总电势。

解: (1) 设球壳内、外表面电荷分别为q 1 , q 2,以O 为球心作一半径为R (a <R <b )的rARQ)O· Q ·b·Oarq B高斯球面S,由高斯定理01εqq dS E S +=⋅⎰⎰ ,根据导体静电平衡条件,当a <R <b 时,0=E。

则0=⋅⎰⎰SdS E ,即01=+q q ,得q q -=1根据电荷守恒定律,金属球壳上的电量为21q q Q +=(qQ q Q q +=-=∴12(2)在内表面上任取一面元,其电量为dq ,在O 点产生的电势adq dV o πε411=q 1在O 点产生的电势aq aq adq dV V o o o πεπεπε4441111-====⎰⎰内内(3) 同理,外球面上的电荷q 2在O 点产生的电势bqQ bq V o o πεπε4422+== 点电荷q 在O 点产生的电势rq V o q πε4=∴ O 点的总点势o q V V V V πε41210=++=(bq Q a q r q ++-) 8、点电荷Q 放在导体球壳的中心,球的内、外半径分别为a 和b ,求场强和电势分布。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章静电场与导体教学目的要求:1、深入理解并掌握导体的静电平衡条件及静电平衡时导体的基本性质,加深对高斯定理和环路定理的理解,结合应用电场线这一工具,会讨论静电平衡的若干现象,会结合静电平衡条件去理解静电感应、静电屏蔽等现象,并会利用前章的知识求解电场中有导体存在时的场强和电势分布。

2、确理解电容的概念,并能计算几种特殊形式的电容器的电容值。

3、进一步领会静电能的概念、会计算一些特殊带电导体的静电能。

4、深刻理解电场能量的概念,会计算电场能。

教学重点:1、静电场中的导体2、电容和电容器教学难点:1、静电场的唯一定理§2.1 静电场中的导体§2.2 电容和电容器§2.3 静电场的能量§2.1 静电场中的导体1、导体的特征功函数(1)金属导体的特征金属可以看作固定在晶格点阵上的正离子(实际上在作微小振动)和不规则运动的自由电子的集合。

①大量自由电子的运动与理想气体中分子的运动相同,服从经典的统计规律。

②自由电子在电场作用下将作定向运动,从而形成金属中的电流。

③自由电子的平均速率远大与定向运动速率。

(2)功函数金属表面存在一种阻止自由电子从金属逸出的作用,电子欲从金属内部逸出到外部,就要克服阻力作功。

一个电子从金属内部跑到金属外部必须作的最小功称为逸出功,亦称功函数。

2、导体的静电平衡条件(1)什么是静电感应?当某种原因(带电或置于电场中)使导体内部存在电场时,自由电子受到电场力的作用而作定向运动,使导体一侧因电子的聚集而出现负电荷布另一侧因缺少电子而有正电荷分布,这就是静电感应,分布在导体上的电荷便是感应电荷。

(2)静电平衡状态当感应电荷在导体内产生的场与外场完全抵消时,电子的定向运动终止,导体处于静电平衡状态。

(3)静电平衡条件所有场源包括导体上的电荷共同产生的电场的合场强在导体内部处处为零。

静电平衡时:① 导体是等势体。

② 导体外表面附近的电场强度与导体表面垂直。

③ 导体表面是一个等势面,且与导体内部的电势相等。

3、导体上的电荷分布(1)导体内部电荷密度处处为零,电荷只能分布在导体表面上。

(2)空腔导体(内无电荷)内表面上无电荷分布。

电荷只能分布在外表面,且导体空腔内部的场强也为零。

(3)孤立带电导体表面电荷面密度σ与表面曲率有关。

一般来说,曲率大的地方电荷面密度较大,曲率小的地方电荷面密度较小。

4、导体表面的场强当导体处于静电平衡时,导体表面场强大小与导体表面处的面电荷密度σ成正比,方向与导体表面垂直,即为表面外法线单位矢。

① E 是由所有场源共同产生。

②01E σε=的关系形式不受场源改变的影响。

当场源改变时,电场分布必要改变,导体表面上的面电荷分布将自行调整,直至达到新的静电平衡,使 01E σε=成立。

5、静电屏蔽空腔导体(不论接地与否)内部电场不受外部电荷影响;接地空腔导体外部电场不受腔内电荷影响,这种现象叫做静电屏蔽。

① 当导体壳接地时,接地线的存在,只提供与地交换电荷的可能性,并不保证壳外壁的电荷密度在任何情况下都为零。

② 导体的静电屏蔽作用是自然界存在两类电荷与导体中存在大量自由电子的结果。

③ 静电屏蔽时,电场线不能穿透金属导体。

这里的电场线代表的是所有电荷共同产生的电场。

6、导体上的电荷分布计算方法n e E ˆ10σε= n eˆ(1)根据题设条件分析判断经静电感应达到静电平衡后导体上所带电荷的性质及其分布情况,设出各待求电量Q 或电荷密度σ。

(2)根据导体的静电平衡条件、高斯定理、环路定理和叠加原理,分别列出其场强及电势的表达式。

(3)由已知条件从方程组中解出各待求量。

7、导体附近的场强和电势计算方法(1)确定导体达到静电平衡时所带的电量及电荷分布情况。

(2)根据导体静电平衡条件及导体上电荷稳定分布情况,分析判断其电场分布情况,用高斯定理(或场强叠加原理)再求出场强分布。

(3)用电势定义式(或电势叠加原理)求出电势分布。

8、例题例2.1-1 一面积为S 的很大金属平板A ,带有正电荷,电量为Q ,A 1和A 2是金属板的两个平面,计算两表面上的电荷单独产生的场强和它们的合场强。

解:因导体板的面积很大,厚度很小,可以认为电荷Q 均匀分布在A 1和A 2两个表面上,电荷面密度为每个面可看作无限大的带电平面,设 和 分别代表A 1和A 2表面上的电荷单独产生的电场的场强,表示垂直金属板向右的单位矢量,则而 例2.1-2 在例1中,若把另一面积亦为S 的不带电的金属平板B 平行放在A 板附近,求此时A 、B 板每个表面上的面密度和空间各点的场强。

解:当B 板放在A 板附近时,由于静电感应,电荷将重新分布,最后达到静电平衡。

用1σ、2σ、3σ、4σ分别表示A 和B 两板每个面上的电荷面密度,如图所示。

根据电荷守恒定律,不管板上的电荷怎样重新分布,每一金属板的总量保持不变,即S Q 2=σ2E 1E =1E i ˆ210σε(A 1右侧)i ˆ210σε-(A 1左侧)=2E i ˆ210σε(A 2右侧)i ˆ210σε-(A 2左侧)=+=21E E E i ˆ10σε(A 1右侧)0 (A 1、A 2之间)i ˆ10σε-(A 2左侧)1A x 1σQ =+21σσ根据静电平衡条件,每一金属板内的场强为零,若1E 、2E 、3E 和 4E 分别是每一面上的电荷单独产生的场强,则在金属板内任一处取向右的方向为正,把每一个带电面看作无限大带电平面,在金属板A 内,有在金属板B 内,有解以上四个方程式,可得 三个区域中的场强为 012I II III Q E E E S ε===方向如图所示。

由此可见,B 板的引入并不改变A 板上电荷的分布,除B 板内各处的场强为零外,空间其它地方的场强亦未变化。

例2.1-3 在上题中,若将金属板B 接地,求A 、B 两板表面上的电荷密度。

解:B 板接地后,B 板和大地变成同一导体,B 板外侧表面不带电,即根据电荷守恒定律根据静电平衡条件,A 、B 两板内部电场强度为零,故有解以上方程得即当B 板接地后,原来分布在A 板两个表面上的电荷全部集中到B 板的一个表面上,而在B 板的靠近A 板的那个表面上出现与A 板等量异号的感应电荷,电场只分布在区域II 内。

例2.1-4 在x<0的半个空间内,充满金属,在x=a 处有一电量为q 的正点电荷,如图(a)所示,试计算导体表面的场强和导体表面上的感应电荷面密度。

解:根据场强叠加原理,空间任一点的场强由点电荷+q 单独产生的电场和金属表面感应电荷单独产生的电04321=+++E E E E 04321=---σσσσ04321=-++σσσσ212σσ==S Q 432σσ-=-=S Q 12σ3σ4x A B 1234⋅⋅ⅡⅢ04=σS Q =+21σσ0321=--σσσ0321=++σσσ01=σ32σσ-==S Q场叠加而成,如图(2)。

1)若P 1是x<0空间内的一点,其坐标为(-δ,y ),δ→0 ,点电荷q 在P 1点的场强为设金属表面的感应电荷在该点产生的场强为1E 由此得 2)若P 2是x>0空间内的一点,其坐标为(δP 1和P 2无限接近,在这两点,点电荷q 的电场强度是相等的,但感应电荷在P 1处的场强1E 和P 2处的场强'E 是不同的,根据导体表面附近一点的场强垂直于导体表面知,q E 和'E 大小相等,方向不同,如图(c )。

图(例2.1-5 电量为q 的点电荷绝缘地放在导体球壳的中心,球壳的内半径为R 1,外半径为R 2,求球壳的电势 解:点电荷位于球壳的中心,球壳内表面将均匀带有总电量-q ,球壳外表面均匀带有总电量q ,电场的分布具有球对称性,此时可用两种方法求球壳的电势。

1)积分法2)叠加法 例2.1-6 两导体球,半径分别为R 和r ,相距甚远,分别带有电量Q 和q ,今用一细导线连接两球,求达到静电平衡时,两导体球上的电荷面密度之比值。

解:当导体球相距甚远时,每一导体球都可以看作为孤立导体处理。

导体球的电势分别为 2322020)(ˆˆ4ˆ41y a i a j y q e r q E r q +-==πεπε 01=+q E E 23220201)(ˆˆ4ˆ41y a j y i a q e r q E r +-=-=πεπε '1E 23220'1)(ˆˆ4y a j y i a q E +--=πε 23220'1)(ˆ24y a i a q E E E q +-=+=πε )ˆ()(223220i y a aq -+=πεσε01=E 2322)(2y a aq +=πσdr r q r d E R ⎰⎰∞=⋅=2204πεϕ 2041R q πε=201010444R q R q R q πεπεπεϕ+-+=204R q πε=qE E 'E θ⋅2014QR ϕπε= 当用导线连结时,两导体球上的电荷重新分布,电量变为 'Q 和 'q 但导线很细,分布在导线上的电荷忽略不计。

这是两导体球的电势相等,即而由此可求得面电荷密度所以例2.1-7 一导体球通过与一带电金属板反复接触而获得电荷,每当导体球与金属板接触并分后,又重新使金属板带有电量Q ,若q 1是导体球与金属板第一次接触后所带的电量,求导体球可获得的最大电量。

解:导体球与金属板接触时,两者达到电势相等。

设经过第一次接触,导体球的电量为q 1金属板的电量为Q 1,它们的比值为导体球和金属板接触达到静电平衡时电势相等,K 值不变。

根据电荷守恒定律11q Q Q +=,故有金属板第二次被充电到Q 后再与导体球接触,设导体球和金属板的电量分别为q 2和Q 2,则根据电荷守恒定律, ,故有r q 041πεϕ=r q R Q ''=q Q q Q +=+'')('q Q r R R Q ++=)('q Q r R r q ++=R r R Q q R Q R 1)(44'2++==ππσr r R Q q r q r 1)(44'2++==ππσR r r R =σσk Q q =111111+==-k k Q q k q Q q k Q q =22Q q Q q +=+122k q q Q q =-+212)1()(1112q q q Q k q +=+=同理,经过第n 次接触,导体球的电量为当n →∞时§2.2电容和电容器1、孤立导体的电容孤立导体是指该导体的附近没有其它导体和带电体。

对于孤立导体,电荷在导体表面的相对分布情况由导体的几何形状唯一确定,因而带一定电量的导体外部空间的电场分布以及导体的电势亦完全确定。

相关文档
最新文档