理论力学第五章 力系的简化

合集下载

刚体惯性力系的简化

刚体惯性力系的简化

代入式(a)得 再解式(b)、式(c)有
a g 3
Ff
P 2
P g
g 3
P 6
FN P cos
3P 2
P
f Ff 6 3 0.192
FN
3P 9
2
(b) (c)
例13-7 均质杆 AB 重 P,B 点放在地面上,A 点与轮铰接,轮在平面上纯
滚动,轮心做匀速直线运动,速度为 v,如图 13-11(a)所示。试 求在图示位置(A 位于最高点)时,AB 杆在 A,B 两点的受力情况 (B 与地面无摩擦)。
在工程实际中,刚体绕定轴转动有几种特殊情况。
(1)转轴过质心。此时 aC 0 ,FI 0 ,在 0 的情况下,惯性力系简 化为一个力偶。
(2)刚体做匀速转动,此时 0 ,在转轴不过质心的情况下,惯性力 系简化为一个合力。
(3)转轴过质心,刚体做匀速转动,aC 0 , 0 ,则 FI 0 ,MIO 0 。
(a)
(b) 图13-11
(c)
解 (1)取AB杆为研究对象。
(2)受力分析。AB 杆上作用的主动力为重力 P,A 点有两个约束力 FAx 和 FAy , B 点有法向约束力 FBN ,如图 13-11(b)所示。
(3)运动分析,加惯性力。由已知条件,AB 杆为瞬时平动,即 AB 0 ,对 AB
FI FIi (miai ) aC mi 设刚体质量为 M mi ,则
FI MaC (13-8)
于是得结论:平动刚体的惯性力系可以简化为通过质心 的合力,其大小等于刚体的质量与加速度的乘积,合力的 方向与加速度方向相反。
图13-5
刚体绕定轴转动
如果刚体有对称平面S,并且该平面与转轴z垂直,则惯性力系简化 为在对称平面内的平面力系。再将此平面力系向转轴与对称平面的交 点O简化,如图13-6所示。

理论力学(大学)课件8.1 空间任意力系向一点的简化及结果分析

理论力学(大学)课件8.1 空间任意力系向一点的简化及结果分析

空间任意力系及重心的计算
c. 简化为合力偶
⑤ FR′= 0, MO≠0
一个合力偶 与简化中心无关。 d. 平衡
⑥ FR′= 0, MO= 0
平衡
平面任意力系简化的最后结果
只能是合力、合力偶、平衡三种情况,不可能出现力螺旋。
1、空间任意力系向一点的简化 及结果分析
空间任意力系及重心的计算
中心轴过简化中心的力螺旋
力螺旋 由一个力和一个力偶组成的力系, 并且力垂直于力 偶的作用面。
MO O F'R
F'R O
右螺旋
F'R O
F'R O
MO
左螺旋
1、空间任意力系向一点的简化 及结果分析
空间任意力系及重心的计算
钻头钻孔时施加的力螺旋
1、空间任意力系向一点的简化 及结果分析
空间任意力系及重心的计算
å å å 方向 cos(FR¢ , i) =
Fix FR¢
cos(FR¢ , j) =
Fix FR¢
cos(FR¢ , k) =
Fiz FR¢
作用点: 一般令其作用于简化中心上
空间任意力系及重心的计算
空间力偶系的合力偶矩
å å MO = Mi = MO (Fi )
主矩
由力对点的矩与力对轴的矩的关系,有
1、空间任意力系向一点的简化 及结果分析
空间汇交力系与空间力偶系等效代替一空间任意力系.
空间任意力系及重心的计算
汇交力系的合力
FR¢ = å Fi = å Fxi + å Fy j + å Fzk
主矢
F1¢
M2
M1
FR¢ F2¢
Fn¢ M n

理论力学题库第五章

理论力学题库第五章

理论力学题库——第五章一、填空题1. 限制力学体系中各质点自由运动的条件称为 。

质点始终不能脱离的约束称为 约束,若质点被约束在某一曲面上,但在某一方向上可以脱离,这种约束称为 约束。

2. 受有理想约束的力学体系平衡的充要条件是 ,此即 原理。

3. 基本形式的拉格朗日方程为 ,保守力系的拉格朗日方程为 。

4. 若作用在力学体系上的所有约束力在任意虚位移中所作的虚功之和为零,则这种约束称为 约束。

5. 哈密顿正则方程的具体形式是 和 。

5-1. n 个质点组成的系统如有k 个约束,则只有 3n - k 个坐标是独立的. 5-2.可积分的运动约束与几何约束在物理实质上没有区别,合称为 完整约束 .5-3自由度可定义为:系统广义坐标的独立 变分数目 ,即可以独立变化的 坐标变更数 . 5-4.广义坐标就是确定力学体系空间位置的一组 独立坐标 。

5-5.虚位移就是 假想的 、符合约束条件的、无限小的、 即时的 位置变更。

5-6.稳定约束情况下某点的虚位移必在该点曲面的 切平面上 。

5-7.理想、完整、稳定约束体系平衡的充要条件是 主动力虚功之和为零 . 5-8.有效力(主动力 + 惯性力)的总虚功等于 零 。

5-9.广义动量的时间变化率等于 广义力 (或:主动力+拉氏力)。

5-10.简正坐标能够使系统的动能和势能分别用 广义速度 和 广义坐标 的平方项表示。

5-11.勒让德变换就是将一组 独立 变数变为另一组 独立 变数的变换。

5-12.勒让德变换可表述为:新函数等于 不要的变量 乘以原函数对该变量的偏微商的 和 ,再减去原函数。

5-13.广义能量积分就是 t 为循环坐标时的循环积分。

5-14. 泊松定理可表述为:若21),,(,),,(c t p q c t p q ==ψϕ是正则方程的初积分,则 []3c ,=ψϕ 也是正则方程的初积分.5-15.哈密顿正则方程的泊松括号表示为: ],[H p pαα= ; ],[H q q αα= 。

《理论力学》基本力系

《理论力学》基本力系

接触点处受到法向约束力的作用。
03
铰链约束
铰链约束是指两个构件通过销钉或铰链连接在一起,并能绕销钉或铰链
相对转动。这种约束只能限制物体沿垂直于销钉轴线的运动,而不能限
制物体绕销钉的转动。
平衡条件及求解方法
平面力系的平衡条件
平面任意力系平衡的充分必要条件是,力系的主矢和主矩都为零。即所有各力在x轴和y轴 上的投影的代数和分别等于零;所有各力对任意一点之矩的代数和也等于零。
汇交力系平衡条件应用
平衡条件
汇交力系平衡的充分必要条件是合力为零,即力多边形自行封闭。
应用
在静力学中,汇交力系平衡条件可应用于求解未知力、判断物体是否平衡等问题 ;在动力学中,可用于分析物体的运动状态及受力情况。
04 平面任意力系简化与平衡
平面任意力系简化方法
向一点简化
选择适当的一点,将力系中的各 力向该点平移,得到一个等效的 平面汇交力系和一个平面力偶系。
主矢和主矩
平面任意力系向作用面内任一点 简化时,一般可得到一个力和一 个力偶,这个力称为该力系的主 矢,这个力偶的矩称为该力系对
简化中心的主矩。
合力矩定理
平面任意力系的合力对作用面内 任一点之矩,等于力系中各分力
对于同一点之矩的代数和。
简化结果分析
当主矩为零时,主矢也为零
01
说明该力系本身是平衡的,或者可以合成为一个合力。
合力矩
主矩表示原力系对物体的 总体转动效应,其大小和 方向由主矩矢量确定。
平衡条件
当且仅当主矢和主矩都为 零时,空间任意力系才处 于平衡状态。
空间任意力系平衡条件应用
静力学问题
利用空间任意力系的平衡条件,可以解决各种静力学问题, 如物体的平衡、刚体的平衡等。

理论力学课程教学大纲.

理论力学课程教学大纲.

《理论力学课程》教学大纲学时:72 时学分:4 分课程类型:必修适用专业:物理学一、课程性质、地位和任务理论力学是四年制高等院校物理学专业的必修的基础课程。

本课程以牛顿运动定律为基础,高等数学为工具,通过严密的逻辑推理,全面的阐述宏观物体机械运动的基本概念和基本规律。

通过教学,应使学生:一,对宏观机械运动规律有比较全面,系统的认识,能掌握处理力学问题的一般方法,培养起一定的抽象思维和逻辑推理能力;二,能较深刻的分析力学教材,能分析生产生活中的问题;三,认识教学与物理的密切联系,能运用数学工具解决物理问题;四,通过本教材的学习为进一步学习理论物理打下了坚实的基础。

本课程总学时为72学时,讲授与习题的比例为3:1,具体情况如下。

二、课程主要内容概述及教学基本要求本课程主要内容:第一篇牛顿力学主要包括:质点力学、质点组力学、刚体力学、非惯性系力学等;第二篇分析力学主要包括:虚功原理、拉格朗日方程、哈密顿正则方程、哈密顿原理等。

理论力学是学生接触到的第一门理论物理课程。

与普通物理力学相比,它在理论上和解决问题的方法上都有较大提高。

通过本课程的学习,使学生受到理论物理研究方法的初步训练,应培养学生严密逻辑推理的能力、抽象思维的能力、从一般到特殊的分析方法及运用高等数学方法解决力学问题的能力,并较好理解数学与物理的密切关系。

三、课程内容绪论1.理论力学的研究对象和方法2.经典力学的运用方法第一章质点力学基本要求:(1).空间和时间,力和质量,惯性参照系是经典力学的基本概念,牛顿定律是经典力学的基本定律。

它是理论力学的起点。

同时介绍现代科学的观点。

(2).重点:1.平面坐标系和自然坐标系中速度加速度分量式的推导和应用,也是本章的难点。

2.质点运动微分方程的建立和求解。

要多举几种不同类型(F=F(r,v,t))例题,学会以高等数学为工具把物理问题转化为数学方程,并求数学表达式分析其中的物理意义,从而提高提出问题,分析问题解决问题的能力 3.要求学生明确质点的约束运动在加约束反力后,可按自由质点处理 4.由于质点的三个基本定律及守恒律在力学多半阐述过,要在原有基础上概括提高,对于一些问题要能正确判断一个力为保守力,并能求出相应的势能曲线。

理论力学02平面力系的简化和平衡

理论力学02平面力系的简化和平衡
即它就是作用线方程rxry例题2123平面力偶系作用在同一平面的多个力偶构成平面力偶系以其中任一力偶为基准通过移转改变力偶臂长度将其他力偶与该基准力偶叠合得到两个汇交力系再分别合成可以得到一个新力偶原力偶系的合力偶原力偶系的合力偶矩只受平面力偶系作用的刚体平衡充要条件
第二章
平面力系的简化和平衡
2.1力的合成与分解: 1.平行四边形法则: 作用于物体上同一点的两个力可合成 一个合力,此合力也作用于该点,合力的 大小和方向由以原两力矢为邻边所构成的 平行四边形的对角线来表示。
④ R ≠0, MO ≠0,为最一般的情况。此种情况还可以继续简 化为一个合力 R 。
合力R 的大小等于原力系的主矢 合力R 的作用线到简化中心的距离
MO d R
结论:
平面任意力系的简化结果 :①合力偶MO ; ②合力 合力矩定理:由于主矩 而合力对O点的矩
R
M O mO ( Fi )
主矩:
M O M O ( F ) 3F1 1.5P 1 3.9P 2 2355kN m
(2)求合力及其作用线位置:
d x 3.514m 0 0 cos 90 70.84
(3)求合力作用线方程:
MO MO

' ' FR x FRy y FRx x FRy y FRx
二、汇交力系的合成 由几何法知合力等于各分力的矢量和,即
R F Fn F i 1 F 2 F 3
又 由于
Fi X ii Yi j Zi k Fxii Fyi j Fzi k
代入上式得 R
F i F
xi
yi
j Fzi k
根据合矢量投影定理得合力在坐标轴的投影

ch2力矩、力偶、力系的简化

ch2力矩、力偶、力系的简化

力对点之矩与力对轴之矩的关系
MO (F )
= ( yFz - zFy )i + ( zFx - xFz ) j + ( xFy - yFx )k
= [ M O ( F )]x i + [ M O ( F )] y j + [ M O ( F )] y k
M x ( F ) = -zFy + yFz
F z = F ⋅ cos γ = F ⋅ sin θ
与平面情形类似
F = Fx2 + Fy2 + Fz2
Fy F F x cosα = ,cos β = ,cosγ = z F F F
Fz Fy Fx
Fx = Fx , Fy = Fy , Fz = Fz
Fx = Fx i , Fy = Fy j,Fz = Fz k F = Fx + Fy + Fz = Fx i + Fy j + Fz k
②投影法(解析法) 投影法(解析法) 建立坐标系如图所示, 建立坐标系如图所示, 三个力在坐标轴上的投影分 别为
F1 x = 0
F2 x = 4kN
F1 y = −3kN
F2 y = 0
F3 x = 5cos 30o = 4.33kN
F3 y = 5sin 30o = 2.5kN
合力F 合力 R 在坐标轴上的投影为
= [MO (F )]x i +[MO (F )]y j +[MO (F )]z k
力矩矢的合成
力对点之矩矢服从矢量合成法则。 力对点之矩矢服从矢量合成法则。力系对刚体产 矢量合成法则 生的绕某点的转动效应可用一个矩矢度量。 一个矩矢度量 生的绕某点的转动效应可用一个矩矢度量。

理论力学第5章(点的运动)

理论力学第5章(点的运动)
包括几何静力学、分析静力学
(2) 运动学: 研究点与刚体运动的几何性质。
包括位移、轨迹、速度、加速度。 (与力无关、也是变形体运动基础)
A B
F
C
B
刚体运动
C
变形(包含刚体位移和相对位移)
(3) 动力学: 研究物体所受力与运动间的关系。
包括质点系、刚体,变形体的动力效应。
第五章 点的运动学
§5-1 运动学的基本概念
速度
已知: OC AC BC l , MC a , t。 求:运动方程、轨迹、速度和加速度。
x l a cost ax v x 2 a y vy y l a sin t
2
加速度
a a a
F ( x, y) 0
二、点的速度v

r = xi + yj + zk
式中 v x 所以得
dr dx dy dz v i j k dt dt dt dt v = vx i + vy j + vz k
、v y
、v z
vx
dx dt
v
表明:“动点的速度在坐标轴上的投影,等于动点对应的位置 坐标对时间 t 的一阶导数”。 则速度的大小和方向余弦为
弧坐标的运动方程sf切向加速度表示速度大小的变化三点的加速度法向加速度表示速度方向的变化匀速运动v常数常数常数匀变速直线运动匀速圆周运动匀速直线运动或静止直线运动匀速运动圆周运动匀速运动直线运动匀速曲线运动匀变速曲线运动点作曲线运动画出下列情况下点的加速度方向
(1) 静力学: 研究物体所受力系的简化、平衡规律及其应用。
△r称为在△t时间内动点M的位移。
间间隔△t内的平均速度。以 v*表示。则: Δr v Δt 平均速度表示动点在△t内平均运动的快慢和运动方向。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
R
iy
FR
M O M O (Fi ) ( xi Fiy yi Fix )
固定端约束:
2015/10/27
11
第五章 力系的简化 >> 力系向一点的简化
2. 平面一般力系的简化结果分析
0, M O 0 ,则原力系平衡; (1) FR
(2) FR 0, M O 0 ,则原力系合成为合力偶; (3) FR 0, M O 0 ,合力; (4) FR 0, M O 0 ,最终结果:合力。 合力矩定理:
第五章 力系的简化 >> 力系向一点的简化
5.2.2
力偶系的简化
1. 平面力偶系的简化
在同一平面内的任意个力偶可合成为一个合力偶,合力偶矩等于各
个力偶矩的代数和.
2015/10/27
M Mi
8
第五章 力系的简化 >> 力系向一点的简化
2. 空间力偶系的简化
M M1 M 2 M n M i
力系的第二不变量。
15
2015/10/27
第五章 力系的简化 >> 力系向一点的简化
2015/10/27
16
第五章 力系的简化 >> 力系向一点的简化
4. 空间力系简化的最后结果
2015/10/27
17
第五章 力系的简化 >> 力系向一点的简化
4. 空间力系简化的最后结果
力螺旋
2015/10/27 18
第五章 力系的简化
5.1 力的平移定理 5.2 力系向一点的简化 5.3 重心和形心 5.4 平行分布力系的简化
2015/10/27
1
第五章 力系的简化
5.1 力的平移定理


M rBA F M B (F )
定理:可以把作用在刚体上A点的力F平行移到刚体内
任一点B,但必须同时附加一个力偶,这个附加力 偶的矩矢等于原来的力F对新的作用点B的矩矢。
i 1 i 1
n
n
2015/10/27
10
第五章 力系的简化 >> 力系向一点的简化
FR x FR y Fix i Fiy j FR
( Fix ) ( Fiy ) FR
2 2
F cos(F , i )
R
ix
FR
,
F cos(F , j )
i 1 n
M ΣMixi ΣMiy j ΣMizk
M ( M ) 2 ( M ) 2 ( M ) 2 ix iy iz M iy M ix cos(M , i ) , cos(M , j ) , cos(M , k ) M M
2015/10/27
5
第五章 力系的简化 >> 力系向一点的简化
例5-1 求图5.5中平面共点力系的合力。已知:F1=200N ,
F2=300N, F3=100N。
2015/10/27
6
第五章 力系的简化 >> 力系向一点的简化
2. 空间汇交力系的简化 将平面汇交力系的合成法则扩展到空间,可得:空间 汇交力系的合力等于各分力的矢量和,合力的作用线通过 汇交点。合力矢为 FR F1 F2 Fn Fi
MO (FR ) MO (Fi )
2015/10/27
12
第五章 力系的简化 >> 力系向一点的简化
例5-2 如图5.10所示的支架受力F作用,图中尺寸及角已知。 试计算力F对于O点的力矩。
2015/10/27
13
第五章 力系的简化 >> 力系向一点的简化
3. 空间一般力系的简化
Fi Fi
i 1 n
FR Fix i Fiy j Fiz k
F F 2 F 2 ( F ) 2 ( F ) 2 Rx Ry ix iy R FRy FRx , cos(FR , j ) cos(FR , i ) FR FR
2015/10/27 7
M
M
iz
2015/10/27
9
第五章 力系的简化 >> 力系向一点的简化
5.2.3
一般力系的简化
1. 平面一般力系的简化
M i M O (Fi )
F1 F2 Fn Fi 主矩: M O M 1 M 2 M n M O ( Fi ) 主矢:FR
FRx F1x F2 x Fnx Fix FRy F1 y F2 y Fny Fiy
合矢量投影定理:合矢量在某一轴上的投影等于各分矢量 在同一轴上投影的代数和。
F F 2 F 2 ( F ) 2 ( F ) 2 Rx Ry ix iy R FRy FRx , cos(FR , j ) cos(FR , i ) FR FR
第五章 力系的简化 >> 力系向一点的简化
4. 空间力系简化的最后结果
2015/10/27
19
第五章 力系的简化 >> 力系向一点的简化
M i M O (Fi )
Fi Fix i Fiy j Fiz k FR
i 1 i 1 i 1 i 1 n n n n
主矢又称为力系的第一不变量
M O M i M O ( Fi ) (ri Fi )
i 1 i 1 i 1
n
n
n
2015/10/27
14
第五章 力系的简化 >> 力系向一点的简化
M O M O ( Fi ) M x ( Fi )i M y ( Fi ) j M z ( Fi )k
i 1 n
MO MO rOO FR
MO FR rOO FR FR MO FR MO FR
2015/10/27 2
第五章 力系的简化 >> 力的平移定理

2015/10/27
3
第五章 力系的简化
5.2 力系向一点的简化 5.2.1 汇交力系的简化1. ຫໍສະໝຸດ 面汇交力系的简化力的多边形法则
FR F1 F2 Fn Fi
i 1 n
2015/10/27
4
第五章 力系的简化 >> 力系向一点的简化
相关文档
最新文档