求函数值域 、 周期的方法总结(适合高一)

合集下载

高一数学知识点总结(15篇)

高一数学知识点总结(15篇)

高一数学知识点总结总结是把一定阶段内的有关情况分析研究,做出有指导性结论的书面材料,它能帮我们理顺知识结构,突出重点,突破难点,因此好好准备一份总结吧。

总结怎么写才不会流于形式呢?以下是小编精心整理的高一数学知识点总结,希望能够帮助到大家。

高一数学知识点总结1一、函数的概念与表示1、映射(1)映射:设A、B是两个集合,如果按照某种映射法则f,对于集合A中的任一个元素,在集合B中都有唯一的元素和它对应,则这样的对应(包括集合A、B以及A到B的对应法则f)叫做集合A到集合B 的映射,记作f:A→B。

注意点:(1)对映射定义的理解。

(2)判断一个对应是映射的方法。

一对多不是映射,多对一是映射2、函数构成函数概念的三要素①定义域②对应法则③值域两个函数是同一个函数的条件:三要素有两个相同二、函数的解析式与定义域1、求函数定义域的主要依据:(1)分式的分母不为零;(2)偶次方根的被开方数不小于零,零取零次方没有意义;(3)对数函数的真数必须大于零;(4)指数函数和对数函数的底数必须大于零且不等于1;三、函数的值域1求函数值域的方法①直接法:从自变量x的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数;②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式;③判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;适合分母为二次且∈R的分式;④分离常数:适合分子分母皆为一次式(x有范围限制时要画图);⑤单调性法:利用函数的单调性求值域;⑥图象法:二次函数必画草图求其值域;⑦利用对号函数⑧几何意义法:由数形结合,转化距离等求值域。

主要是含绝对值函数四.函数的奇偶性1.定义:设y=f(x),x∈A,如果对于任意∈A,都有,则称y=f(x)为偶函数。

如果对于任意∈A,都有,则称y=f(x)为奇函数。

2.性质:①y=f(x)是偶函数y=f(x)的图象关于轴对称,y=f(x)是奇函数y=f(x)的图象关于原点对称,②若函数f(x)的定义域关于原点对称,则f(0)=0③奇±奇=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[两函数的定义域D1,D2,D1∩D2要关于原点对称]3.奇偶性的判断①看定义域是否关于原点对称②看f(x)与f(-x)的关系五、函数的单调性1、函数单调性的定义:2设是定义在M上的函数,若f(x)与g(x)的单调性相反,则在M 上是减函数;若f(x)与g(x)的单调性相同,则在M上是增函数。

函数定义域值域求法总结 (1)

函数定义域值域求法总结 (1)

函数定义域、值域求法总结1、函数的定义域是指自变量“x ”的取值集合。

2、在同一对应法则作用下,括号内整体的取值范围相同。

一般地,若已知 f(x)的定义域为[a,b],求函数f[g(x)]的定义域时,由于分别在两个函数中的x 和g(x)受同一个对应法则的作用,从而范围相同。

因此f[g(x)]的定义域即为满足条件a ≤g(x)≤b 的x 的取值范围。

一般地,若已知 f[g(x)]的定义域为[a,b],求函数 f(x)的定义域时,由于x和g(x) 受同一个对应法则的作用, 所以f(x)的定义域即为当a ≤x≤b 时,g(x)的取值范围。

定义域是X 的取值范围,g(x)和h(x)受同一个对应法则的影响,所以它们的范围相同。

一、定义域是函数y=f(x)中的自变量x 的范围。

求函数的定义域需要从这几个方面入手:(1)分母不为零(2)偶次根式的被开方数非负。

(3)对数中的真数部分大于0。

(4)指数、对数的底数大于0,且不等于1(5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。

():f (x),f[g(x)]题型一已知的定义域求的定义域( 6 )0x 中x 0≠二、值域是函数y=f(x)中y 的取值范围。

常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法(4)配方法 (5)换元法 (包括三角换元) (6)反函数法(逆求法)(7)分离常数法 (8)判别式法 (9)复合函数法(10)不等式法 (11)平方法等等这些解题思想与方法贯穿了高中数学的始终。

三、典例解析 1、定义域问题例1 求下列函数的定义域:① 21)(-=x x f ;② 23)(+=x x f ;③ xx x f -++=211)( 解:①∵x-2=0,即x=2时,分式21-x 无意义, 而2≠x 时,分式21-x 有意义,∴这个函数的定义域是{}2|≠x x .②∵3x+2<0,即x<-32时,根式23+x 无意义,而023≥+x ,即32-≥x 时,根式23+x 才有意义,∴这个函数的定义域是{x |32-≥x }.③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x-21同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x }另解:要使函数有意义,必须: ⎩⎨⎧≠-≥+0201x x ? ⎩⎨⎧≠-≥21x x例2 求下列函数的定义域:①14)(2--=x x f ②2143)(2-+--=x x x x f③=)(x f x11111++④xx x x f -+=0)1()(⑤373132+++-=x x y解:①要使函数有意义,必须:142≥-x 即: 33≤≤-x∴函数14)(2--=x x f 的定义域为: [3,3-]②要使函数有意义,必须:⎩⎨⎧≠-≠-≤≥⇒⎩⎨⎧≠-+≥--13140210432x x x x x x x 且或∴定义域为:{ x|4133≥-≤<--<x x x 或或}③要使函数有意义,必须: 011110110≠++≠+≠⎪⎪⎪⎩⎪⎪⎪⎨⎧xx x ?2110-≠-≠≠⎪⎩⎪⎨⎧x x x ∴函数的定义域为:}21,1,0|{--≠∈x R x x 且④要使函数有意义,必须: ⎩⎨⎧≠-≠+001x x x ⎩⎨⎧<-≠⇒01x x∴定义域为:{}011|<<--<x x x 或⑤要使函数有意义,必须: ⎩⎨⎧≠+≥+-073032x x ⎪⎩⎪⎨⎧-≠∈⇒37x R x 即 x<37- 或 x>37- ∴定义域为:}37|{-≠x x例3 若函数aax ax y 12+-=的定义域是R ,求实数a 的取值范围 解:∵定义域是R,∴恒成立,012≥+-aax ax ∴⎪⎩⎪⎨⎧≤<⇒≤⋅-=∆>2001402a a a a a 等价于 例4 若函数)(x f y =的定义域为[?1,1],求函数)41(+=x f y )41(-⋅x f 的定义域解:要使函数有意义,必须:∴函数)41(+=x f y )41(-⋅x f 的定义域为:⎭⎬⎫⎩⎨⎧≤≤-4343|x x 例5 已知f(x)的定义域为[-1,1],求f(2x -1)的定义域。

高中数学-函数值域的求法及应用

高中数学-函数值域的求法及应用

高中数学-函数值域的求法及应用高考要求函数的值域及其求法是近几年高考考查的重点内容之一本文主要帮助考生灵活掌握求值域的各种方法,并会用函数的值域解决实际应用问题1.重难点归纳(1)求函数的值域此类问题主要利用求函数值域的常用方法配方法、分离变量法、单调性法、图像法、换元法、不等式法等无论用什么方法求函数的值域,都必须考虑函数的定义域(2)函数的综合性题目此类问题主要考查函数值域、单调性、奇偶性、反函数等一些基本知识相结合的题目此类问题要求考生具备较高的数学思维能力和综合分析能力以及较强的运算能力在今后的命题趋势中综合性题型仍会成为热点和重点,并可以逐渐加强(3)运用函数的值域解决实际问题此类问题关键是把实际问题转化为函数问题,从而利用所学知识去解决此类题要求考生具有较强的分析能力和数学建模能力2.值域的概念和常见函数的值域函数的值域取决于定义域和对应法则,不论采用什么方法球函数的值域均应考虑其定义域.常见基本函数的值域:一次函数的值域为R.二次函数,当时的值域为,当时的值域为.,反比例函数的值域为.指数函数的值域为.对数函数的值域为R.正,余弦函数的值域为,正,余切函数的值域为R.3.求函数值域(最值)的常用方法3.1.基本函数法对于基本函数的值域可通过它的图像性质直接求解.3.2配方法对于形如或类的函数的值域问题,均可用配方法求解.例1:求函数的值域:3.3换元法利用代数或三角换元,将所给函数转换成易求值域的函数:(1)形如的函数,令;(2)形如的函数,令;(3)形如含的结构的函数,可利用三角代换,令,或令.例2:求函数的值域:.分析:设则.所以原函数可化为进行求解3.4不等式法利用基本不等式,用此法求函数值域时,要注意条件“一正,二定,三相等”.如利用求某些函数值域(或最值)时应满足三个条件①;②为定值;③取等号成立的条件.三个条件缺一不可.例3:求函数的值域:.分析:一次比二次或者二次比一次的分式函数的通用方法是先换元再利用基本不等式求值域3.5函数的单调性法确定函数在定义域(或某个定义域的子集)上的单调性求出函数的值域,例如,.当利用不等式法等号不能成立时,可考虑利用函数的单调性解题.例4:f(x)=x+在区间[1,3]上的值域3.6数形结合法如果所给函数有较明显的几何意义,可借助几何法求函数的值域,如由可联想到两点与连线的斜率.例5:求函数的值域:分析:画出图像便能一目了然3.7函数的有界性法形如,可用表示出,再根据,解关于的不等式,可求的取值范围.3.8导数法设的导数为,由可求得极值点坐标,若函数定义域为,则最值必定为极值点或区间端点中函数值的最大值和最小值.例6:设f(x)=x3--2x+5,求f(x)在[-2,3]上的值域3.9判别式法例7:求函数的值域典型题例示范讲解例1设计一幅宣传画,要求画面面积为4840 cm2,画面的宽与高的比为λ(λ<1),画面的上、下各留8 cm的空白,左右各留5 cm空白,怎样确定画面的高与宽尺寸,才能使宣传画所用纸张面积最小?如果要求λ∈[],那么λ为何值时,能使宣传画所用纸张面积最小?命题意图本题主要考查建立函数关系式和求函数最小值问题,同时考查运用所学知识解决实际问题的能力知识依托主要依据函数概念、奇偶性和最小值等基础知识错解分析证明S(λ)在区间[]上的单调性容易出错,其次不易把应用问题转化为函数的最值问题来解决技巧与方法本题属于应用问题,关键是建立数学模型,并把问题转化为函数的最值问题来解决例2已知函数f(x)=,x∈[1,+∞(1)当a=时,求函数f(x)的最小值(2)若对任意x∈[1,+∞,f(x)>0恒成立,试求实数a的取值范围命题意图本题主要考查函数的最小值以及单调性问题,着重于学生的综合分析能力以及运算能力知识依托本题主要通过求f(x)的最值问题来求a的取值范围,体现了转化的思想与分类讨论的思想错解分析考生不易考虑把求a的取值范围的问题转化为函数的最值问题来解决技巧与方法解法一运用转化思想把f(x)>0转化为关于x的二次不等式;解法二运用分类讨论思想解得例3设m是实数,记M={m|m>1},f(x)=log3(x2-4mx+4m2+m+)(1)证明当m∈M时,f(x)对所有实数都有意义;反之,若f(x)对所有实数x都有意义,则m∈M(2)当m∈M时,求函数f(x)的最小值(3)求证对每个m∈M,函数f(x)的最小值都不小于1学生巩固练习1 函数y=x2+ (x≤-)的值域是( )A(-∞,- B[-,+∞C[,+∞D(-∞,-]2 函数y=x+的值域是( )A (-∞,1B (-∞,-1C RD [1,+∞3 一批货物随17列货车从A市以V千米/小时匀速直达B市,已知两地铁路线长400千米,为了安全,两列货车间距离不得小于()2千米,那么这批物资全部运到B市,最快需要_________小时(不计货车的车身长)4 设x1、x2为方程4x2-4mx+m+2=0的两个实根,当m=_________时,x12+x22有最小值_________5 某企业生产一种产品时,固定成本为5000元,而每生产100台产品时直接消耗成本要增加2500元,市场对此商品年需求量为500台,销售的收入函数为R(x)=5x-x2(万元)(0≤x≤5),其中x是产品售出的数量(单位百台)(1)把利润表示为年产量的函数;(2)年产量多少时,企业所得的利润最大?(3)年产量多少时,企业才不亏本?6 已知函数f(x)=lg[(a2-1)x2+(a+1)x+1](1)若f(x)的定义域为(-∞,+∞),求实数a的取值范围;(2)若f(x)的值域为(-∞,+∞),求实数a的取值范围7 某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按120个工时计算)生产空调器、彩电、冰箱共360台,且冰箱至少生产60台已知生产家电产品每台所需工时和每台产值如下表器电箱问每周应生产空调器、彩电、冰箱各多少台,才能使产值最高?最高产值是多少?(以千元为单位)8 在Rt△ABC中,∠C=90°,以斜边AB所在直线为轴将△ABC旋转一周生成两个圆锥,设这两个圆锥的侧面积之积为S1,△ABC的内切圆面积为S2,记=x(1)求函数f(x)=的解析式并求f(x)的定义域(2)求函数f(x)的最小值。

高中数学 函数值域求法十一种(详解)

高中数学  函数值域求法十一种(详解)

智愛高中數學 函数值域求法十一种在函数的三要素中,定义域和值域起决定作用,而值域是由定义域和对应法则共同确定。

研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用。

确定函数的值域是研究函数不可缺少的重要一环。

对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。

本文就函数值域求法归纳如下,供参考。

1. 直接观察法对于一些比较简单的函数,其值域可通过观察得到。

1. 求函数x 1y =的值域。

解:∵0x ≠∴0x 1≠显然函数的值域是:),0()0,(+∞-∞2. 求函数x 3y -=的值域。

解:∵0x ≥3x 3,0x ≤-≤-∴ 故函数的值域是:]3,[-∞2. 配方法配方法是求二次函数值域最基本的方法之一。

3. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域。

解:将函数配方得:4)1x (y 2+-= ∵]2,1[x -∈由二次函数的性质可知:当x=1时,4y min =,当1x -=时,8y max = 故函数的值域是:[4,8]3. 判别式法4. 求函数22x 1x x 1y +++=的值域。

解:原函数化为关于x 的一元二次方程0x )1y (x )1y (2=-+- (1)当1y ≠时,Rx ∈0)1y )(1y (4)1(2≥----=∆ 解得:23y 21≤≤ (2)当y=1时,0x =,而⎥⎦⎤⎢⎣⎡∈23,211故函数的值域为⎥⎦⎤⎢⎣⎡23,215. 求函数)x 2(x x y -+=的值域。

解:两边平方整理得:0y x )1y (2x 222=++-(1)∵R x ∈∴0y 8)1y (42≥-+=∆ 解得:21y 21+≤≤- 但此时的函数的定义域由0)x 2(x ≥-,得2x 0≤≤由0≥∆,仅保证关于x 的方程:0y x )1y (2x 222=++-在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由 0≥∆求出的范围可能比y 的实际范围大,故不能确定此函数的值域为⎥⎦⎤⎢⎣⎡23,21。

高一数学求函数值域的方法

高一数学求函数值域的方法

高一数学求函数值域的方法难度:高一数学中的函数是指一种依赖于某个变量或者变量集的关系式,它通常被用来描述一些实物或者抽象概念之间的相互关系。

在上述命题中,如果我们对该函数进行给定值的计算和运算,那么我们就能够得到该函数的函数值。

在数学中,函数值域通常被用来描述该函数能够生成的所有可能函数值的集合。

所以,如果我们在求函数的函数值域时想要得到一个准确的答案,那么我们就需要对该函数的定义域以及函数的具体形式进行有效的分析和推理。

本文就将为大家介绍一些高一数学求函数值域的方法,帮助大家更好地理解和掌握这一知识点。

方法一:利用求导法求函数的单调性在求函数值域时,我们可以先通过求函数的导数来了解该函数的单调性和函数的趋势变化。

具体来说,我们可以针对给定的函数f(x),按照以下步骤来计算该函数的导数:(1)求f(x)的一次导数,并得到f'(x)的函数式;(2)求f'(x)的零点,并把零点作为x轴的分界点将其分为若干段;(3)对于每一段区间,我们都能够了解到函数的单调性和函数的趋势方向,并用函数的取值范围来描述函数值域的全貌。

方法二:利用函数的图像来判断函数值域另外,我们在求函数值域的过程中,还可以通过函数的图像来了解函数的特征和函数值域的大致范围。

一般来说,函数图像的变化趋势会反应出函数的单调性和函数值域的特征,这样我们就可以根据函数图像来作出一些初步的推测和估计。

对于一些简单函数来说,我们可以直接根据函数的定义域和对应关系来求出函数的值域,而对于一些复杂函数来说,我们则需要利用一些数学方法和技巧进行较为深入的计算和推理。

需要注意的是,在利用反函数来求解函数值域时,我们需要保证原函数是可逆的,并且反函数也是一个良好定义的函数。

另外,在具体计算时,我们还需要对反函数的定义域和值域进行适当的限定和分析,从而得到准确的计算结果。

总结:综上所述,高一数学求函数值域的方法有很多种,大家可以根据自己的需求和具体情况选择适合的方法来进行计算和推导。

高一数学函数重点知识点归纳总结三篇

高一数学函数重点知识点归纳总结三篇

高一数学函数重点知识点归纳总结三篇高一新生对数学的函数知识是相当头疼的,函数知识面广,思维灵活,题型更是千奇百怪,要想学好函数,就需要一份准确的函数知识点归纳。

高一函数知识点归纳总结1函数的性质:函数的单调性、奇偶性、周期性单调性:定义:注意定义是相对与某个具体的区间而言。

判定方法有:定义法(作差比较和作商比较)导数法(适用于多项式函数)复合函数法和图像法。

应用:比较大小,证明不等式,解不等式。

奇偶性:定义:注意区间是否关于原点对称,比较f(x) 与f(-x)的关系。

f(x) -f(-x)=0 f(x) =f(-x) f(x)为偶函数;f(x)+f(-x)=0 f(x) =-f(-x) f(x)为奇函数。

判别方法:定义法,图像法,复合函数法应用:把函数值进行转化求解。

周期性:定义:若函数f(x)对定义域内的任意x满足:f(x+T)=f(x),则T为函数f(x)的周期。

其他:若函数f(x)对定义域内的任意x满足:f(x+a)=f(x-a),则2a为函数f(x)的周期.应用:求函数值和某个区间上的函数解析式。

高一函数归纳总结2一:函数及其表示知识点详解文档包含函数的概念、映射、函数关系的判断原则、函数区间、函数的三要素、函数的定义域、求具体或抽象数值的函数值、求函数值域、函数的表示方法等1. 函数与映射的区别:\2. 求函数定义域常见的用解析式表示的函数f(x)的定义域可以归纳如下:①当f(x)为整式时,函数的定义域为R.②当f(x)为分式时,函数的定义域为使分式分母不为零的实数集合。

③当f(x)为偶次根式时,函数的定义域是使被开方数不小于0的实数集合。

④当f(x)为对数式时,函数的定义域是使真数为正、底数为正且不为1的实数集合。

⑤如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合,即求各部分有意义的实数集合的交集。

⑥复合函数的定义域是复合的各基本的函数定义域的交集。

高一函数第三章知识点归纳

高一函数第三章知识点归纳

高一函数第三章知识点归纳函数是数学中的重要概念,在高一数学中,函数的学习是一个重要的环节。

在高一函数第三章中,我们学习了一些与函数相关的知识点,下面我将对这些知识点进行归纳总结。

一、函数的性质1. 定义域和值域:对于一个函数,其定义域是指可以使函数有意义的变量的取值范围,而值域是函数在定义域上所取得的全部函数值的集合。

2. 单调性:函数的单调性可以分为单调递增和单调递减两种类型。

如果对于定义域内的任意两个不同的实数,函数值满足随着自变量增大(减小)而增大(减小),则函数是单调递增(递减)的。

3. 奇偶性:当函数满足$f(-x)=f(x)$时,函数为偶函数;当函数满足$f(-x)=-f(x)$时,函数为奇函数。

4. 周期性:如果存在一个正数T,对于定义域内任意一点x,有$f(x+T)=f(x)$,则函数具有周期性。

5. 最值与最值点:函数在定义域内的最大值和最小值分别称为最大值和最小值,在最值点处取得最大值和最小值的点称为最值点。

二、函数的图像与性质1. 基本型函数的图像:包括常函数、一次函数、二次函数和绝对值函数等基本型函数,我们需要了解这些函数的图像和性质。

2. 函数的平移和伸缩:通过对基本型函数进行平移和伸缩变换,可以得到其他种类的函数。

平移和伸缩的参数可以使函数的图像发生左右平移、上下平移、水平压缩、垂直拉伸等变化。

3. 函数的对称性:函数的对称性分为关于y轴对称、关于x轴对称和关于原点对称三种情况。

通过函数的表达式可以确定函数是否具有对称性。

4. 零点和零点的个数:函数的零点是函数值为0的自变量的取值,函数可能存在一个或多个零点,我们可以通过方程的求解来确定函数的零点个数。

三、函数的运算1. 函数的加法和减法:两个函数的加法和减法的定义是将两个函数对应的函数值相加(或相减),而这两个函数在同一定义域上有意义。

2. 函数的乘法和除法:两个函数的乘法和除法的定义是将两个函数对应的函数值相乘(或相除),需要注意的是,当除法运算时,被除数函数的值不能为零。

高一数学函数的知识点总结

高一数学函数的知识点总结

高一数学函数的知识点总结高一数学函数的知识点总结 11. 函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(-x) ;(2)若f(x)是奇函数,0在其定义域内,则 f(0)=0(可用于求参数);(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;2. 复合函数的有关问题(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即 f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

(2)复合函数的单调性由“同增异减”判定;3.函数图像(或方程曲线的对称性)(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x= 对称;4.函数的周期性(1)y=f(x)对x∈R时,f(x +a)=f(x-a) 或f(x-2a )=f(x) (a>0)恒成立,则y=f(x)是周期为2a的周期函数;(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a ︱的周期函数;(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2 的周期函数;(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2 的周期函数;(6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)= ,则y=f(x)是周期为2 的周期函数;5.方程k=f(x)有解k∈D(D为f(x)的值域);6.a≥f(x) 恒成立a≥[f(x)]max,; a≤f(x) 恒成立a≤[f(x)]min;7.(1) (a>0,a≠1,b>0,n∈R+); (2) l og a N= ( a>0,a≠1,b>0,b≠1);(3) l og a b的符号由口诀“同正异负”记忆; (4) a log a N= N ( a>0,a≠1,N>0 );8. 判断对应是否为映射时,抓住两点:(1)A中元素必须都有象且唯一;(2)B 中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;9. 能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求函数值域 、 周期的方法总结(适合高一)
求值域
一、直接法:(从自变量x 的范围出发,推出()y f x =的取值范围)例1.求函数2+=x y 的值域。

二、配方法(是求二次函数值域的基本方法,如2()()()F x af x bf x c =++的函数的值域问题,均可使用配方法)例2.求函数242y x x =-++([1,1]x ∈-)的值域。

三、分离常数法(分子、分母是一次函数得有理函数,可用分离常数法,此类问题一般也可以利用反函数法)例3.求函数125
x y x -=+的值域。

四、换元法(运用代数代换,将所给函数化成值域容易确定的另一函数,从而求得原函
数的值域,如y ax b =+a 、b 、c 、d 均为常数,且0a ≠)的函数常用此法
求解。

例4.求函数2y x =
五、函数的单调性法(确定函数在定义域(或某个定义域的子集)上的单调性,求出函数的值域,形如求函数()0>+=k x
k x y 的值域(k x <<0时为减函数;k x >时为
增函数))例5.求函数y x =
六、利用有界性(利用某些函数有界性求得原函数的值域)例6求函数2211
x y x -=+的值域。

七、数型结合法(函数图像是掌握函数的重要手段,利用数形结合的方法,根据函数图像求得函数值域,是一种求值域的重要方法)例7.求函数11-++=x x y 的值域。

除此之外,还有反函数法(即利用函数和它的反函数的定义域与值域的关系,通过求反函数的定义域而得到原函数的值域)和判别式法(即把函数转化成关于x 的二次方程()0,=y x F ,通过方程有实根,0≥∆,从而求得原函数的值域,需熟练掌握一元二次不等式的解法),在今后的学习中,会具体讲述。

周期
一.定义:若T 为非零常数,对于定义域内的任一x ,使)()(x f T x f =+恒成立
则f (x )叫做周期函数,T 叫做这个函数的一个周期。

二.重要结论
1、()()f x f x a =+,则()y f x =是以T a =为周期的周期函数;
2、 若函数y=f(x)满足f(x+a)=-f(x)(a>0),则f(x)为周期函数且2a 是它的一个周期。

3、 若函数()()f x a f x a +=-,则()x f 是以2T a =为周期的周期函数
4、 y=f(x)满足f(x+a)=
()
x f 1 (a>0),则f(x)为周期函数且2a 是它的一个周期。

5、若函数y=f(x)满足f(x+a)= ()
x f 1-(a>0),则f(x)为周期函数且2a 是它的一个周期。

6、1()()1()
f x f x a f x -+=+,则()x f 是以2T a =为周期的周期函数. 7、1()()1()
f x f x a f x ++=--,则()x f 是以4T a =为周期的周期函数. 8、 若函数y=f(x)的图像关于直线x=a,x=b(b>a)都对称,则f(x)为周期函数且2(b-a )是它的一
个周期。

9、函数()y f x =()x R ∈的图象关于两点()0,A a y 、()0,B b y ()a b <都对称,则函数
()f x 是以()2b a -为周期的周期函数;
10、函数()y f x =()x R ∈的图象关于()0,A a y 和直线x b =()a b <都对称,则函数()f x 是以()4b a -为周期的周期函数;
11、若偶函数y=f(x)的图像关于直线x=a 对称,则f(x)为周期函数且2a 是它的一个周期。

12、若奇函数y=f(x)的图像关于直线x=a 对称,则f(x)为周期函数且4a 是它的一个周期。

13、若函数y=f(x)满足f(x)=f(x-a)+f(x+a)(a>0),则f(x)为周期函数,6a 是它的一个周期。

14、若奇函数y=f(x)满足f(x+T)=f(x)(x ∈R ,T≠0), 则f(
2T )=0.。

相关文档
最新文档