高频电子线路实验

合集下载

高频电子线路实验报告

高频电子线路实验报告

实验一 高频小信号放大器1.1 实验目的1、 掌握高频小信号谐振电压放大器的电路组成与基本工作原理。

2、 熟悉谐振回路的调谐方法及测试方法。

3、 掌握高频谐振放大器处于谐振时各项主要技术指标意义及测试技能。

1.2、实验容1.2.1 单调谐高频小信号放大器仿真1、根据电路中选频网络参数值,计算该电路的谐振频率ωp 。

MHz CLw p 936.2105801020011612=⨯⨯⨯==--2、通过仿真,观察示波器中的输入输出波形,计算电压增益A v0。

,708.356uV V I = ,544.1mV V O = 电压增益===357.0544.10I O v V V A 4.3253、利用软件中的波特图仪观察通频带,并计算矩形系数。

波特图如下:4、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输出电压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~A v 相应的图,f(KHz)65 75 165 265 365 465 1065 1665 2265 2865 3465 4065U0 (mv) 0.9771.0641.3921.4831.5281.5481.4571.2821.0950.4790.840.747A V 2.7362.9743.8994.1544.284.3364.0813.5913.0671.3412.3522.092BW0.7=6.372MHz-33.401kHz5、在电路的输入端加入谐振频率的2、4、6次谐波,通过示波器观察图形,体会该电路的选频作用。

1.2.2 双调谐高频小信号放大器1、通过示波器观察输入输出波形,并计算出电压增益A v0。

,285.28mV V I =,160.5V V O =33.1820283.0160.50===I O v V V A 输入端波形:输出端波形1、利用软件中的波特图仪观察通频带,并计算矩形系数。

BW0.7=11.411MHz-6.695MHz BW0.1=9.578MHz-7.544MHz 矩形系数K=0.431实验二高频功率放大器2.1 实验目的1、掌握高频功率放大器的电路组成与基本工作原理。

高频电子线路实验课件

高频电子线路实验课件

| 1 | 10 | 1 | 10 | 0.8 | | 3 | 30 | 1 | 30 | 0.4 |
实验结果分析与讨论
实验结果分析
VS
根据实验数据记录,当输入信号频率 增加时,输出信号幅度逐渐减小。这 表明滤波器对高频信号的抑制作用较 强,而对低频信号的抑制作用较弱。 因此,该滤波器为高通滤波器。
系统集成与优化
未来的高频电子线路实验将更加注重系统集成和优化,将 不同的器件和电路模块进行整合,实现更高效、更可靠的 高频电子系统。
实验方法创新
未来的高频电子线路实验将不断创新实验方法,引入新的 实验技术和工具,提高实验的效率和精度。
结合实际应用
未来的高频电子线路实验将更加注重与实际应用的结合, 通过实验研究高频电子线路在各个领域中的应用,提高实 验的应用价值。
05
高频电子线路实验项目三 :滤波器
实验目的与原理
01
实验目的
02
1. 掌握滤波器的原理及设计方法;
03
2. 了解滤波器对信号频率成分的影响;
实验目的与原理
• 学会使用示波器和信号发生器等设备进行实验操作。
实验目的与原理
实验原理
滤波器是一种频率选择性器件,它可以通过抑制某些频率成分、而允许其他频率成分通过。在高频电 子线路中,滤波器常用于减小信号中的噪声、提取有用信号等。根据频率响应的不同,滤波器可分为 低通、高通、带通和带阻等类型。
• 讨论:调谐放大器在通信、雷达等高频电子系统中具有广泛应用。本实 验通过探究其工作原理及性能特点,为实际应用提供理论支持和实践经 验。同时,实验中可能存在的误差来源也需要进行讨论并加以修正,以 提高实验的准确性和可靠性。
04
高频电子线路实验项目二 :混频器

《高频电子线路》晶体振荡器与压控振荡器实验

《高频电子线路》晶体振荡器与压控振荡器实验

《高频电子线路》晶体振荡器与压控振荡器实验一、实验目的1、掌握晶体振荡器与压控振荡器的基本工作原理。

2、比较LC振荡器和晶体振荡器的频率稳定度。

二、实验内容1、熟悉振荡器模块各元件及其作用。

2、分析与比较LC振荡器与晶体振荡器的频率稳定度。

3、改变变容二极管的偏置电压,观察振荡器输出频率的变化。

三、实验仪器1、模块3 1块2、频率计模块1块3、双踪示波器1台4、万用表1块四、基本原理1、晶体振荡器:将开关S2拨为“00”,S1拨为“10”,由N1、C3、C10、C11、晶体CRY1与C4构成晶体振荡器(皮尔斯振荡电路),在振荡频率上晶体等效为电感。

2、LC压控振荡器(VCO):将S2拨为“10”或“01”,S1拨为“01”,则变容二极管D1、D2并联在电感L1两端。

当调节电位器W2时,D1、D2两端的反向偏压随之改变,从而改变了D1和D2的结电容C j,也就改变了振荡电路的等效电感,使振荡频率发生变化。

3、晶体压控振荡器:开关S2拨为“10”或“01”,S1拨为“10”,就构成了晶体压控振荡器。

图6-1 正弦波振荡器(4.5MHz)五、实验步骤1、(选做)温度对两种振荡器谐振频率的影响。

1)将电路设置为LC振荡器(S1设为“01”),在室温下记下振荡频率。

(频率计接于P1处。

)2)将加热的电烙铁靠近振荡管N1,每隔1分钟记下频率的变化值。

3)开关S1交替设为“01”(LC振荡器)和“10”(晶体振荡器),并将数据记于表6-1。

表6-1 振荡器数据对比记载表2、两种压控振荡器的频率变化范围比较1)将电路设置为LC压控振荡器(S1设为“01”),频率计接于P1,直流电压表接于TP7。

2)将W2调节从低阻值、中阻值、高阻值位置(即从左→中间→右顺时针旋转),分别将变容二极管的反向偏置电压、输出频率记于下表中。

将电路设置为晶体压控振荡器(S1拨为“10”),重复步骤2),将测试结果填于下表。

3)六、实验报告要求1、比较所测数据结果,结合新学理论进行分析。

高频电子电路实验

高频电子电路实验

高频电子线路实验注意事项1、本实验系统接通电源前,请确保电源插座接地良好。

2、每次安装实验模块之前,应确保主机箱右侧的交流开关处于断开状态。

为保险起见,建议拔下电源线后再安装实验模块。

3、安装实验模块时,模块右边的电源开关要拨置上方,将模块四角的螺孔和母板上的铜支柱对齐,然后用螺钉固定。

确保四个螺钉拧紧,以免造成实验模块与电源或者地接触不良。

经仔细检查后方可通电实验。

4、各实验模块上的电源开关、拨码开关、复位开关、自锁开关、手调电位器和旋转编码器均为磨损件,请不要频繁按动或旋转。

5、请勿直接用手触摸芯片、电解电容等元件,以免造成损坏。

6、各模块中的贴片可调电容是出厂前调试使用的。

出厂后的各实验模块功能已调至最佳状态,无需另行调节这些电位器,否则将会对实验结果造成严重影响。

若已调动请尽快复原;若无法复原,请与指导老师或直接与我公司联系。

7、在关闭各模块电源之后,方可进行连线。

连线时在保证接触良好的前提下应尽量轻插轻放,检查无误后方可通电实验。

拆线时若遇到连线与孔连接过紧的情况,应用手捏住线端的金属外壳轻轻摇晃,直至连线与孔松脱,切勿旋转及用蛮力强行拔出。

8、按动开关或转动电位器时,切勿用力过猛,以免造成元件损坏。

目录高频电子线路实验箱简介 (2)实验一高频小信号调谐放大器实验 (6)实验二三点式正弦波振荡器 (13)实验三模拟乘法器调幅(AM、DSB、SSB) (17)实验四包络检波及同步检波实验 (22)高频电子线路实验箱简介一、产品组成该产品由2个实验仪器模块和8个实验模块及实验箱体(含电源)组成。

1、实验仪器及主要指标如下:1)频率计(模块6):频率测量范围:5Hz~2400MHz输入电平范围:100mV~2V(有效值)测量误差:≤±20ppm(频率低端≤±1Hz)输入阻抗:1MΩ/10pF2)高频信号源(模块1):输出频率范围:400KHz~45MHz(连续可调)频率稳定度:10E-4(1×10-4)输出波形:正弦波,谐波≤-30dBc输出幅度:峰峰值1mV~1V(连续可调)输出阻抗:50Ω3)低频信号源(模块1):输出频率范围:200Hz~10KHz(连续可调,方波频率可达250KHz)频率稳定度:10E-4(1×10-4)输出波形:正弦波、方波、三角波输出幅度:峰峰值10mV~5V(连续可调)输出阻抗:100Ω2、实验模块及电路组成如下:1)模块2:小信号选频放大模块包含单调谐放大电路、电容耦合双调谐放大电路、集成选频放大电路、自动增益控制电路(AGC)等四种电路。

高频电子线路_小信号调谐放大器和高频功放_实验报告

高频电子线路_小信号调谐放大器和高频功放_实验报告

1-3 小信号调谐放大器一 .实验目的1.熟悉电子元器件和高频电子线路实验系统;2.掌握单调谐和双调谐放大器的基本工作原理;3.掌握测量放大器幅频特性的方法;4.熟悉放大器集电极负载对单调谐和双调谐放大器幅频特性的影响;5.了解放大器动态范围的概念和测量方法。

二 . 实验内容1.采用点测法测量单调谐和双调谐放大器的幅频特性;2.用示波器测量输入、输出信号幅度,并计算放大器的放大倍数;3.用示波器观察耦合电容对双调谐回路放大器幅频特性的影响;4.用示波器观察放大器的动态范围;5.观察集电极负载对放大器幅频特性的影响。

三 .实验步骤1.实验准备在实验箱主板上插装好无线接收与小信号放大模块,插好鼠标接通实验箱上电源开关,此时模块上电源指示灯和运行指示灯闪亮。

2.单调谐回路谐振放大器幅频特性测量测量幅频特性通常有两种方法,即扫频法和点测法。

扫频法简单直观,可直接观察到单调谐放大特性曲线,但需要扫频仪。

点测法采用示波器进行测试,即保持输入信号幅度不变,改变输入信号的频率,测出与频率相对应的单调谐回路谐振放大器的输出电压幅度,然后画出频率与幅度的关系曲线,该曲线即为单调谐回路谐振放大器的幅频特性。

(1)扫频法,即用扫频仪直接测量放大器的幅频特性曲线。

利用本实验箱上的扫频仪测试的方法是:用鼠标点击显示屏,选择扫频仪,将显示屏下方的高频信号源(此时为扫频信号源)接入小信号放大的输入端(1P1), 将显示屏下方的“扫频仪”与小信号放大的输出(1P8) 相连。

按动无线接收与小信号放大模块上的编码器(1SS1),选择1K2指示灯闪亮,并旋转编码器(1SS1) 使1K2指示灯长亮,此时小信号放大为单调谐。

显示屏上显示的曲线即为单调谐幅频特性曲线,调整1W1、1W2曲线会有变化。

用扫频仪测出的单调谐放大器幅频特性曲线如下图:图1-5 扫频仪测量的幅频特性(2)点测法,其步骤如下:① 通过鼠标点击显示屏,选择实验项目中“高频原理实验”,然后再选择“小信号调谐放大电路实验”,通过选择“小信号调谐放大”后,显示屏上显示小信号调谐放大器原理电路图。

高频电子线路实验

高频电子线路实验

《高频电子线路》实验一 谐振电路与选频电路一、LC 谐振电路LC 谐振电路是是高频电子线路中常用的无源电路。

其相关的知识内容是高频电子线路课程的重要概念。

LC 谐振电路包括LC 串联谐振电路与LC 并联谐振电路两种。

(1)LC 串联谐振电路♦谐振条件:0100=-C L ωω,LC 10=ω♦串联谐振回路的选择性22002011)(11ξωωωω+≈-+==Q I IS ,ξωωωωϕarctg Q arctg -≈--=)]([000,)2(0ff Q ∆=ξ ♦串联回路的谐振曲线◆串联谐振回路的参数和公式 1)谐振电流 R V I S=0, 谐振阻抗 R Z = 2)谐振频率 LC10=ω,LCf π210=3)特性阻抗 CLC L ===001ωωρ 4)品质因数 RCRLRQ 000/1ωωρ=== 5)通频带BW 0.7我们将由S 值从最大值下降到其2/1时,对应的频率范围定义为谐振回路的通频带BW 0.7。

007.0Q f BW =◆对于串联谐振回路,当Vs恒定时,222222)(1)()/1()/1()/1()/1(ωωωωωωωωωωωω-+=-+=-+=QQCLRCCLRICIVVSC当ωω=时,Vc出现最大峰值。

且QVVSC=。

依据这个原理,我们可以通过实验来测量LC 串联谐振电路的Q值。

◆实验电路如下图所示:◆实验操作步骤:1)将函数发生器打开,调出频率f=10MHz、输出电压100mV的正弦波信号,作为Vs加入到LC串联谐振电路上。

2)用示波器观察Vs和V1、V2的波形。

测量其电压大小。

3)改变正弦波信号频率的f,同时观察电容电压V2出现峰值时为串联谐振发生。

4)记录测量数据,计算Q值大小。

5)依据计算的Q值,计算电感中电阻R的大小。

表1 LC串联谐振电路实测数据谐振频率f(MHz) 谐振时的Vs(mV) 谐振时的V2(mV) 谐振时的V1(mV)◆计算结果:品质因数Q特性阻抗ρ谐振电阻R 谐振频率f(MHz)(2)LC并联谐振电路LC并联谐振电路在信号频率等于谐振频率时发生并联谐振。

《高频电子线路》自动增益控制实验(AGC)

《高频电子线路》自动增益控制实验(AGC)

《高频电子线路》自动增益控制实验(AGC)一、实验目的1、掌握AGC工作原理。

2、掌握AGC主放大器的增益控制范围。

二、实验内容1、比较没有AGC和有AGC两种情况下输出电压的变化范围。

2、测量AGC的增益控制范围。

三、实验仪器1、1号模块 1块2、6号模块 1块3、2号模块 1块4、双踪示波器 1台四、实验原理图15-1是以MC1350作为小信号选频放大器并带有AGC的电路图,F1、F2为陶瓷滤波器(中心频率分别为4.5MHz和10.7MHz),选频放大器的输出信号通过耦合电容连接到输出插孔P4。

输出信号另一路通过检波二极管D1进入AGC反馈电路。

R14、C18为检波负载,这是一个简单的二极管包络检波器。

运算放大器U2B为直流放大器,其作用是提高控制灵敏度。

检波负载的时间常数C18•R14应远大于调制信号(音频)的一个周期,以便滤除调制信号,避免失真。

这样,控制电压是正比于载波幅度的。

时间常数过大也不好,因为那样的话,它将跟不上信号在传播过程中发生的随机变化。

跨接于运放U2B的输出端与反相输入端的电容C17,其作用是进一步滤除控制信号中的调制频率分量。

二极管D3可对U2B输出控制电压进行限幅。

W4提供比较电压,反相放大器U2A的2、3两端电位相等(虚短),等于W4提供的比较电压,只有当U2B输出的直流控制信号大于此比较电压时,U2A才能输出AGC控制电压。

图15-1 自动增益控制电路原理图(AGC)对接收机中AGC的要求是在接收机输入端的信号超过某一值后,输出信号几乎不再随输入信号的增大而增大。

根据这一要求,可以拟出实现AGC控制的方框图,如图15-2所示。

图15-2自动增益控制方框图图中,检波器将选频回路输出的高频信号变换为与高频载波幅度成比例的直流信号,经直流放大器放大后,和基准电压进行比较放大后作为接收机的增益调节电压。

不超过所设定的电压值时,直流放大器的输出电压也较小,加到比较器上的电压低于基准电压,此时环路断开,AGC电路不起控。

高频电子的实验报告

高频电子的实验报告

一、实验名称:高频电子线路实验二、实验目的:1. 掌握高频电子线路的基本原理和实验方法。

2. 熟悉高频电子线路中常用元件的性能和特点。

3. 培养实验操作技能,提高分析问题和解决问题的能力。

三、实验原理:高频电子线路是指频率在1MHz以上的电子线路,其设计原理与低频电子线路有所不同。

本实验主要研究高频放大器、振荡器和调制解调器等基本电路。

四、实验器材:1. 高频信号发生器2. 双踪示波器3. 万用表4. 高频电路实验板5. 高频电子元件(如晶体管、电容、电感等)五、实验步骤:1. 高频放大器实验:(1)搭建高频放大器电路,包括输入、输出匹配网络和晶体管放大电路。

(2)调节输入信号幅度和频率,观察输出信号的变化,分析放大器的频率响应和增益。

(3)测量放大器的输入输出阻抗,分析匹配网络的设计。

2. 振荡器实验:(1)搭建LC振荡器电路,包括LC谐振回路和晶体管振荡电路。

(2)调节LC回路参数,观察振荡频率的变化,分析振荡器的工作原理。

(3)测量振荡器的输出波形,分析振荡器的频率稳定性和幅度稳定性。

3. 调制解调器实验:(1)搭建AM调制器和解调器电路,包括调制信号源、调制电路、解调电路和滤波器。

(2)调节调制信号幅度和频率,观察调制信号的波形,分析调制和解调过程。

(3)测量调制信号的频率、幅度和相位,分析调制和解调效果。

六、实验结果及分析:1. 高频放大器实验:(1)通过调节输入信号幅度和频率,观察到输出信号随输入信号的变化而变化,说明放大器具有放大作用。

(2)测量放大器的输入输出阻抗,发现匹配网络对放大器的性能有重要影响。

(3)分析放大器的频率响应和增益,发现放大器的增益随着频率的升高而降低。

2. 振荡器实验:(1)通过调节LC回路参数,观察到振荡频率随LC回路参数的变化而变化,说明振荡器的工作原理。

(2)测量振荡器的输出波形,发现振荡器的频率稳定性和幅度稳定性较好。

(3)分析振荡器的频率稳定性和幅度稳定性,发现晶体管的静态工作点对振荡器的性能有重要影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一低电平振幅调制器(利用乘法器)一、实验目的1.掌握用集成模拟乘法器实现全载波调幅和抑制载波双边带调幅的方法与过程,并研究已调波与二输入信号的关系。

2.掌握测量调幅系数的方法。

3.通过实验中波形的变换,学会分析实验现象。

二、预习要求1.预习幅度调制器有关知识。

2.认真阅读实验指导书,了解实验原理及内容,分析实验电路中用1496乘法器调制的工作原理,并分析计算各引出脚的直流电压。

3.分析全载波调幅及抑制载波调幅信号特点,并画出其频谱图。

三、实验仪器设备1.双踪示波器。

2.SP1461型高频信号发生器。

3.万用表。

4.TPE-GP4高频综合实验箱(实验区域:乘法器调幅电路)四、实验电路说明图幅度调制就是载波的振幅受调制信号的控制作周期性的变化。

变化的周期与调制信号周期相同。

即振幅变化与调制信号的振幅成正比。

通常称高频信号为载波图1 1496芯片内部电路图信号,低频信号为调制信号,调幅器即为产生调幅信号的装置。

本实验采用集成模拟乘法器1496来构成调幅器,图1为1496芯片内部电路图,它是一个四象限模拟乘法器的基本电路,电路采用了两组差动对由V1-V4组成,以反极性方式相连接,而且两组差分对的恒流源又组成一对差分电路,即V5与V6,因此恒流源的控制电压可正可负,以此实现了四象限工作。

D、V7、V8为差动放大器V5、V6的恒流源。

进行调幅时,载波信号加在V1-V4的输入端,即引脚的⑧、⑩之间;调制信号加在差动放大器V5、V6的输入端,即引脚的①、④之间,②、③脚外接1KΩ电阻,以扩大调制信号动态范围,已调制信号取自双差动放大器的两集电极(即引出脚⑹、⑿之间)输出。

用1496集成电路构成的调幅器电路图如图2所示,图中R P5002用来调节引出脚①、④之间的平衡,R P5001用来调节⑧、⑩脚之间的平衡,三极管V5001为射极跟随器,以提高调幅器带负载的能力。

五、实验内容及步骤实验电路见图2构成的调幅器1.直流调制特性的测量1)载波输入端平衡调节:在调制信号输入端P5002加入峰值为100mv,频率为1KHz的正弦信号,调节Rp5001电位器使输出端信号最小,然后去掉输入信号。

2)在载波输入端P5001加峰值为10mv,频率为100KHz的正弦信号,用万用表测量A、B之间的电压V AB,用示波器观察OUT输出端的波形,以V AB=0.1V为步长,记录R P5002由一端调至另一端的输出波形及其峰值电压,注意观察相位变化,根据公式V O=KV AB V C(t) 计算出系数K值。

并填入表1。

实际使用载波幅值V C=1.13vV AB(mV)0.1070.2010.2970.4090.472V O(P-P)(mV)0.82 1.36 1.98 2.62 3.08 K 6.78 5.98 5.90 5.67 5.772.实现全载波调幅1)调节R P5002使V AB=0.1V,载波信号仍为V C(t)=1sin2π×10.7×106t(V),将低频信号Vs(t)=V S sin2π×103t(mV)加至调制器输入端P5002,画出V S=30mV和100mV时的调幅波形(标明峰一峰值与谷一谷值)并测出其调制度m。

V S=30mV峰-峰值:832mV 谷-谷值:720mV调制度m=7.2%V S=100mV峰-峰值:992mV 谷-谷值:576mV调制度m=26.5%2)载波信号V C(t)不变,将调制信号改为V S(t)=100sin2π×103t(mV)调节R P5002观察输出波形V AM(t)的变化情况,记录m=30%和m=100%调幅波所对应的V AB值。

m=30% V AB =0.6mVm=100% V AB =3mV3.实现抑制载波调幅1)调R P5002使调制端平衡,并在载波信号输入端IN1加V C(t)=10Sin2π×105t(mV) 信号,调制信号端IN2不加信号,观察并记录输出端波形。

2)载波输入端不变,调制信号输入端IN2加V S(t)=100sin2π×103t(mV)信号,观察记录波形,并标明峰一峰值电压。

峰-峰值:210mV实验二调幅波信号的解调一、实验目的1.进一步了解调幅波的原理,掌握调幅波的解调方法。

2.了解二极管包络检波的主要指标,检波效率及波形失真。

3.掌握用集成电路实现同步检波的方法。

二、预习要求1.复习课本中有关调幅和解调原理。

2.分析二极管包络检波产生波形失真的主要因素。

三、实验仪器设备1.双踪示波器2.SP1461型高频信号发生器3.万用表4.TPE-GP4高频综合实验箱(实验区域:二极管包络检波器、同步检波器)四、实验电路说明调幅波的解调即是从调幅信号中取出调制信号的过程,通常称之为检波。

调幅波解调方法有二极管包络检波器和同步检波器。

1. 二极管包络检波器适合于解调含有较大载波分量的大信号的检波过程,它具有电路简单,易于实现,本实验如图1所示,主要由二极管D5006及RC低通滤波器组成,它利用二极管的单向导电特性和检波负载RC的充放电过程实现检波。

所以RC时间常数选择很重要,RC时间常数过大, 则会产生对角切割失真。

RC时综合考虑要求满足下式:mm RC f Ω-<<<<2011图中,D5006是检波二极管,R5037、C5025、C5026滤掉残余的高频分量,R5038、和R P5004是可调检波直流负载,C5028、R5039、R P5005是可调检波交流负载,改变R P5004和R P5005可观察负载对检波效率和波形的影响。

2.同步检波器构成的解调器利用一个和调幅信号的载波同频同相的载波信号与调幅波相乘,再通过低通滤波器滤除高频分量而获得调制信号。

本实验如图2所示,采用1496集成电路构成解调器,载波信号V C 经过电容C5010加在⑧、⑩脚之间,调幅信号V AM 经电容C5011加在①、④脚之间,相乘后信号由(12)脚输出,经C5013、C5014、R5020组成的低通滤波器,在解调输出端,提取调制信号。

五、实验内容及步骤(一)二极管包络检波器 实验电路见图11. 解调全载波调幅信号(1).m<30%的调幅波的检波载波信号仍为V C(t)=10sin2π×105(t)(mV)调节调制信号幅度,按调幅实验中实验内容2(1)的条件获得调制度m<30%的调幅波,并将它加至宽带放大器的输入端,由OUT1处观察放大后的调幅波(确定放大器工作正常),在OUT2观察解调输出信号,调节R P5004改变直流负载,观测二极管直流负载改变对检波幅度和波形的影响,记录此时的波形。

调节R P5004 旋至最左端调节R P5004 旋至最右端(2).适当加大调制信号幅度,重复上述方法,观察记录检波输出波形。

调节R P5004 旋至最右端调节R P5004 旋至最右端(二)集成电路(乘法器)构成解调器实验电路见图21.解调全载波信号(1).将图2中的C4另一端接地,C5另一端接A,按调幅实验中实验内容2(1)的条件获得调制度分别为30%,100%及>100%的调幅波。

将它们依次加至解调器V AM的输入端,并在解调器的载波输入端加上与调幅信号相同的载波信号,分别记录解调输出波形,并与调制信号相比。

30%100%>100%(2).去掉C4,C5观察记录m=30%的调幅波输入时的解调器输出波形,并与调制信号相比较。

然后使电路复原。

2.解调抑制载波的双边带调幅信号(1).按调幅实验中实验内容3(2)的条件获得抑制载波调幅波,并加至图2的V AM输入端,其它连线均不变,观察记录解调输出波形,并与调制信号相比较。

(2).去掉滤波电容C4,C5观察记录输出波形。

实验三变容二极管调频振荡器一、实验目的1.了解变容二极管调频器电路原理及构成。

2.了解调频器调制特性及测量方法。

3.观察寄生调幅现象,了解其产生原因及消除方法。

二、预习要求1.复习变容二极管的非线性特性,及变容二极管调频振荡器调制特性。

2.复习角度调制的原理和变容二极管调频电路有关资料。

三、实验仪器设备1.双踪示波器2.频率计3.万用表4.TPE-GP4高频综合实验箱(实验区域:变容管调频器)四、实验原理及电路简介:1.变容管调频原理:变容管相当于一只压控电容,其结电容随所加的反向偏压而变化。

当变容管两端同时加有直流反向偏压和调制信号时,其结电容将在直流偏压所设定的电容基础上随调制信号的变化而变化,由于变容管的结电容是回路电容的一部分,所以振荡器的振荡频率必然随着调制信号而变化,从而实现了调频。

变容二极管结电容C j 与外加偏压的关系为:γ-+=)1(0Dj V u C C 式中:C 0为变容管零偏时的结电容,V D 为PN 结的势垒电位差,γ为电容变化指数。

设加在变容管两端电压u=V Q +U Ωsin Ωt ,代入上式经简化后得C j = C j0(1+m c sin Ωt) –γ式中: γγ)(00Q D Dj V V V C C += 表示u=V Q 时的电容量,即无调制时的电容量。

2. 实验电路简介:图一是本实验电路的原理图。

图中,V4001、C4012、C4008、C4006、C4007、D4001以及电感L4002构成了调频器的主振级,电路采用了西勒电容三点式振荡形式。

其交流等效电路如图二所示。

由图可见,变容二极管的结电容以部分接入的形式纳入在回路中。

回路总电容为:jj jC C C C C C C C C C C ++=++++=∑66611871111111 C 为C 4007、C 4008、C 4011的串联等效电容(式中缩写为C 7、C 8、C 11等) 回路振荡频率:)(212166jjC C C C C L LC f ++==∑ππ当回路电容有微量变化是,振荡频率的变化由下式决定:∑∑∆-=∆C C f f 210 无调制时 0606j j C C C C C C ++=∑有调制时回路电容为C Σ’,jj C C C C C C ++=∑66'变容二极管结电容接入系数为:066j c C C C P +=变容二极管的直流偏置电路,如图三所示。

五、 实验内容及步骤:接通TPE-GP4高频综合实验箱的总电源,然后按下本次实验单元电路的电源开关按钮,发光二极管发光,表示电源已接通。

1. 电路调整:1) 将示波器探头接在电路输出端(M4002)以观察波形,在M4003处接频率计。

2) 输入端不接音频信号,J4002保持开路状态,调整电位器R P 4001,使Ed =4V 。

调整调整电位器R P 4003,使输出波形幅值最大。

调整电位器R P 4002使输出幅度大约为1.5V P-P ,频率f=10.7MHz ,若频率偏离较远,可微调可变电容(此后不要再调整)。

相关文档
最新文档