电力电子课程设计
电力电子类课程设计

电力电子类课程设计一、课程目标知识目标:1. 理解电力电子器件的基本原理,掌握各类电力电子器件的构造、工作原理及应用场合。
2. 掌握电力电子变换器的基本电路拓扑,了解其功能、性能及在实际应用中的优缺点。
3. 学会分析电力电子电路的静态和动态特性,能够对简单电路进行设计和计算。
技能目标:1. 培养学生运用所学知识分析和解决实际电力电子问题的能力。
2. 提高学生动手实践能力,能够正确搭建和调试基本的电力电子实验电路。
3. 培养学生团队协作能力和沟通表达能力,能够就电力电子技术问题进行有效讨论。
情感态度价值观目标:1. 激发学生对电力电子技术领域的兴趣,培养其探索精神和创新意识。
2. 培养学生严谨、认真、负责的学习态度,使其养成良好的学习习惯。
3. 增强学生的环保意识,认识到电力电子技术在节能减排方面的重要作用,培养其社会责任感。
课程性质:本课程为电力电子类课程的实践性教学环节,旨在培养学生的实际操作能力和创新能力。
学生特点:学生已具备一定的电力电子基础知识,对实际应用有较高的兴趣,动手实践能力较强。
教学要求:结合课本内容,注重理论与实践相结合,强调学生的主体地位,充分调动学生的积极性,提高其分析和解决问题的能力。
将课程目标分解为具体的学习成果,便于后续教学设计和评估。
二、教学内容1. 电力电子器件:包括二极管、晶体管、晶闸管、场效应晶体管等基本器件的原理、特性及应用。
2. 电力电子变换器:介绍升压、降压、逆变、斩波等基本变换器的工作原理、电路拓扑及控制方法。
3. 电力电子电路分析与设计:学习静态和动态分析方法,对简单电力电子电路进行设计和计算。
4. 电力电子技术应用:分析电力电子技术在电力系统、新能源、电力传动等领域的应用实例。
教学大纲安排如下:第一周:电力电子器件原理与特性第二周:电力电子器件的应用及选型第三周:电力电子变换器的工作原理及电路拓扑第四周:电力电子变换器的控制方法第五周:电力电子电路的静态分析第六周:电力电子电路的动态分析第七周:电力电子电路设计与计算第八周:电力电子技术应用及发展趋势教学内容与课本关联性:参照教材《电力电子技术》相关章节,结合课程目标,对教学内容进行选择和组织,确保科学性和系统性。
基于电力电子的课程设计

基于电力电子的课程设计一、课程目标知识目标:1. 掌握电力电子器件的基本原理和分类,理解不同器件的工作特点及应用场景。
2. 学习并掌握基本的电力电子变换电路原理,包括AC-DC、DC-AC、DC-DC 等变换技术。
3. 了解电力电子装置的控制策略,包括PWM调制原理及其在电力电子设备中的应用。
技能目标:1. 能够分析并设计简单的电力电子电路,进行电路仿真和实验操作。
2. 能够运用电力电子技术解决实际问题,如设计一个小型的电力调节器。
3. 能够通过实际操作,验证理论知识,并培养动手能力和问题解决能力。
情感态度价值观目标:1. 培养学生对电力电子技术领域的兴趣,激发探索精神和创新意识。
2. 强化学生的团队合作意识,通过小组讨论和项目实施,培养协作解决问题的能力。
3. 增强学生的环保意识,理解电力电子技术在节能减排中的重要作用,培养社会责任感。
分析课程性质、学生特点和教学要求,本课程旨在通过理论讲授与实践操作相结合的方式,使学生在理解电力电子基础知识的同时,能够掌握一定的应用技能,并培养积极的情感态度价值观。
课程目标具体且可衡量,便于学生和教师明确课程预期成果,并为后续的教学设计和评估提供依据。
二、教学内容1. 电力电子器件原理及分类- 教材章节:第一章 电力电子器件- 内容:PN结、晶闸管、GTO、MOSFET、IGBT等器件的工作原理和特性。
2. 电力电子变换电路- 教材章节:第二章 电力电子变换技术- 内容:AC-DC、DC-AC、DC-DC变换电路的原理、电路结构及其应用。
3. 电力电子装置控制策略- 教材章节:第三章 电力电子装置的控制- 内容:PWM调制原理、调制方法及其在电力电子装置中的应用。
4. 电力电子技术应用案例分析- 教材章节:第四章 电力电子技术应用- 内容:电力调节器、逆变器、变频器等实际案例分析,探讨电力电子技术在实际工程中的应用。
5. 实践操作与电路仿真- 教材章节:第五章 实践操作与电路仿真- 内容:结合Multisim、LTspice等软件进行电路仿真,动手搭建和调试简单电力电子电路。
电力电子课程设计

电力电子 课程设计一、课程目标知识目标:1. 让学生掌握电力电子器件的基本原理、分类及其在电路中的应用;2. 使学生了解电力电子变换器的工作原理,掌握常见电力电子变换器的电路拓扑及控制方法;3. 引导学生理解电力电子技术在能源转换、电力系统中的应用及发展趋势。
技能目标:1. 培养学生能够运用所学知识分析、设计和搭建简单的电力电子电路;2. 提高学生运用电力电子器件和变换器解决实际问题的能力;3. 培养学生运用电力电子技术进行能源转换和电力系统优化的技能。
情感态度价值观目标:1. 培养学生对电力电子技术产生兴趣,激发学生学习积极性;2. 培养学生具备团队协作、沟通交流的能力,增强合作意识;3. 使学生认识到电力电子技术在节能减排、可持续发展中的重要性,树立环保意识。
分析课程性质、学生特点和教学要求,本课程目标旨在让学生在掌握电力电子基础知识的基础上,提高实际应用能力,培养学生解决实际问题的综合素质。
通过本课程的学习,学生能够具备以下具体学习成果:1. 能够列举并解释常见电力电子器件的原理和特点;2. 能够绘制并分析常见电力电子变换器的电路图;3. 能够运用电力电子技术进行实际案例分析,提出优化方案;4. 能够关注电力电子技术的发展趋势,认识到其在节能环保领域的作用。
二、教学内容本章节教学内容依据课程目标,结合教材,科学系统地组织以下内容:1. 电力电子器件:-PN结、晶体管、晶闸管等基本原理和特性;-电力MOSFET、IGBT等现代电力电子器件的结构和特点。
2. 电力电子变换器:-AC-DC、DC-AC、DC-DC等变换器的工作原理及分类;-常见电力电子变换器电路拓扑及其控制方法。
3. 电力电子技术应用:-电力电子技术在电力系统、新能源发电、电动汽车等领域的应用案例;-电力电子器件和变换器在节能、环保等方面的作用。
教学大纲安排如下:第一周:电力电子器件的基本原理和特性;第二周:现代电力电子器件的结构和特点;第三周:AC-DC、DC-AC变换器工作原理及电路拓扑;第四周:DC-DC变换器及控制方法;第五周:电力电子技术应用及案例分析;第六周:电力电子技术在节能环保领域的贡献及发展趋势。
电力电子技术的课程设计

电力电子技术的课程设计一、课程目标知识目标:1. 掌握电力电子器件的基本工作原理,如二极管、晶体管、晶闸管等;2. 了解电力电子电路的基本类型,如整流电路、斩波电路、逆变电路等;3. 学会分析简单电力电子电路的性能、特点及应用场合;4. 掌握电力电子设备在实际应用中的参数计算和选型方法。
技能目标:1. 能够正确使用实验设备搭建简单的电力电子电路;2. 学会运用电路分析方法,对电力电子电路进行性能分析和故障排查;3. 能够根据实际需求设计简单的电力电子系统,并进行参数计算和选型。
情感态度价值观目标:1. 培养学生对电力电子技术的兴趣,激发学习热情;2. 增强学生的团队合作意识,提高沟通与协作能力;3. 培养学生严谨的科学态度,树立工程伦理观念。
课程性质:本课程为电力电子技术的基础课程,旨在使学生掌握电力电子器件、电路及其应用,培养实际操作能力和工程素养。
学生特点:学生具备一定的电子技术基础,具有较强的学习能力和动手能力,但对电力电子技术尚处于入门阶段。
教学要求:结合学生特点,注重理论与实践相结合,强调动手实践和实际应用,提高学生的综合能力。
通过本课程的学习,使学生能够达到上述课程目标,为后续相关课程和实际工作打下坚实基础。
二、教学内容1. 电力电子器件:介绍二极管、晶体管、晶闸管等基本器件的结构、工作原理及特性,重点讲解其在电力电子电路中的应用。
教材章节:第一章至第三章内容安排:2学时2. 电力电子电路:讲解整流电路、斩波电路、逆变电路等基本电路的类型、工作原理及性能特点。
教材章节:第四章至第六章内容安排:4学时3. 电力电子电路分析:教授电路分析方法,如平均值法、等效电路法等,分析典型电力电子电路的性能和应用。
教材章节:第七章内容安排:3学时4. 电力电子设备设计:介绍参数计算和选型方法,结合实际案例进行设备设计。
教材章节:第八章内容安排:3学时5. 实践操作:安排学生进行电力电子电路搭建、性能测试和故障排查,提高动手能力。
电力电子的课程设计

电力电子的课程设计一、课程目标知识目标:1. 理解电力电子器件的基本原理和分类,掌握其工作特性和应用范围。
2. 学习电力电子变换器的基本电路拓扑,理解其工作原理和转换过程。
3. 掌握电力电子器件的驱动与保护方法,了解其在实际电路中的应用。
技能目标:1. 能够运用电力电子器件设计简单的电力变换电路,并进行仿真分析。
2. 学会使用相关软件工具对电力电子电路进行性能评估和故障诊断。
3. 培养动手实践能力,能搭建简单的电力电子实验装置,并进行调试。
情感态度价值观目标:1. 培养学生对电力电子技术的好奇心和探索精神,激发学习兴趣。
2. 增强学生的团队合作意识,培养在小组讨论和实验中积极沟通、协作的能力。
3. 培养学生的节能环保意识,理解电力电子技术在节能减排中的重要作用。
分析课程性质、学生特点和教学要求,本课程目标旨在使学生在掌握电力电子基础知识的同时,提高实践操作能力,培养创新思维和团队协作精神。
通过具体的学习成果分解,教师可进行针对性的教学设计和评估,确保课程目标的实现。
二、教学内容本章节教学内容围绕以下三个方面展开:1. 电力电子器件:- 基本原理与分类:讲解电力电子器件的工作原理,如晶闸管、IGBT等,并介绍各类器件的应用范围。
- 工作特性:分析电力电子器件的主要参数,如静态特性、动态特性等。
2. 电力电子变换器:- 基本电路拓扑:介绍常用的电力电子变换器拓扑结构,如AC-DC、DC-AC、DC-DC等,并分析其工作原理。
- 转换过程:讲解不同变换器的工作过程,包括能量转换、电压电流波形等。
3. 器件驱动与保护:- 驱动方法:介绍电力电子器件的驱动技术,如光耦隔离驱动、磁隔离驱动等。
- 保护方法:分析器件保护措施,如过压保护、过流保护等。
教学内容安排与进度:1. 第一周:电力电子器件基本原理与分类,工作特性分析。
2. 第二周:电力电子变换器基本电路拓扑,工作原理讲解。
3. 第三周:器件驱动与保护方法,实际应用案例分析。
电力电子方向课程设计

电力电子方向课程设计一、课程目标知识目标:1. 理解电力电子器件的基本工作原理,掌握其特性参数及应用场合;2. 掌握基本的电力电子变换电路,如整流、逆变、斩波和调压电路;3. 了解电力电子装置的设计原则和调试方法;4. 掌握电力电子装置在能源转换、电力系统和电力调节中的应用。
技能目标:1. 能够运用所学知识分析和设计简单的电力电子电路;2. 能够利用仿真软件对电力电子电路进行仿真测试,验证设计方案的可行性;3. 能够根据实际需求,选择合适的电力电子器件和变换电路,进行系统集成;4. 能够通过实际操作,对电力电子装置进行调试和故障排查。
情感态度价值观目标:1. 培养学生对电力电子技术的兴趣,激发其创新意识和探索精神;2. 增强学生的团队合作意识,使其在项目实施过程中学会相互协作、共同解决问题;3. 培养学生严谨的科学态度和良好的工程素养,注重实践操作的安全性和环保意识;4. 引导学生关注电力电子技术在新能源、节能减排等领域的应用,提高其社会责任感。
课程性质:本课程为电力电子方向的实践性课程,注重理论知识与实际应用的学生特点:学生具备一定的电子技术基础,具有较强的动手能力和求知欲。
教学要求:结合课本内容,以实际项目为载体,注重培养学生的实践能力和创新能力。
在教学过程中,分解课程目标为具体的学习成果,以便进行教学设计和评估。
二、教学内容1. 电力电子器件原理与特性:包括半导体器件的工作原理、电力电子器件的分类及特性参数,重点介绍晶闸管、IGBT等常用器件。
相关教材章节:第一章《电力电子器件》2. 电力电子变换电路:讲解整流、逆变、斩波和调压电路的工作原理、电路拓扑及控制策略。
相关教材章节:第二章《电力电子变换技术》3. 电力电子装置设计:介绍电力电子装置的设计原则、电路设计方法、器件选型和系统调试。
相关教材章节:第三章《电力电子装置设计》4. 电力电子技术应用:分析电力电子技术在新能源、电力系统和电力调节等领域的应用案例。
电力电子课程设计课本

电力电子课程设计课本一、教学目标本节课的教学目标是使学生掌握电力电子学的基本概念、原理和应用,培养学生对电力电子技术的兴趣和热情,提高学生的科学素养和创新能力。
具体目标如下:1.知识目标:学生能够了解电力电子学的基本概念、原理和主要器件,理解电力电子电路的工作原理和性能,掌握电力电子技术的应用领域。
2.技能目标:学生能够分析简单的电力电子电路,进行电力电子器件的选择和应用,具备设计简单的电力电子电路的能力。
3.情感态度价值观目标:学生能够认识电力电子技术在现代社会中的重要性和地位,培养对电力电子技术的兴趣和热情,提高科学素养和创新能力。
二、教学内容本节课的教学内容主要包括电力电子学的基本概念、原理和应用。
具体安排如下:1.电力电子学的基本概念和原理:介绍电力电子学的定义、特点和基本原理,讲解电力电子器件的分类、特性和应用。
2.电力电子电路:分析电力电子电路的工作原理和性能,介绍电力电子电路的常见应用领域,如电力变换、电力控制等。
3.电力电子技术的应用:介绍电力电子技术在现代社会中的应用案例,如变频调速、电动汽车、智能电网等,强调电力电子技术对现代社会的重要性和影响。
三、教学方法为了激发学生的学习兴趣和主动性,本节课将采用多种教学方法相结合的方式进行教学。
具体方法如下:1.讲授法:通过讲解电力电子学的基本概念、原理和应用,使学生掌握电力电子技术的基本知识。
2.案例分析法:通过分析具体的电力电子应用案例,使学生了解电力电子技术在实际工程中的应用和价值。
3.实验法:学生进行电力电子实验,使学生亲自操作和观察电力电子电路的工作原理和性能,提高学生的实践能力和创新能力。
四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,本节课将采用以下教学资源:1.教材:选用权威、实用的电力电子学教材,为学生提供系统、科学的学习材料。
2.参考书:推荐学生阅读电力电子学相关的参考书籍,拓展学生的知识面。
3.多媒体资料:制作精美的PPT、视频等多媒体资料,为学生提供直观、生动的学习资源。
电力电子技术课程设计范例

电力电子技术课程设计范例电力电子技术课程设计是电气工程专业的一门重点课程,该课程设计主要涉及到电力电子变流器的设计、控制和应用。
此外,该课程还包括功率半导体器件的选型、电路设计、控制系统设计以及电磁兼容等方面的内容。
本文主要介绍一种电力电子技术课程设计的范例,以期为电力电子技术课程设计的读者提供一些参考和借鉴。
1. 课程设计目标电力电子技术课程设计的主要目标是培养学生的电气设计能力、模拟仿真能力、实验操作能力和团队合作意识,以及使学生掌握电力电子变流器的设计和控制技术。
2. 课程设计主题设计具有稳定输出电压的电力电子变流器。
具体包括:(1)设计一个交流输入、直流输出的电力电子变流器。
(2)根据实际需要选择并计算所需的功率半导体装置。
(3)设计适当的电路保护和故障检测系统。
(4)编写控制程序实现变流器的开关控制。
(5)进行电路仿真和实验验证。
其中,电力电子变流器可以采用全桥式、半桥式、双向直流-直流变换器等常用拓扑结构。
3. 课程设计步骤(1)确定项目的范围和目标。
明确所需完成的技术任务和各个环节的时间计划,提前预估和解决可能遇到的技术问题。
(2)收集相关的技术资料。
包括相关电路设计资料和器件规格书等。
(3)根据设计需求进行选型计算,选择满足要求的元器件。
(4)进行电路仿真验证。
采用MATLAB/Simulink软件搭建电路模型,对所设计的电路进行仿真,进一步验证电路的性能和可靠性。
(5)设计控制系统。
采用单片机或FPGA等控制芯片,编写控制程序实现变流器的开关控制,并对控制程序进行仿真和验证。
(6)进行实验验证。
制作样品电路,进行实际测试和验证。
实验过程中,需要注意电路稳定性和安全性,防止短路等电路故障。
(7)编写课程设计报告。
对整个设计过程进行总结和评估,包括设计思路、设计过程、实验结果等方面内容。
4. 课程设计评分电力电子技术课程设计评分主要包括以下几个方面:(1)方案设计(20分)。
设计方案的完备性、实现难度、适用性和创新性等方面考虑。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
毕业设计(论文)论文题目:交流变频调速电路课程设计系部:自动控制系专业:电气自动化班级:自动化151学生姓名:王杰学号:151415179指导教师:刘亚卓2016 年 12 月30 日目录摘要 (1)第1章绪论 (1)1.1课题在国内外的发展 (2)1.2课程的性质、目的与任务 (2)1.3课程设计内容及基本要求 (2)第2章交流变频调速技术 (3)2.1变频技术简介 (3)2.2交流变频调速基本原理 (3)2.3变频调速的特点 (4)第3章交流变频调速的设计 (5)3.1交流变频调速的主电路图 (6)3.2控制电路 (7)第4章实验步骤及数据 (8)4.1变频调速实验目地 (9)4.2仪器、器材或环境 (9)4.3原理、过程及结论 (10)第5章总结与展望 (10)参考文献 (10)摘要:本课程设计介绍了异步电动机调压调速系统的几大组成部分,并着重讲述了三相异步电动机(M)、测速发电机(TG)、晶闸管交流调压器(TVC)的简单的工作原理。
在了解异步电动机调压调速的基本原理的基础上,设计了异步电动机单闭环调压调速系统的结构原理图。
还将调压调速与其他的调速方法相比,所具有的优点以及不足之处。
第1章绪论1.1课题在国内外的发展20世纪70年代后,大规模集成电路和计算机控制技术的发展,以及现代控制理论的应用,使得交流电力拖动系统逐步具备了宽的调速范围、高的稳速范围、高的稳速精度、快的动态响应以及在四象限作可逆运行等良好的技术性能,在调速性能方面可以与直流电力拖动媲美。
在交流调速技术中,变频调速具有绝对优势,并且它的调速性能与可靠性不断完善,价格不断降低,特别是变频调速节电效果明显,而且易于实现过程自动化,深受工业行业的青睐。
变频调速电机简称变频电机,是变频器驱动的电动机的统称。
实际上为变频器设计的电机为变频专用电机,电机可以在变频器的驱动下实现不同的转速与扭矩,以适应负载的需求变化。
变频电动机由传统的鼠笼式电动机发展而来,把传统的电机风机改为独立出来的风机,并且提高了电机绕组的绝缘性能。
在要求不高的场合如小功率和频率在额定工作频率工作情况下,可以用普通鼠笼电动机代替。
随着电力电子技术的发展,使得采用电力电子变换器的交流拖动系统得以实现,特别是大规模集成电路和计算机控制的出现,高性能交流调速系统便应运而生,一直被认为是天经地义的交直流拖动按调速性能分工的格局终于被打破了。
1.2课程的性质、目的与任务课程设计是学习专业技术课所必需教学实践环节。
通过课程设计的教学实践,使学生所学的基础理论和专业知识得到巩固,并使学生得到运用所学理论知识解决实际问题的初步训练。
通过课程设计使学生利用所学理论知识和设计方法完成某种运动控制系统设计。
通过课程设计使学生掌握系统设计的步骤和一般方法,学会电路的设计,电器元件参数的计算、选型以及系统特性分析和评价标准。
掌握从收集资料、方案比较论证到电路设计、计算的整个设计过程,获得初步的实践锻炼,进一步提高学生的分析、综合能力。
1.3课程设计内容及基本要求指导教师负责学生的分组与课题选题,下达课程设计任务书,指导、督促、检查学生课程设计的进行情况,并结合答辩情况负责课程设计完成后学生的成绩考核。
1.完成交直流调速系统电路(主电路、控制电路、保护电路等)的设计2.完成电路主要元件参数的计算及电气元件的选择3.进行系统特性分析和评价4.绘制电路图,编制程序5.完成课程设计说明书第2章交流变频调速技术2.1变频技术简介随着科学的发展,变频器的使用也越来越广泛,不管是工业设备上还是家用电器上都会使用到变频器,可以说,只要有三相异步电动机的地方,就有变频器的存在,要熟练地使用变频器,还必须掌握三相异步电动机的特性,因为变频器与三相异步电动机有着密切的联系。
2.2交流变频调速基本原理交流变频调速器(简称变频器)是建立在微处理器、电力电子学、电机学、现代控制理论基础之上的现代机电一体化高新技术产品。
其工作原理是将三相工频交流电整流成直流电,再由直流电转换成交流电(交-直-交)。
根据要求,可以从0~50Hz(或更高频率)之间输出任意频率。
因此,通过对变频器输出频率的控制,实现交流电动机的调速,最终达到对传动负载的精确定量控制。
:是应用当今国际最新变频技术产品——交流变频调速器,对交流电机进行无级调速控制的高新技术。
变频调速控制系统主要由电控设备、变频器、交流电动机、传动机械及传感器等部分组成。
变频控制系统可进行开环控制,也可进行闭环控制。
开环系统的控制是通过设定值的改变,来实现对被控制对象输出值的直接控制。
闭环控制系统是通过被控制对象反馈系统与设定值的动态比较,自动调节被控电机的转速,从而实现对被控制对象输出的控制。
2.3变频调速的特点变频调速的主要特点是通过变频器改变输出频率及输出电压,实现交流电机转速或被控对象输出的控制。
此外,还具有以下优点:①.由于变频器在启动过程中,输出频率由0Hz平滑地逐渐上升,电压从0V 按比例上升到额定电压,电机无任何启动冲击,避免了由于电机启动产生的大电流对电机、电网、电气元件及所拖动机械设备的冲击和损坏。
变频器在停止过程中,输出频率由运行频率平滑地逐渐下降到0Hz,电压从运行电压按比例逐渐到0V,实现了电动机软停止。
②.变频启动可防止运输机械类载重物体受冲击和翻滚,提高传动设备的使用寿命。
③.无级调速,自动化程度高,可实现无人管理。
④.保护功能完善,减少设备维修、故障等。
⑤.节能效果明显。
第3章交流变频调速的设计3.1交流变频调速的主电路图交流电机变频调速系统包括主电路和控制电路两部分,主电路主要完成功率的转换,它的结构是随着电力电子技术的发展而发展的,特别是从半控器件到全控器件的过渡标志着变频装置在性价比上可以与直流调速装置相媲美;控制电路主要完成对变频主电路提供各种控制信号,它是随着数字控制技术的发展而发展的,而且数字技术的应用不仅提高了调速系统的精度和可靠性,而且还为现代控制理论与方法在交流调速中的应用提供了物质基础。
(a)在交流变频调速系统中,主回路作为直接执行机构,其可靠性和稳定性直接影响着系统的运转,因此,必须选择合适的主电路。
交流变频电路实现由整流器将电网中的交流电整流成直流电,经过滤波,然后由逆变器逆变成交流电供给负载。
中间环节采用在理想情况下是一种阻抗为零的恒压源的大电容滤波;在主电源方面,由于电动机是不需要频繁制动和反转的,所以选择不可控二极管整流桥方式。
滤波电路采用阻容方式。
逆变电路为三相全桥形式;在功率器件方面,由于变频调速系统,一方面要求开关频率足够高,另一方面要求有足够的输出容量,所以采用驱动功率小而饱和压降低的IGBT。
在变频调速系统中,电动机的降速和停机,是通过逐渐减下频率来实现的。
这时,从电动机的角度来看,电动机处于再生制动的工作状态;从变频调速系统的角度来看,拖动系统在转速下降时减少的动能,由电动机“再生”电能后,在变频主电路的直流环节中被消耗掉了。
归根结底,是通过消耗能量而获得制动转矩的,属于能耗制动状态。
为此,在系统电路中设计了由VE、RE、VDE组成的放电回路,以免过高的直流电压使各部分器件损坏。
(a)主控制电路3.2控制电路控制电路作为交流电机变频调速系统的核心部分,在影响整个系统的性能方面占有极其重要的地位,而控制系统的性能又取决于其运算速度和控制精度,这在某种程度上依赖于实现该系统的电子芯片。
在控制逆变部分,根据PWM波形的生成原理,采用VHDL语言,从硬件和软件上采用基于CPLD,用于IGBT控制的数字化PWM波形产生器的实现方法;根据系统的设计要求,选择了转速负反馈控制,提高了系统的精度和稳定度。
保护电路主要包括系统过压、过流、以及泵升电压的保护等。
控制电路和保护电路作为交流电机变频调速系统的核心部分,在影响整个系统的性能方面占有极其重要的地位,它主要是向变频主电路提供各种控制信号,以使主电路安全、可靠的工作。
(b)控制电路第4章实验步骤及数据4.1变频调速实验目地(1)掌握SPWM的基本原理和实现方法。
(2)熟悉与SPWM控制有关的信号波形4.3原理、过程及结论(1)接通挂件电源,关闭电机开关,调制方式设定在SPWM方式下(将控制部分S、V、P的三个端子都悬空),然后开启电源开关。
(2)点动“增速”按键,将频率设定在0.5Hz,在SPWM部分观测三相正弦波信号(在测试点“2、3、4”),观测三角载波信号(在测试点“5”),三相SPWM调制信号(在测试点“6、7、8”);再点动“转向”按键,改变转动方向,观测上述各信号的相位关系变化。
(3)逐步升高频率,直至到达50Hz处,重复以上的步骤。
(4)将频率设置为0.5HZ~60HZ的范围内改变,在测试点“2、3、4”中观测正弦波信号的频率和幅值的关系。
1、观察条件(1)-(3)与SPWM调制有关信号波形,得出SPWM控制的结论,说明SPWM的调频和调压基本原理。
(1)测试三角载波信号波形(2)测试SPWM调制之前的正弦波信号。
a)0.5Hzb)10Hz:c)20Hz:d)30Hz:e)50Hz:(3)测试SPWM调制之后的正弦波信号。
a)0.5Hzb)10Hz:c)20Hz:d)30Hz:e)50Hz:结论:SPWM信号是通过用三角载波信号和正弦信号相比较的方法产生,当改变正弦参考信号的幅值时,脉宽随之改变。
当改变正弦参考信号的频率时,输出电压的频率即随之改变。
即以正弦波作为逆变器输出的期望波形,以频率比期望波高得多的等腰三角波作为载波(Carrier wave),并用频率和期望波相同的正弦波作为调制波(Modulation wave),当调制波与载波相交时,由它们的交点确定逆变器开关器件的通断时刻,从而获得在正弦调制波的半个周期内呈两边窄中间宽的一系列等幅不等宽的矩形波。
调频原理:改变参考波频率,即可调节SPWM波的基波频率;调压原理:改变参考波幅值,即可调节SPWM波的宽度,从而改变输出电压的有效值;2、测试在0.5HZ~50Hz范围内正弦波信号的幅值与频率关系表,把结果填入下表。
分析在0.5HZ~50Hz范围内正弦波信号的幅值与频率的关系。
(2)绘出纵坐标为正弦波信号的幅值,横坐标为频率的幅值与频率关系曲线,得出相应的结论。
结论:正弦波幅值与三角波幅值之比为m,称为调制比。
正弦波脉宽调制的主要优点是:逆变器输出线电压与调制比m近似成线性关系。
3、测试在50HZ~60Hz范围内正弦波信号的幅值与频率关系表,把结果填入下表。
分析在50HZ~60Hz范围内正弦波信号的幅值与频率的关系。
(1)把测试的结果填入下表:(2)绘出纵坐标为正弦波信号的幅值,横坐标为频率的幅值与频率关系曲线,得出相应的结论。
结论:正弦波幅值与三角波幅值之比为m,称为调制比。