电力电子课程设计--小功率晶闸管整流电路
小功率晶闸管整流电路设计

小功率晶闸管整流电路设计
近年来,随着技术的不断发展,低功率晶闸管整流电路成为人们非常重视的研究课题。
低功率晶闸管整流电路可以将交流电信号转换成直流电信号,以满足不同工程实际需求。
一般来说,低功率晶闸管整流电路包括两个主要组成部分,即晶闸管和变压器。
晶闸
管是一种半导体管器件,它具有很高的电流和电压阻抗,因此可以把输入的交流电压变换
成较低的直流电压。
而变压器的作用则是把低电压的直流电压转换为经提升的电压,为输
出提供更多的电能。
在设计低功率晶闸管整流电路的时候,有一些关键的参数需要注意,例如电压转换效率,线圈电阻和电容,输入电流和输出电流等。
根据具体的应用需求,需要对晶闸管和变
压器参数进行合理的微调,以保证电路的稳定性和效率。
此外,在设计低功率晶闸管整流电路过程中,需要考虑热释放情况,尤其是在变压器上,其高电流通过变压器引起的热释放效应需要考虑到,否则就会造成整个电路的热损耗,从而影响电路的性能和寿命。
在实际的应用中,低功率晶闸管整流电路可以提供高精度、高可靠性的电压转换,将
模拟信号变换成数字信号,用于计算机和智能家电等设备,因此具有非常广泛的应用前景。
总而言之,正确地设计低功率晶闸管整流电路有赖于深入的理论研究和实验测试,需
要对相关参数进行精准的测量和调试,以保证整个电路的稳定性和可靠性。
小功率晶闸管整流电路设计

1.电子元器件介绍1.1二极管1.1.1定义二极管,(英语:Diode),电子元件当中,一种具有两个电极的装置,只允许电流由单一方向流过,许多的使用是应用其整流的功能。
而变容二极管(Varicap Diode)则用来当作电子式的可调电容器。
大部分二极管所具备的电流方向性我们通常称之为“整流(Rectifying)”功能。
二极管最普遍的功能就是只允许电流由单一方向通过(称为顺向偏压),反向时阻断(称为逆向偏压)。
因此,二极管可以想成电子版的逆止阀。
早期的真空电子二极管;它是一种能够单向传导电流的电子器件。
在半导体二极管部有一个PN结两个引线端子,这种电子器件按照外加电压的方向,具备单向电流的传导性。
一般来讲,晶体二极管是一个由p型半导体和n型半导体烧结形成的p-n结界面。
在其界面的两侧形成空间电荷层,构成自建电场。
当外加电压等于零时,由于p-n 结两边载流子的浓度差引起扩散电流和由自建电场引起的漂移电流相等而处于电平衡状态,这也是常态下的二极管特性。
早期的二极管包含“猫须晶体("Cat's Whisker" Crystals)”以及真空管(英国称为“热游离阀(Thermionic Valves)”)。
现今最普遍的二极管大多是使用半导体材料如硅或锗。
1.2晶闸管1.2.1定义晶闸管又称为晶体闸流管,可控硅整流(Silicon Controlled Rectifier--SCR),开辟了电力电子技术迅速发展和广泛应用的崭新时代; 20世纪80年代以来,开始被性能更好的全控型器件取代。
能承受的电压和电流容量最高,工作可靠,以被广泛应用于相控整流、逆变、交流调压、直流变换等领域,成为功率低频(200Hz 以下)装置中的主要器件。
晶闸管往往专指晶闸管的一种基本类型--普通晶闸管。
广义上讲,晶闸管还包括其许多类型的派生器件。
1)晶闸管的结构晶闸管是大功率器件,工作时产生大量的热,因此必须安装散热器。
小功率晶闸管整流电路设计

小功率晶闸管整流电路设计一、引言晶闸管是一种常用的功率电子器件,具有可控性强、寿命长等优点,在电力电子领域得到广泛应用。
本文将介绍小功率晶闸管整流电路的设计原理和步骤。
二、设计原理晶闸管整流电路是利用晶闸管的单向导通特性,将交流电转换为直流电。
小功率晶闸管整流电路主要由晶闸管、变压器、滤波电容和负载组成。
其工作原理如下:1. 正半周工作原理在正半周,晶闸管的控制端施加正向电压,使晶闸管导通,电流从变压器的一侧流向另一侧,实现正向整流。
此时,滤波电容会将脉动的直流电平平滑成稳定的直流电。
2. 负半周工作原理在负半周,晶闸管的控制端施加反向电压,使晶闸管截止,电流无法流动,实现反向整流。
此时,滤波电容会继续提供电流给负载,保持输出电压的稳定性。
三、设计步骤下面是小功率晶闸管整流电路的设计步骤:1. 确定输入电压和输出电压:根据实际需求确定输入电压和输出电压的数值。
2. 选择晶闸管:根据输入电压和输出电压确定所需的晶闸管的额定电压和额定电流。
3. 选择变压器:根据输入电压和输出电压的变换关系,选择合适的变压器。
4. 计算滤波电容:根据负载电流和输出电压的波动要求,计算所需的滤波电容容值。
5. 设计控制电路:根据晶闸管的控制特性,设计合适的控制电路,确保晶闸管的正常工作。
6. 进行电路仿真:利用电路仿真软件对设计的整流电路进行仿真,验证电路的性能和稳定性。
7. 制作电路原型:根据设计结果,制作整流电路的原型,进行实际测试。
8. 优化设计:根据测试结果,对整流电路进行优化,改进电路的性能和稳定性。
四、实例分析以一个小功率晶闸管整流电路为例,假设输入电压为220V,输出电压为12V,负载电流为1A。
选择适合的晶闸管、变压器和滤波电容后,进行电路仿真,并制作电路原型进行测试。
经过仿真和测试,验证了设计的整流电路满足要求。
在测试过程中,还可以进一步调整控制电路的参数,优化整流电路的性能。
五、总结本文介绍了小功率晶闸管整流电路的设计原理和步骤。
电力电子(晶闸管整流)

一、概述二、课程设计方案本次课程设计的要紧内容是利用晶闸管整流来设计直流电机操纵系统,要紧设计内容有1、电路功能:〔1〕、用晶闸管缺角整流实现直流调压,操纵直流电动机的转速。
〔2〕、电路由主电路与操纵电路组成,主电路要紧环节:整流电路及保卫电路。
操纵电路要紧环节:触发电路、电压电流检测单元、驱动电路、检测与故障保卫电路。
〔3〕、主电路电力电子开关器件采纳晶闸管、IGBT或MOSFET。
〔4〕、系统具有完善的保卫2、系统总体方案确定3、主电路设计与分析〔1〕、确定主电路方案〔2〕、主电路元器件的计算及选型〔3〕、主电路保卫环节设计4、操纵电路设计与分析〔1〕、检测电路设计〔2〕、功能单元电路设计〔3〕、触发电路设计〔4〕、操纵电路参数确定设计要求有一下四点:1、设计思路清晰,给出整体设计框图;2、单元电路设计,给出具体设计思路和电路;3、分析所有单元电路与总电路的工作原理,并给出必要的波形分析。
4、绘制总电路图5、写出设计报告;要紧的设计条件有:1、设计依据要紧参数〔1〕、输进输出电压:〔AC〕220〔1+15%〕、〔2〕、最大输出电压、电流依据电机功率予以选择〔3〕、要求电机能实现单向无级调速〔4〕、电机型号布置任务时给定2、可提供实验与仿真条件三、系统电路设计1、主电路的设计〔1〕、主电路设计方案主电路的要紧功能是实现整流,将三相交流电变为直流电。
要紧通过整流变压器和三相桥式全控整流来实现。
整流变压器是整流设备的电源变压器。
整流设备的特点是原方输进电流,而副方通过整流原件后输出直流。
变流是整流、逆流和变频三种工作方式的总称,整流是其中应用最广泛的一种。
作为整流装置电源用的变压器称为整流变压器。
工业用的整流直流电源大局部根基上由交流电网通过整流变压器与整流设备而得到的。
整流变压器是专供整流系统的变压器。
整流变压器的功能:1.是提供整流系统适当的电压,2.是减小因整流系统造成的波形畸变对电网的污染。
小功率晶闸管整流电路

目录第二章绪论....................................................................................................................... 错误!未定义书签。
1.1电路基本知识 (4)1.2 电源变压器 (5)1.2.1电源变压器概述 (5)1.2.2电源变压器功能 (5)1.2.3电源变压器的分类 (6)1.2.4变压器的型式 (6)1.3整流电路的基本知识 (6)1.3.1单相桥式整流电路的工作原理 (6)1.4直流稳压电路工作的原理 (7)1.4.1串联型稳压电路的工作原理 (8)1.4.2具有放大环节的串联稳压电路 (8)第二章元器件介绍 (10)2.1三段可调稳压器 (10)2.1.1LM317的介绍 (10)2.1.2LM317的测试方法 (12)2.1.3空载检查测试 (12)2.1.4加载检查测试 (15)2. 1. 5集成稳压器选用时的注意事项 (11)2.1.6所用元器件 (16)第三章稳压源的技术指标及稳压电源的要求 (18)3.1小功率可调直流稳压电源电路的布线图及原理图 (18)第四章保护电路的设置 (20)总结..................................................................................................................................... 错误!未定义书签。
电力电子技术的应用一、什么是电力电子技术电力电子技术,也被称为功率电子技术,就是使用电力电子器件对电能进行变换和控制的技术,是一门新兴的应用于电力领域的电子技术。
电力电子技术是一个以功率半导体器件、电路技术、计算机技术、现代控制技术为支撑的技术平台。
经过50年的发展历程,它在传统产业设备发行、电能质量控制、新能源开发和民用产品等方面得到了越来越广泛的应用。
《晶闸管整流电路》课件

电源
实验设备与测试方法
示波器 万用表
测试方法
实验设备与测试方法
使用示波器观察整流电路的输出波形
记录实验数据和波形,以便后续分析
使用万用表测量各点的电压和电流值
调试步骤与注意事项
调试步骤 1. 检查实验设备是否完好,确保电源、导线等正常工作。
2. 根据实验要求连接电路,确保连接正确无误。
启动条件
需要满足一定的电压和电 流条件,以确保晶闸管能 够正常启动。
正常工作过程
电流流向
工作状态
在正常工作状态下,电流从阳极流向 阴极,同时维持一定的电压和电流值 。
晶闸管整流电路处于稳态工作状态时 ,各参数保持恒定,系统稳定运行。
控制方式
通过调节触发信号的相位角,可以控 制输出电压和电流的大小,从而实现 整流功能。
2. 总结实验中的问题和不足之处,提出改进措施 。
THANKS.
电感器
总结词:特性
详细描述:电感器是一种储能元件,具有隔交通直的特 性。在整流电路中,它能够有效地将交流分量转化为磁 场能储存起来并在需要时释放出来。
03
晶闸管整流电路的
工作过程
启动过程
启动方式
通过在阳极和阴极之间施 加正向电压,使晶闸管从 截止状态进入导通状态。
触发信号
在启动过程中,需要施加 一个触发信号,使晶闸管 内部的电子发生跃迁,从 而导通电流。
设计原则与步骤
电路仿真
利用仿真软件对设计的电路进行模拟,验证其性能和可 靠性。
优化改进
根据仿真结果,对电路进行优化和改进,提高其性能和 可靠性。
元件选择与参数计算
1 2
元件选择
根据电路的工作环境和性能要求,选择合适的元 件型号和规格。
小功率晶闸管整流电路设计

小功率晶闸管整流电路设计晶闸管是一种具有控制性能的半导体器件,广泛应用于电力电子领域。
在一些低功率应用中,小功率晶闸管整流电路被广泛使用。
本文将介绍小功率晶闸管整流电路的设计原理和步骤。
一、设计原理小功率晶闸管整流电路是一种将交流电转换为直流电的电路。
其基本原理是使用晶闸管作为开关,控制电流的通断,使得交流电经过整流后输出为直流电。
二、设计步骤1. 确定电路输入参数:首先需要确定输入电压和频率的大小,以及所需输出电压的大小和负载电流的要求。
根据这些参数来选择合适的晶闸管型号和元件规格。
2. 选择整流电路拓扑结构:常见的整流电路拓扑结构有单相半波整流、单相全波整流和三相全波整流等。
根据具体需求选择合适的拓扑结构。
3. 选择电路元件:根据电路拓扑结构的选择,选择合适的二极管、电容等元件。
二极管用于实现整流功能,电容用于滤波以获得稳定的直流输出。
4. 计算元件参数:根据设计要求和选定的元件,进行元件参数的计算。
例如,根据输出电压和负载电流计算电容的容值,根据输入电压和负载电流计算晶闸管的额定电流和额定电压等。
5. 绘制电路图:根据所选元件和计算得到的参数,绘制整流电路的电路图。
确保电路连接正确,元件安装位置合理。
6. 进行电路仿真:使用电路仿真软件,对设计的整流电路进行仿真。
通过仿真可以验证电路的性能和工作情况,调整参数以达到设计要求。
7. 制作原理图和PCB布局:根据设计的电路图,绘制整流电路的原理图和PCB布局图。
确保电路板的布局合理,元件之间的连接短路和干扰最小。
8. 制作电路板:根据PCB布局图,制作整流电路的电路板。
注意电路板的制作工艺和质量,确保电路连接良好。
9. 进行实验验证:将制作好的电路板连接到实验设备上,进行实验验证。
检查输出电压和负载电流是否满足设计要求,检查电路是否稳定工作。
10. 优化调整:根据实验结果,对电路进行优化调整。
可以调整晶闸管的触发角、电容的容值等,以获得更好的性能和稳定性。
电工电子应用技术 晶闸管可控整流电路教案

单元十三电力电子技术基础(教案)注:表格内黑体字格式为(黑体,小四号,1.25倍行距,居中)13.2晶闸管可控整流电路【教学过程】组织教学:1.检查出勤情况。
2.检查学生教材,习题册是否符合要求。
3.宣布上课。
引入新课:1.可控整流电路的作用是将交流电变换为电压大小可以调节的直流电,以供给直流用电设备,如直流电动机的转速控制、同步发电机的励磁调节、电镀和电解电源等,它主要利用晶闸管的单向导电性和可控性构成。
2.通过实物演示及列举实例,让学生了解桥式整流电路的原理及应用,从而激发他们的学习兴趣。
讲授新课:13.2晶闸管可控整流电路13.2.1整流电路可控整流电路的作用是将交流电变换为电压大小可以调节的直流电,以供给直流用电设备,如直流电动机的转速控制、同步发电机的励磁调节、电镀和电解电源等,它主要利用晶闸管的单向导电性和可控性构成。
13.2.1整流电路单相半波可控整流电路虽然具有电路简单、调整方便、使用元件少的优点,但却有整流电压脉动大、输出整流电流小的缺点。
比较常用的是半控桥式整流电路,简称半控桥,其电路如图13-2-1所示。
在变压器副边电压u的正半周(a端为正)时,T1和D2承受正向电压。
这时如对晶闸管T1引入触发信号,则T1和D2导通,电流的通路为a→T1→R L→D2→b图13-2-1 电阻性负载的单相半控桥式整流电路这时T2和D1都因承受反向电压而截止。
同样,在电压u的负半周时,T2和D1(讲解)(讲解)观看PPT:整流电路)承受正向电压。
这时,如对晶闸管T 2引入触发信号,则T 2和D 1导通,电流的通路为: b→T 2→R L →D 1→a图13-2-2 电阻性负载时单相半控桥式整流电路的电压与电流的波形这时T 1和D 2处于截止状态。
电压与电流的波形如图13-2-2所示。
桥式整流电路的输出电压的平均值为2cos 219.00a U U +⋅= (13-2-1)输出电流的平均值为2cos 19.000aR U R U I L L +⋅==(13-2-2) 13.2.2晶闸管的过电流、过电压保护1.晶闸管的过电流保护由于晶闸管的热容量很小,一旦发生过电流时,温度就会急剧上升而可能把PN 结烧坏,造成元件内部短路或开路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
- 1 -长春工业大学课程设计报告书课程设计名称:电力电子技术专业:自动化班级:110302学生姓名:杨东昆指导教师:谢慕君日期:2014年1月17日- 2 -目录1.课程设计的目的……………………………………………………………………………2.主要技术参数………………………………………………………3.方案的选择与确定…………………………………………………………………………3.1系统总体设计框图……………………………………………………3.2方案论证…………………………………………………………………·3.2.1对电气控制系统的技术要求3.2.2主电路的选择3.2.3触发电路的选择3.2.4保护电路的设置3.3主电路的计算…………………………·3.3.1晶闸管整流电路计算3.3.2电力电子器件的选择4.设计小结……………………………………………………………………………………5.参考文献………………………………………………………………………………···附录(电路图、波形图、元器件清单)……………………………………………………一. 课程设计目的电力电子技术的课程设计是《电力电子技术》课程的一个重要的实践教学环节。
它与理论教学和实践教学相配合,可加深理解和全面掌握《电力电子技术》课程的基本内容,可使学生在理论联系实际、综合分析、理论计算、归纳整理和实验研究等方面得到综合训练和提高,从而培养学生具有独立解决实际问题和从事科学研究的初步能力。
因此,通过电力电子计术的课程设计达到以下几个目的: 1)加深理解和掌握《电力电子技术》课程的基础知识,提高学生综合运用所学知识的能力;2)培养学生根据课程设题的需要,查阅资料和独立解决工程实际问题的能力;3)学会仪器的正常使用方法和调试过程;4)培养分析、总结及撰写技术报告的能力。
二、主要技术参数:1、V220交流供电电源;2、电路输出的直流电压和电流的技术指标满足系统要求。
3、电路应具有一定的稳压功能,同时还具有较高的防治过电压和过电流的抗干扰能力。
触发电路输出满足系统要求。
三、课设方案的选择与确定3.2方案论证3.2.1对电气控制系统的技术要求:1、电源电压:交流220V/50Hz2、输出额定电压:220V3、输出额定电流:5.1A3.2.2主电路的选择:根据课题要求正确选择主电路形式;单相相控整流电路主电路有单相半波、单相桥式全控、单相桥式半控等。
1、单相半波可控整流电路单相半波可控整流电路的优点是线路简单、调整方便,其缺点是输出电压脉动大,负载电流脉动大(电阻性负载时),且整流变压器二次绕组中存在直流电流分量,使铁心磁化,变压器容量不能充分利用。
若不用变压器,则交流回路有直流电流,使电网波形畸变引起额外损耗。
因此单相半波相控整流电路只适用于小容量,波形要求不高的的场合。
2、单相桥式全控整流电路此电路对每个导电回路进行控制,无须用续流二极管,也不会失控现象,负载形式多样,整流效果好,波形平稳,应用广泛。
变压器二次绕组中,正负两个半周电流方向相反且波形对称,平均值为零,即直流分量为零,不存在变压器直流磁化问题,变压器的利用率也高。
并且单相桥式全控整流电路具有输出电流脉动小,功率因素高的特点。
但是,电路中需要四只晶闸管,且触发电路要分时触发一对晶闸管,电路复杂,两两晶闸管导通的时间差用分立元件电路难以控制。
3、单相桥式半控整流电路单相桥式半控整流电路用二只晶闸管和二只二极管,根据两个晶闸管的接线方式,可以使用分立元件触发电路,且触发电路相对简单,当两个晶闸管被同时导通时,由二极管在电源电压过零时自然换流其性能和单相桥式全控整流电路相同,具有同等优点。
故采用此电路作为本次课程设计的主电路。
3.2.3触发电路的选择可供选择的触发电路有同步信号为锯齿波的触发电路,同步信号为正弦波的触发电路,KC04集成移相触发器。
1、同步信号为锯齿波的触发电路基本环节:①脉冲形成与放大环节②锯齿波形成和脉冲移相环节③同步环节④强触发脉冲形成环节⑤双窄脉冲形成环节2、同步信号为正弦波的触发电路(1)三个基本环节:①同步移相②脉冲形成整形③脉冲功放输出3. KC04集成移相触发器它可分为同步、锯齿波形成、移相、脉冲形成脉冲输出等几部分电路由于集成触发电路具有免受外界干扰、集成度高等优点,故采用集成触发电路。
3.2.4保护电路的设置在电力电子器件电路中,除了电力电子器件参数要选择合适,驱动电路设计良好外,采用合适的过电压保护,过电流保护,du/dt保护和di/dt保护也是必不可少的。
(1)过压保护所谓过压保护,即指流过晶闸管两端的电压值超过晶闸管在正常工作时所能承受的最大峰值电压Um都称为过电压。
产生过电压的原因一般由静电感应、雷击或突然切断电感回路电流时电磁感应所引起。
其中,对雷击产生的过电压,需在变压器的初级侧接上避雷器,以保护变压器本身的安全;而对突然切断电感回路电流时电磁感应所引起的过电压,一般发生在交流侧、直流侧和器件上。
1.交流侧过电压保护过电压产生过程:电源变压器初级侧突然拉闸,使变压器的励磁电流突然切断,铁芯中的磁通在短时间内变化很大,因而在变压器的次级感应出很高的瞬时电压。
保护方法:阻容保护2.直流侧过电压保护过电压产生过程:当某一桥臂的晶闸管在导通状态突然因果载使快速熔断器熔断时,由于直流住电路电感中储存能量的释放,会在电路的输出端产生过电压。
保护方法:阻容保护(2)过流保护电力电子电路运行不正常或者发生故障时,可能会发生过电流现象。
过电流分载和短路两种情况。
一般电力电子均同时采用几种过电压保护措施,怪提高保护的可靠性和合理性。
在选择各种保护措施时应注意相互协调。
通常,电子电路作为第一保护措施,快速熔断器只作为短路时的部分区断的保护,直流快速断路器在电子电力动作之后实现保护,过电流继电器在过载时动作。
在选择快熔时应考虑:1、电压等级应根据快熔熔断后实际承受的电压来确定。
2、电流容量应按照其在主电路中的接入方式和主电路连接形式确定。
快熔一般与电力半导体体器件串联连接,在小容量装置中也可串接于阀侧交流母线或直流母线中。
3、快熔的It值应小于被保护器件的允许It值。
4、为保证熔体在正常过载情况下不熔化,应考虑其时间电流特性。
快熔对器件的保护方式分为全保护和短保护两种。
全保护是指无论过载还是短路均由快熔进行保护,此方式只适用于小功率装置或器件使用裕量较大的场合。
短路保护方式是指快熔只要短路电流较大的区域内起保护作用,此方式需与其他过电流保护措施相配合。
熔断器是最简单的过电流保护元件,但最普通的熔断器由于熔断特性不合适,很可能在晶闸管烧坏后熔断器还没有熔断,快速熔断器有较好的快速熔断特性,一旦发生过电流可及时熔断起到保护作用。
最好的办法是晶闸管元件上直接串快熔,因流过快熔电流和晶闸管的电流相同,所以对元件的保护作用最好。
(3)电流上升率di/dt的抑制晶闸管初开通时电流集中在靠近门极的阴极表面较小的区域,局部电流密度很大,然后以0.1mm/μs 的扩展速度将电流扩展到整个阴极面,若晶闸管开通时电流上升率di/dt 过大,会导致PN结击穿,必须限制晶闸管的电流上升率使其在合适的范围内。
其有效办法是在晶闸管的阳极回路串联入电感。
如图所示:串联电感抑制回路(4)电压上升率dv/dt 的抑制加在晶闸管上的正向电压上升率dv/dt 也应有所限制,如果dv/dt 过大,由于晶闸管结电容的存在而产生较大的位移电流,该电流可以实际上起到触发电流的作用,使晶闸管正向阻断能力下降,严重时引起晶闸管误导通。
为抑制dv/dt 的作用,可以在晶闸管两端并联R-C 阻容吸收回路。
如图所示:3.3主电路计算3.3.1晶闸管整流电路计算(1)整流变压器电压及容量的计算① 变压器二次侧相电压2U 的计算:B A U U d ξ/)2.1~1(2= 根据查表单相半控桥A=0.9,U 2=275-330V 取300V- 10-二次侧相电流2I 和一次侧相电流1I 的计算:73.0300/2202/1===U U K 11211==K KA K I I d 7/1== A I I d 1.52==② 变压器容量计算:121==m mVA I U S 15407220111=⨯=⋅= VA I U S 15301.5300222=⨯=⋅= VA S S S 15352/)(21=+=(2)整流元件的计算① 晶闸管额定电压:V 850U )3~2(U TM TN ==② 晶闸管的额定电流 d I K ⋅=)2~5.1(I T (A V) 73.0=K 计算得:A I AV T 5.71.573.02)(=⨯⨯=(3)电抗器参数计算为了使直流负载得到平滑的直流电流,通常在整流输出电路中串入带有气隙的铁心电抗器Ld ,称平波电抗器。
其主要参数有流过电抗器的电流,一般是已知的,因此电抗器参数计算主要是电感量的计算。
(1)使输出电流连续的临界电感量1Lmin 211/d I U K L *= 67.11=K计算得:A I I d d 51.0%10min == mH L 9821= (2)限制输出电流脉动的电感量2Ld I Si U K L ⋅=/*222 %10,8.22==Si K 计算得:mH L 16472=(3)电动机电感量LD 和变压器漏电感量T L310*2/pn Ud K L D D *=由所给负载参数:82m in,/750,1.5,220====p r n A I V U D D 10=D K 计算得:mH L D 72=D ah T T I U U K L 100/**2= V U K ah T 105,18.3-== 计算得:mH L T 35.9=(4)实际串入电抗器电感量mH L N L L L T D D 900)(11=⋅+-=mH L N L L L T D D 1565)(22=⋅+-=21D D L L ≤故选用mH 1565作为串入半波电抗器的电感值。
(4)过电压保护1.交流侧过电压保护措施:采用组容保护。
即在变压器二次并联电阻R 和电容C 进行保护。
参数计算:由于A V S ⋅=1535 V U A I em 300,102==V U ah 10~5=F U S I C em μ02.1/*622=≥ 电容C 耐压V U m 6365.1=≥V V u u d m 42430022=⨯==Ω=≥963.222emah I U S U R 6100.12-⨯⨯=c c c U f I π 2)4~3(R R I P ≥2.直流侧过电压保护措施:可采用与交流侧保护相同的方法,可采用阻容保护和压敏电阻保护。