牛顿定律中的临界问题(解析版)

合集下载

2024高考物理一轮复习--牛顿第二定律的应用--动力学中的临界和极值问题

2024高考物理一轮复习--牛顿第二定律的应用--动力学中的临界和极值问题

动力学中的临界和极值问题一、动力学中的临界极值问题1.“四种”典型临界条件(1)接触与脱离的临界条件:两物体相接触或脱离,临界条件是弹力F N=0。

(2)相对滑动的临界条件:两物体相接触且处于相对静止时,常存在着静摩擦力,则相对滑动的临界条件是静摩擦力达到最大值。

(3)绳子断裂与松弛的临界条件:绳子所能承受的张力是有限度的,绳子断与不断的临界条件是绳中张力等于它所能承受的最大张力,绳子松弛与拉紧的临界条件是F T=0。

(4)速度达到最值的临界条件:加速度为0。

2. 解题指导(1)直接接触的连接体存在“要分离还没分”的临界状态,其动力学特征:“貌合神离”,即a相同、F N=0.(2)靠静摩擦力连接(带动)的连接体,静摩擦力达到最大静摩擦力时是“要滑还没滑”的临界状态.(3)极限分析法:把题中条件推向极大或极小,找到临界状态,分析临界状态的受力特点,列出方程(4)数学分析法:将物理过程用数学表达式表示,由数学方法(如二次函数、不等式、三角函数等)求极值.3.解题基本思路(1)认真审题,详细分析问题中变化的过程(包括分析整个过程中有几个阶段);(2)寻找过程中变化的物理量;(3)探索物理量的变化规律;(4)确定临界状态,分析临界条件,找出临界关系.4. 解题方法二、针对练习1、(多选)如图所示,长木板放置在水平面上,一小物块置于长木板的中央,长木板和物块的质量均为m ,物块与木板间的动摩擦因数为μ,木板与水平面间的动摩擦因数为4μ,已知最大静摩擦力与滑动摩擦力大小相等,重力加速度为g .现对物块施加一水平向右的拉力,则木板加速度a 大小可能是( )A .0a =B .4ga μ=C .3g a μ=D .23ga μ=2、(多选)如图所示,A 、B 两物块的质量分别为2m 和m ,静止叠放在水平地面上.A 、B 间的动摩擦因数为μ,B 与地面间的动摩擦因数为12μ.最大静摩擦力等于滑动摩擦力,重力加速度为g .现对A 施加一水平拉力F ,则( ) A .当F <2μmg 时,A 、B 都相对地面静止 B .当F =52μmg 时,A 的加速度为13μgC .当F >3μmg 时,A 相对B 滑动D .无论F 为何值,B 的加速度不会超过12μg3、如图所示,木块A 、B 静止叠放在光滑水平面上,A 的质量为m ,B 的质量为2m 。

牛顿运动定律的综合应用——动力学图像、连接体及临界极值问题-高考物理复习

牛顿运动定律的综合应用——动力学图像、连接体及临界极值问题-高考物理复习
列叙述正确的是( D )
A.当拉力0<F<12 N时,A静止不动 B.当拉力F>12 N时,A相对B滑动
图6 C.当拉力F=16 N时,B受到A的摩擦力等于12 N D.在细线可以承受的范围内,无论拉力F多大,A相对B始终静止
目录
研透核心考点
解析 由于物体 B 放在光滑的水平面上,因此只要拉 力 F 不是零,A、B 将一起加速运动,所以当拉力 0< F<12 N 时,A 不会静止不动,A 错误;若 A、B 能发 生相对滑动,则有 a=μmmBAg=0.2×26×10 m/s2=6 m/s2,对 A、B 整体,由牛顿 第二定律可得发生相对滑动时的拉力为 F=(mA+mB)a=(6+2)×6 N=48 N,超 出了绳子的最大拉力,由此可知,在绳子承受的最大拉力 20 N 范围内,无论拉 力 F 多大,A、B 始终处于相对静止状态,B 错误,D 正确;当拉力 F=16 N 时,对整体,由牛顿第二定律可得 F=(mA+mB)a′,解得 a′=mA+F mB=61+62 m/s2 =2 m/s2,则 B 受到 A 的摩擦力 f=mBa′=2×2 N=4 N,C 错误。
目录
研透核心考点
解析 在相同时间内(b 未触地),a、b 加速度的大小相 等,速度变化量大小相等,D 错误;将 a、b 看成一个 整体,由牛顿第二定律得 F 合=4mg-2mgsin θ= (2m+4m)a,解得 a=g2,故 B 正确;以 b 为研究对象, 设拉力为 T,由牛顿第二定律有 4mg-T=4ma,解得 T=2mg,故 A 错误;由几何关系知,两侧绳子的夹角 为 60°,则绳子对定滑轮的力为 F=2Tcos 30°=2 3mg, 故 C 正确。
目录
研透核心考点
3.连接体问题的分析 整体法、隔离法的交替运用,若连接体内各物体具有相同的加速度,且要求 物体之间的作用力时,可以先用整体法求出加速度,然后再用隔离法选取合 适的研究对象,应用牛顿第二定律求出作用力。即“先整体求加速度,后隔 离求内力”。

高2024届-物理-练习-临界问题(答案)

高2024届-物理-练习-临界问题(答案)

牛顿运动定律(3)——临界问题一、分离类临界问题【例1】.如图所示,细线的一端固定于倾角为45˚的光滑斜面A 的顶端P 处,细线的另一端拴一质量为m 的小球。

当斜面至少以加速度a =___g______ 向左运动时,小球对的压力等于零,当斜面以a=2g 的加速度向左运动时,线中拉力T =____5mg ____。

【变式1】如图所示,在光滑水平面上放着紧靠在一起的AB 两物体,B 的质量是A 的2倍,B 受到向右的恒力F B =2N ,A 受到的水平力F A =(9-2t )N ,(t 的单位是s)。

从t =0开始计时,则( ABD )A .A 物体在3s 末时刻的加速度是初始时刻的511倍;B .t >4s 后,B 物体做匀加速直线运动;C .t =4.5s 时,A 物体的速度为零;D .t >4.5s 后,AB 的加速度方向相反。

【例2】.一根劲度系数为k ,质量不计的轻弹簧,上端固定,下端系一质量为m 的物体,有一水平板将物体托住,并使弹簧处于自然长度,如图所示。

现让木板由静止开始以加速度a (a <g ) 匀加速向下移动,求经过多长时间木板开始与物体分离。

答案:t =2m (g —a )ka【变式2】. 一个弹簧测力计放在水平地面上,Q 为与轻弹簧上端连在一起的秤盘,P 为一重物,已知P 的质量M =10.5 kg ,Q 的质量m =1.5 kg ,弹簧的质量不计,劲度系数k =800 N/m ,系统处于静止.如图所示,现给P 施加一个方向竖直向上的力F ,使它从静止开始向上做匀加速运动,已知在前0.2 s 内,F 为变力,0.2 s 以后,F 为恒力.求力F 的最大值与最小值.(取g =10 m/s 2)解析:设开始时弹簧压缩量为x 1,t =0.2 s 时弹簧的压缩量为x 2,物体P 的加速度为a ,则有kx 1=(M +m )g ①kx 2-mg =ma ②x 1-x 2=12at 2 ③ 由①式得x 1=(M +m )g k=0.15 m , ④ 由②③④式得a =6 m/s 2F 小=(M +m )a =72 N ,F 大=M (g +a )=168 N.二、相对滑动类临界问题【例3】.如图所示,在光滑水平面上有一辆小车A,其质量为m A=2.0 kg,小车上放一个物体B,其质量为m B=1.0 kg.如图甲所示,给B一个水平推力F,当F增大到稍大于3.0 N时,A、B开始相对滑动.如果撤去F,对A施加一水平推力F′,如图乙所示.要使A、B不相对滑动,则F′的最大值F max为(C)A.2.0 N B.3.0 N C.6.0 N D.9.0 N解析:选C.根据题图甲所示,设A,B间的静摩擦力达到最大值F fmax时,系统的加速度为a.根据牛顿第二定律,对A、B整体有F=(m A+m B)a,对A有F fmax=m A a,代入数据解得F fmax=2.0 N.根据题图乙所示情况,设A、B刚开始滑动时系统的加速度为a′,根据牛顿第二定律得:以B为研究对象有F fmax=m B a′以A、B整体为研究对象,有F max=(m A+m B)a′代入数据解得F max=6.0 N.故C正确.【变式3】. (多选)如图甲所示,物块A与木板B叠放在粗糙水平面上,其中A的质量为m,B的质量为2m,且B足够长,A与B、B与地面间的动摩擦因数均为μ。

牛顿第二定律临界问题

牛顿第二定律临界问题

高中物理教案学案第三章 牛顿运动定律第五课时 牛顿定律应用中的临界和极值问题1、知识回顾: ⑴如图所示,水平放置的长木板AB 上静置一个小物块,小物块与木板之间的动摩擦因数μ恒定。

现将木板绕其A 端沿逆时针方向缓慢旋转,下列图线中能最好地描述小物块沿长木板滑下的加速度a 和长木板与水平面间夹角θ的关系的是( B )。

⑵质点所受的力F 随时间变化的规律如图所示,力的方向始终在一直线上,已知t =0时质点的速度为零。

在图示t 1、t 2、t 3和t 4各时刻中,质点的速度最大的是:( B ).A .t lB .t 2C .t 3D .t 42、典型例题分析:【例1】传送带是一种常用的运输工具,它被广泛地应用于矿山、码头、货场等生产实际中,在车站、机场等交通场所它也发挥着巨大的作用。

如图所示为车站使用的水平传送带装置模型,绷紧的传送带水平部分AB 的长度L =5m ,并以V 传=2m /s 的速度向右传动。

现将一个可视为质点的旅行包轻轻地无初速地放在传送带的A 端,已知旅行包与皮带之间的动摩擦因数μ=0.2。

求:⑴旅行包在传送带上从A 端运动到B 端所用的时间;⑵若要旅行包在传送带上从A 端运动到B 端所用的时间最短,则传动的速度大小应满足什么条件(g =10m /s 2)【解析】⑴由于旅行包的初速为零,在开始阶段,旅行包速度小于传送带的速度,故旅行包相对于传送带向左运动,其受到的滑动摩擦力向右,此滑动摩擦力使旅行包产生加速度,旅行包向右做初速度为零的匀加速运动(如图所示)。

但旅行包是否是匀加速运动到B 端,却要看旅行包从A 端运动到B 端过程中是否一直受到滑动摩擦力作用。

判断依据是这一 fV 传过程中若旅行包一直做匀加速运动,其到达B 端的速度V B 是否大于皮带传动的速度V 传:①V B ≤V 传,则旅行包一直做匀加速运动;②若V B >V 传,则旅行包先做匀加速直线运动后做匀速运动。

根据牛顿第二定律可得: f =ma ,N -mg =0。

高中物理牛顿运动定律的应用试题(有答案和解析)及解析

高中物理牛顿运动定律的应用试题(有答案和解析)及解析

高中物理牛顿运动定律的应用试题(有答案和解析)及解析一、高中物理精讲专题测试牛顿运动定律的应用1.质量为m =0.5 kg 、长L =1 m 的平板车B 静止在光滑水平面上,某时刻质量M =l kg 的物体A (视为质点)以v 0=4 m/s 向右的初速度滑上平板车B 的上表面,在A 滑上B 的同时,给B 施加一个水平向右的拉力.已知A 与B 之间的动摩擦因数μ=0.2,重力加速度g 取10 m/s 2.试求:(1)如果要使A 不至于从B 上滑落,拉力F 大小应满足的条件; (2)若F =5 N ,物体A 在平板车上运动时相对平板车滑行的最大距离. 【答案】(1)1N 3N F ≤≤ (2)0.5m x ∆= 【解析】 【分析】物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度,结合牛顿第二定律和运动学公式求出拉力的最小值.另一种临界情况是A 、B 速度相同后,一起做匀加速直线运动,根据牛顿第二定律求出拉力的最大值,从而得出拉力F 的大小范围. 【详解】(1)物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度v 1,则:222011-22A Bv v v L a a =+ 又: 011-=A Bv v v a a 解得:a B =6m/s 2再代入F +μMg =ma B 得:F =1N若F <1N ,则A 滑到B 的右端时,速度仍大于B 的速度,于是将从B 上滑落,所以F 必须大于等于1N当F 较大时,在A 到达B 的右端之前,就与B 具有相同的速度,之后,A 必须相对B 静止,才不会从B 的左端滑落,则由牛顿第二定律得: 对整体:F =(m +M )a 对物体A :μMg =Ma 解得:F =3N若F 大于3N ,A 就会相对B 向左滑下 综上所述,力F 应满足的条件是1N≤F ≤3N(2)物体A 滑上平板车B 以后,做匀减速运动,由牛顿第二定律得:μMg =Ma A 解得:a A =μg =2m/s 2平板车B 做匀加速直线运动,由牛顿第二定律得:F +μMg =ma B 解得:a B =14m/s 2两者速度相同时物体相对小车滑行最远,有:v 0-a A t =a B t 解得:t =0.25s A 滑行距离 x A =v 0t -12a A t 2=1516m B 滑行距离:x B =12a B t 2=716m 最大距离:Δx =x A -x B =0.5m 【点睛】解决本题的关键理清物块在小车上的运动情况,抓住临界状态,结合牛顿第二定律和运动学公式进行求解.2.如图所示为货场使用的传送带的模型,传送带倾斜放置,与水平面夹角为37θ=︒,传送带AB 足够长,传送带以大小为2m/s υ=的恒定速率顺时针转动。

牛顿定律的临界值问题

牛顿定律的临界值问题

牛顿运动定律的临界值问题例1、在水平向右运动的小车上,有一倾角θ=370的光滑斜面,质量为m的小球被平行于斜面的细绳系住而静止于斜面上。

〔1〕使小车从静止开场向右做加速度逐渐增大的加速运动,如图1所示。

分析绳子拉力和斜面对小球的支持力随加速度增大如何变化?要使小球对斜面无压力,求小车加速度的范围。

〔2〕使小车从静止开场向左做加速度,加速度在什么范围内时小球相对斜面静止不动。

1.如下图,质量为m的球置于斜面上,被一个固定在斜面上的竖直挡板挡住.现用一个力F拉斜面,使斜面在水平面上做加速度为a的匀加速直线运动,忽略一切摩擦,以下说法中正确的选项是A.假设加速度足够小,竖直挡板对球的弹力可能为零B.假设加速度足够大,斜面对球的弹力可能为零C.斜面和挡板对球的弹力的合力等于maD.斜面对球的弹力不仅有,而且是一个定值2.如下图,质量分别为2kg、3kg的劈形物体A、B,静止在水平面上,劈面倾角为37º,水平推力F作用于A上,假设所有接触面都是光滑的,为使A、B间不发生相对运动,问F的最大值为多少?3.小车在水平路面上加速向右运动,一质量为m的小球用一条水平线和一条斜线〔与竖直方向成300角〕把小球系于车上,求以下情况下,两绳的拉力:〔1〕加速度a1=g/3〔2〕加速度a2=2g/34. 质量为m=1kg的物体,放在=37°的斜面上如以下图所示,物体与斜面的动摩擦因数,要是物体与斜面体一起沿水平方向向左加速运动,那么其加速度多大?例2.一根劲度系数为k、质量不计的轻弹簧,上端固定,下端系一质量为m的物体,有一水平的板将物体托住,并使弹簧处于自然长度,如下图,现让木板由静止开场以加速度a(a<g)匀加速向下移动,求经过多长时间木板与物体别离。

1、如下图,质量为M的框架放在水平地面上,一轻弹簧上端固定在框架上,下端固定一个质量为m的小球。

小球上下振动时,框架始终没有跳起,当框架对地面压力为零瞬间,小球的加速度大小为2、一个弹簧秤放在水平地面上,Q为与轻弹簧上端连在一起的秤盘,P为一重物,P的质最M=l,Q的质量m=,弹簧的质量不计,劲度系数k=800N/m,系统处于静止,如以下图所示,现给P施加一个方向竖直向上的力F,使它从静止开场向上做匀加速运动,在前0.2s时间内,F为变力,0.2s以后,F为恒力.求力F的最大值与最小值.(取g=10m/s2).。

牛顿运动定律运用中的临界问题

牛顿运动定律运用中的临界问题

图1—1 牛顿运动定律运用中的临界问题在应用牛顿定律解题时常遇到临界问题,它包括:1. 平衡物体(a=0)的平衡状态即将被打破而还没有被打破的瞬间;2. 动态物体(a ≠0)的状态即将发生突变而还没有变化的瞬间。

临界状态也可归纳为加速度即将发生突变的状态。

加速度发生突变的本质原因是物体的外力发生了突变,物体处于临界状态,必然隐含着某些力(如弹力、摩擦力等)的突变。

抓住这些力突变的条件,是我们解题的关键。

对于此类问题的解法一般有以下三种方法:一.极限法在题目中如果出现“最大”、“最小”、“刚好”等关键词时,一般隐藏着临界问题,处理这类问题时,常常把物理问题或过程推向极端,从而将临界状态及临界条件显露出来,达到尽快求解的目的。

例1.如图1—1所示,质量为m 的物体放在水平地面上,物体与地面间的动摩擦因数为μ,对物体施加一个与水平方向成θ角的力F ,试求: (1)物体在水平面上运动时力F 的值; (2)物体在水平面上运动所获得的最大加速度。

例2.(和静摩擦力相联系的临界情况)如图,质量为m=1Kg 的物块放在倾角为θ的斜面上,斜面体质量为M=2Kg ,斜面与物块间的动摩擦因数μ=0.2,地面光滑,θ=370,现对斜面体施一水平推力F ,要使物体m 相对斜面静止,力F 应为多大?(设物体与斜面间的最大静摩擦力等于滑动摩擦力,g 取10m/s 2)例3.(和弹力相联系的临界条件)如图2—1所示,质量均为M 的两个木块A 、B 在水平力F 的作用下,一起沿光滑的水平面运动,A 与B 的接触面光滑,且与水平面的夹角为60° ,求使A 与B 一起运动时的水平力F 的范围。

图2—1例4 如图所示,光滑小球恰好放在木块的圆弧槽中,它左边的接触点为A ,槽的半径为R ,且OA 与水平线成α角,通过实验知道,当木块的加速度过大时,小球可以从槽中滚出来,圆球的质量为m ,木块的质量为M ,各种摩擦及绳和滑轮的质量不计,则木块向右的加速度最小为多大时,小球恰好能滚出圆弧槽。

物理一轮复习 专题12 牛顿运动定律的综合应用(讲)(含解析)

物理一轮复习 专题12 牛顿运动定律的综合应用(讲)(含解析)

专题12 牛顿运动定律的综合应用1.掌握超重、失重的概念,会分析有关超重、失重的问题。

2.学会分析临界与极值问题。

3.会进行动力学多过程问题的分析.1.超重(1)定义:物体对支持物的压力(或对悬挂物的拉力)大于物体所受重力的情况.(2)产生条件:物体具有向上的加速度.2.失重(1)定义:物体对支持物的压力(或对悬挂物的拉力)小于物体所受重力的情况.(2)产生条件:物体具有向下的加速度.3.完全失重(1)定义:物体对支持物的压力(或对悬挂物的拉力)等于零的情况称为完全失重现象.(2)产生条件:物体的加速度a=g,方向竖直向下.考点一超重与失重1.超重并不是重力增加了,失重并不是重力减小了,完全失重也不是重力完全消失了.在发生这些现象时,物体的重力依然存在,且不发生变化,只是物体对支持物的压力(或对悬挂物的拉力)发生了变化(即“视重”发生变化).2.只要物体有向上或向下的加速度,物体就处于超重或失重状态,与物体向上运动还是向下运动无关.3.尽管物体的加速度不是在竖直方向,但只要其加速度在竖直方向上有分量,物体就会处于超重或失重状态.4.物体超重或失重的多少是由物体的质量和竖直加速度共同决定的,其大小等于ma。

★重点归纳★1.物体处于超重状态还是失重状态取决于加速度的方向,与速度的大小和方向没有关系.下表列出了加速度方向与物体所处状态的关系。

加速度超重、失重视重Fa=0不超重、不失重F=mga的方向竖直向上超重F=m(g+a)a的方向竖直向下失重F=m(g-a)a =g ,竖直向下完全失重F =0特别提醒:不论是超重、失重、完全失重,物体的重力都不变,只是“视重”改变. 2.超重和失重现象的判断“三”技巧(1)从受力的角度判断,当物体所受向上的拉力(或支持力)大于重力时, 物体处于超重状态,小于重力时处于失重状态,等于零时处于完全失重状态. (2)从加速度的角度判断,当物体具有向上的加速度时处于超重状态,具有向下的加 速度时处于失重状态,向下的加速度为重力加速度时处于完全失重状态. (3)从速度变化角度判断①物体向上加速或向下减速时,超重; ②物体向下加速或向上减速时,失重.★典型案例★在升降电梯内的地板上放一体重计,电梯静止时,晓敏同学站在体重计上,体重计示数为50 kg,电梯运动过程中,某一段时间内晓敏同学发现体重计示数如图所示,在这段时间内下列说法中正确的是: ( )A.晓敏同学所受的重力变小了B 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第5讲 牛顿定律中的临界问题【例1】如图所示,质量为m 的木块在质量为M 的长木板上向右滑行,木块受到向右的拉力F 的作用,长木板处于静止状态,已知木块与长木板间的动摩擦因数为μ1,长木板与地面间的动摩擦因数为μ2,则( )A .长木板受到地面的摩擦力的大小一定是μ1mgB .长木板受到地面的摩擦力的大小一定是μ2(m +M )gC .当F >μ2(m +M )g 时,长木板便会开始运动D .无论怎样改变F 的大小,长木板都不可能运动解析:木块受到的滑动摩擦力大小为μ1mg ,由牛顿第三定律,长木板受到m 对它的摩擦力大小也是μ1mg ,对长木板使用平衡条件得地面对长木板的静摩擦力为μ2mg ,A 正确.改变F 的大小,木块m 受到的滑动摩擦力不会发生变化,长木板受力不变,D 正确.答案:AD【练习1】有一质量M =4kg 的小车置于光滑水平桌面上,在小车上放一质量m =6kg 的物块,动摩擦因素µ=0.2,现对物块施加F =25N 的水平拉力,如图所示,求小车的加速度?(设车与物块之间的最大静摩擦力等于滑动摩擦力且g 取10m/s 2)解析:对M 、m 分析可知,M 有最大加速度20/3s m M mg a ==μ,M 、m 共同运动的最大加速度为20/3s m a =,此时外力()N a M m F 3000=+=,故当F =25N 时,M 、m 相对静止不动,由整体法分析可知2/5.2s m mM F a =+= 答案:2.5m/s 2【练习2】如图所示,在光滑水平面上有一质量为m 1的足够长的木板,其上叠放一质量为m 2的木块.假定木块和木板之间的最大静摩擦力和滑动摩擦力相等.现给木块施加一随时间t 增大的水平力F =kt (k 是常数),木板和木块加速度的大小分别为a 1和a 2.下列反映a 1和a 2变化的图线中正确的是( )解析:本题考察的是整体法隔离法和摩擦力,由上题的分析思路可表达出两者分别的加速度随时间的表达式。

答案:A【例2】如图所示,光滑的水平面上静置质量为M =8kg 的平板小车,在小车左端加一个由零逐渐增大的水平推力F ,一个大小不计、质量为m =2 kg 的小物块放在小车右端上面,小物块与小车间的动摩擦因数μ=0.2,小车足够长.重力加速度g 取10 m/s 2,设最大静摩擦力等于滑动摩擦力,下列说法中正确的是( )A .当F 增加到4 N 时,m 相对M 开始运动B .当F 增加到20 N 时,m 相对M 开始运动C .当F =10 N 时,m 对M 有向左的2 N 的摩擦力D .当F =10 N 时,m 对M 有向右的4 N 的摩擦力解析:分别对两物体做受力分析可知,m 有最大加速度,可知整体共同运动的最大加速度就为m 的最大加速度,根据整体法可得当F N 20 时,M 、m 相对静止,可得B 正确;当F =10 N 时,由整体法可求得加速度,由此可求得静摩擦力为2N 。

答案:BC【练习3】如图所示,光滑水平面上放置质量分别为m 和2m 的四个木块,其中两个质量为m 的木块间用一不可伸长的轻绳相连,木块间的最大静摩擦力是μmg .现用水平拉力F 拉其中一个质量为2m 的木块,使四个木块以同一加速度运动,则轻绳对m 的最大拉力为( )A .53μmgB .43μmgC .23μmg D .3μmg 解析:经过受力分析,A 、B 之间的静摩擦力给B 、C 、D 组成的系统提供加速度,加速度达到最大值的临界条件为A 、B 间达到最大静摩擦力,即a m1=414=m mg μμg .C 、D 间的静摩擦力给D 提供加速度,同理D 的加速度最大值为a m2=212=m mgμμg >a m1;因此,C 、D 系统的最大加速度为41μg ,而绳子拉力F T 给C 、D 组成的系统提供加速度,最大拉力为F T m =3ma m1=41μmg ,B 选项正确. 答案:B【例3】如图所示,物体A 与斜面B 保持相对静止并一起沿水平面向右做匀加速运动,当加速度a 增大时,下列说法可能正确的是( )A .B 对A 的弹力不变,B 对A 的摩擦力可能减小B .B 对A 的弹力增大,B 对A 的摩擦力大小可能不变C .B 对A 的弹力增大,B 对A 的摩擦力一定增大D .B 对A 的弹力增大,B 对A 的摩擦力可能减小解析:本题考查牛顿第二定律的应用.物体和斜面保持相对静止,沿水平方向加速运动,则合力沿水平方向,竖直方向的合力为零,设斜面的倾角为θ,若开始静摩擦力的方向沿斜面向下,则F N sin θ+F f cos θ=ma ,F N cos θ=F f sin θ+mg .若N 增大,则F f 增大,因此此时,a 增大,F N 、F f 都在增大.同理,若开始时静摩擦力方向沿斜面向上,则F N sin θ-F f cos θ=ma ,F N cos θ+F f sin θ=mg ,若F N 逐渐增大,则Ff 沿斜面向上先逐渐减小到零,再沿斜面向下逐渐增大,此时B 对A 的弹力增大,B 对A 的摩擦力大小可能减小,可能为零,可能不变,可能增大,因此B 、D 项正确.答案:BD【练习4】如图所示,质量为m =1 kg 的物块放在倾角为θ的斜面上,斜面体质量为M =2 kg ,斜面与物块间的动摩擦因数μ=0.2,地面光滑,θ=37°.现对斜面体施一水平推力F ,要使物块m 相对斜面静止,力F应为多大?(设物块与斜面间的最大静摩擦力等于滑动摩擦力,g 取10 m/s 2)解析:(1)设物块处于相对斜面向下滑的临界状态时,推力为F1,此时物块受力如图所示,取加速度a的方向为x轴正方向.对x轴方向:F N sin θ-μF N cos θ=ma1对y轴方向:F N cos θ+μF N sin θ-mg=0对整体:F1=(M+m)a1把已知条件代入,解得a1=4.78 m/s2,F1=14.3 N(2)设物块处于相对斜面有向上滑的临界状态时,推力为F2,此时物块受力如右图所示.对x轴方向:F N sin θ+μF N cos θ=ma2对y轴方向:F N cos θ-μF N sin θ-mg=0对整体:F2=(M+m)a2把已知条件代入,解得a2=11.2 m/s2,F2=33.6 N则力F范围:14.3 N≤F≤33.6 N【例4】如图所示,在光滑的水平面上放着紧靠在一起的A、B两物体,B的质量是A的2倍,B受到向右的恒力F B=2 N,A受到的水平力F A=(9-2t) N(t的单位是s).从t=0开始计时,则()A.A物体在3 s末时刻的加速度是初始时刻的511倍B.t>4 s后,B物体做匀加速直线运动C.t=4.5 s时,A物体的速度为零D.t>4.5 s后,A、B的加速度方向相反解析:对于A 、B 整体根据牛顿第二定律有F A +F B =(m A +m B )a ,开始时合力为11 N,3秒末合力为5 N ,故A 正确.设A 、B 间的作用力为F N ,则对B 进行分析,由牛顿第二定律可得:F N +F B =m B a ,解得F N =m B F A +F B m A +m B-F B =16-4t 3 N .当t =4 s 时,F N =0,A 、B 两物体开始分离,此后B 做匀加速直线运动,故B 正确;而A 做加速度逐渐减小的加速运动,当t =4.5 s 时,A 物体的加速度为零而速度不为零,故C 错误.t >4.5 s 后,A 所受合外力反向,即A 、B 的加速度方向相反,故D 正确.当t <4 s 时,A 、B 的加速度均为a =F A +F B m A +m B.综上所述,选项A 、B 、D 正确. 答案:ABD【练习5】一个弹簧台秤的秤盘质量和弹簧质量都可以不计,盘内放一个物体P 处于静止。

P 的质量为12kg ,弹簧的劲度系数k =800N/m 。

现给P 施加一个竖直向上的力F ,使P 从静止开始向上做匀加速运动。

已知在前0.2s 内F 是变化的,在0.2s 以后F 是恒力,则F 的最小值是多少,最大值是多少?解析:根据题意,F 是变力的时间t =0.2s ,这段时间内的位移就是弹簧最初的压缩量s ,由此可以确定上升的加速度a ,ks mg = 121000.15800mg s m k ⨯=== 由 212s at = 求得加速度 222220.157.5/0.2s a m s t ⨯=== 根据牛顿第二定律,有:F mg kx ma -+=得:()F m g a kx =+-当x s =时,F 最小min ()()127.590F m g a ks m g a mg ma N =+-=+-==⨯=当0x =时,F 最大,max ()0()12(107.5)210F m g a k m g a N =+-⋅=+=⨯+=所以,拉力的最小值为90N ,最大值为210N 。

答案:拉力的最小值为90N ,最大值为210N 。

【例5】如图所示,一质量为0.2kg 的小球系着静止在光滑的倾角为53°的斜面上,斜面静止时,球紧靠在斜面上,绳与斜面平行,当斜面以10m/s 2加速度水平向右作匀加速直线运动时,求线对小球的拉力和斜面对小球的弹力。

(g=10m/s 2)解:设小球刚刚脱离斜面时,斜面向右的加速度为a 0,此时斜面对小球的支持力恰好为零,小球只受重力和细绳的拉力,且细绳仍然与斜面平行,小球受力如图所示,由牛顿第二定律得:mgcotθ=ma 0,解得临界加速度:a 0=gcotθ=7.5m/s 2.加速度a =10 m/s 2>a 0,则小球已离开斜面,斜面的支持力F 1=0,此时小球受力如图所示:水平方向,由牛顿第二定律得:Tcosα=ma ,竖直方向,由平衡条件得:Tsinα=mg ,解得:T=22N=2.83 N ,方向沿着细绳向上,细绳与水平方向夹角α=45°,细绳的拉力方向为与水平方向成45°角向右上方.答:细绳的拉力大小为2.83N ,斜面对小球的弹力为零.【练习6】如图所示,矩形盒内用两根细线固定一个质量为m =1.0kg 的均匀小球,a 线与水平方向成53°角,b 线水平。

两根细线所能承受的最大拉力都是F m =15N 。

当该系统沿竖直方向匀加速上升时,为保证细线不被拉断,加速度可取的最大值是_____m/s 2;当该系统沿水平方向向右匀加速运动时,为保证细线不被拉断,加速度可取的最大值是_____m/s 2。

(取g =10m/s 2)解析:当该系统沿竖直方向匀加速上升时,a b T T ,a 线先达到最大拉力,a 线拉力的竖直分力为sin 53am T ,在竖直方向应用牛顿第二定律 1sin 53am m T mg ma -= 15am T N =解得 212/m a m s =当系统沿水平方向向右匀加速运动时,b 线先达到最大拉力,在水平方向应用牛顿第二定律 2mb ax m T T ma -= 其中 tan 53ax mg T =解得 227.5/m a m s = 答案:22/m s 27.5/m s课后作业1.如图所示,质量为m 1的足够长的木板静止在光滑水平面上,其上放一质量为m 2的木块.t =0时刻起,给木块施加一水平恒力F .分别用a 1、a 2和v 1、v 2表示木板、木块的加速度和速度大小,图中可能符合运动情况的是( )答案:AC解析:根据题意可知,有可能F 很大,也可能很小;有可能两者共同加速,也可能m 2在m 1上滑动,故答案AC2.如图所示,质量为4 kg 的物体A 静止在竖直的轻弹簧上面。

相关文档
最新文档