牛顿定律中的临界问题-含答案

合集下载

第15讲 牛顿运动定律中临界问题(解析版)

第15讲 牛顿运动定律中临界问题(解析版)

第15讲牛顿运动定律中的临界问题11、临界问题物体由某种物理状态转变为另种物理状态时,所要经历的种特殊的转折状态,称为临界状态.这种从种状态变成另种状态的分界点就是临界点,此时的条件就是临界条件。

2、临界问题的标志(1)题目中出现“恰好”“刚好”等关键词句,明显表明此过程即为临界点。

(2)题目中出现“取值范围”“多长时间”“多大距离”等词句,表明题述过程存在着“起止点”,而这些“起止点”一般对应着临界状态。

(3)题目中出现“最大”最小”“至多”“至少”等词句,表明题述的过程存在着极值,这个极值点往往是临界点。

4、处理临界问题的方法(1)极限法如果在题目中出现“最大”、“最小”、“刚好”等关键词时,一般隐含着临界问题。

处理这类问题时,常常把物理问题或过程推向极端,从而得到临界状态及临界条件,以达到快速求解问题的目的。

(2)假设法有些物理过程没有出现明显的临界问题的线索,但在变化过程中可能出现临界状态,也可能不会出现临界状态。

解答此类问题,一般用假设法,即假设出现某种临界状态,分析物体的受力情况及运动状态与题设是否相符,即可得出结论。

(3)数学方法将物理过程转化为数学表达式,然后根据数学中求极值的方法,求出临界条件。

涉及三角函数、二次函数、不等式等数学知识。

5、临界问题解决步骤:(1)依据题中提示语言判定临界问题及分类;(2)确定临界状态下临界条件;(3)按照牛二定律做题步骤解决问题:①明确研究对象②受力分析③正交分解④分析各坐标系运动状态列方程:若为平衡状态列平衡方程;若为非平衡状态列牛顿第二定律。

一、利用极值法求解临界问题[例1]如图所示,质量为m=1kg的物块放在倾角为θ=37°的斜面体上,斜面质量为M=2kg,斜面与物块间的动摩擦因数为μ=0.2,地面光滑,现对斜面体施一水平推力F,要使物体m相对斜面静止,试确定推力F的取值范围。

【答案】推力F的取值范围为14.25N≤F≤33.53N.【解析】(1)设物块处于相对斜面向下滑动的临界状态时的推力为F1,此时物块受力如下图所示,取加速度的方向为x轴正方向:对物块分析,在水平方向有F N sinθ﹣μF N cosθ=ma1,竖直方向有F N cosθ+μF N sinθ﹣mg=0,对整体有F1=(M+m)a1,代入数值得,F1=14.35N.(2)设物块处于相对斜面向上滑动的临界状态时的推力为F2,对物块受力分析,在水平方向有F N sinθ+μF N cosθ=ma2,竖直方向有F N cosθ﹣μF N sinθ﹣mg=0,对整体有F2=(M+m)a2,代入数值得,F2=33.53N综上所述可知推力F的取值范围为:14.25N≤F≤33.53N.答:推力F的取值范围为14.25N≤F≤33.53N.二、利用假设法求解临界问题[例2]一物块在粗糙斜面上,在平行斜面向上的外力F作用下斜面和物块始终处于静止状态,当按图甲所示规律变化时.物体与斜面间的摩擦力大小变化规律可能是图乙中的()A. B. C. D.【答案】D【解析】设t=0时刻F=F0,则F与t的关系式为F=F0-kt,k是图线斜率的大小.A、D若t=0时刻物体受到的静摩擦力方向沿斜面向上,由平衡条件得:摩擦力F f=mgsinα-F=mgsinα-(F0-kt)=kt+(mgsinα-F0),若mgsinα=F0,则有F f=kt,当F=0时,F f=mgsinα,保持不变.则A错误,D正确;B、C若t=0时刻物体受到的静摩擦力方向沿斜面向下,由平衡条件得知,摩擦力F f=F-mgsinα,当F减小时,摩擦力先减小,减小到零后,摩擦力反向增大,故BC错误;故选D.三、利用数学方法求解临界问题[例3]如图所示,一质量m=0.4kg的小物块,以v0=2m/s的初速度,在与斜面成某一夹角的拉力F作用下,沿斜面向上做匀加速运动,经t=2s的时间物块由A点运动到B点,A、B之间的距离L=10m。

牛顿运动定律 典型例题 参考答案

牛顿运动定律 典型例题 参考答案

牛顿运动定律典型例题参考答案一、连接体问题(整体法与隔离法):1.二体连接问题例题1:F=(M+m)g F=(M+m)g F=(M+m)g F=(M+m)g例题2:例题3:2.多体连接问题:例题4:例题5:二、 超失重问题:例题1:BC例题2:A 例题3:C 例题4:A例题5:D三、 等环境问题(力的质量分配原则):例题1.例题2.D四、 临界值问题: 例题1. 解析:(1)ma sin N cos T =α-αmg cos N sin T =α+α当g 31a =时,N=68.4(N ) T=77.3(N ) (2) 若N=0,则有'm a cos T =αm g sin T =α )s /m (17g 3gctg 'a ==α=例题2.五、 瞬时值问题:例题1:解析:分析物体在某一时刻的瞬时加速度,关键是分析瞬时前后的受力情况及运动状态,再由牛顿第二定律求出瞬时加速度。

此类问题应注意两种模型的建立。

先分析剪断细线前两个物体的受力如图2,据平衡条件求出绳或弹簧上的弹力。

可知,F mg 2=,F F mg mg 122=+='。

剪断细线后再分析两个物体的受力示意图,如图2,绳中的弹力F 1立即消失,而弹簧的弹力不变,找出合外力据牛顿第二定律求出瞬时加速度,则图2剪断后m 1的加速度大小为2g ,方向向下,而m 2的加速度为零。

例题2:C例题3,D 例题4: (a=gsinθ ,a=gtanθ ) 例题5、BD 六、 分离问题:例题1:例题2:设物体与平板一起向下运动的距离为x 时,物体受重力mg ,弹簧的弹力F=kx 和平板的支持力N 作用。

据牛顿第二定律有:mg-kx-N=ma 得N=mg-kx-ma ,当N=0时,物体与平板分离,所以此时ka g m x )(-= 因为221at x =,所以kaa g m t )(2-= 例题3:七、 相对滑动问题:例题1:例题2:BC 例题3:ABC例题4:例题5:例题6:例题7:八、 传送带问题:例题1:D例题2:解析: 物体放上传送带以后,开始一段时间,其运动加速度2m/s 10cos sin =+=m mg mg a θμθ。

2024高考物理一轮复习--牛顿第二定律的应用--动力学中的临界和极值问题

2024高考物理一轮复习--牛顿第二定律的应用--动力学中的临界和极值问题

动力学中的临界和极值问题一、动力学中的临界极值问题1.“四种”典型临界条件(1)接触与脱离的临界条件:两物体相接触或脱离,临界条件是弹力F N=0。

(2)相对滑动的临界条件:两物体相接触且处于相对静止时,常存在着静摩擦力,则相对滑动的临界条件是静摩擦力达到最大值。

(3)绳子断裂与松弛的临界条件:绳子所能承受的张力是有限度的,绳子断与不断的临界条件是绳中张力等于它所能承受的最大张力,绳子松弛与拉紧的临界条件是F T=0。

(4)速度达到最值的临界条件:加速度为0。

2. 解题指导(1)直接接触的连接体存在“要分离还没分”的临界状态,其动力学特征:“貌合神离”,即a相同、F N=0.(2)靠静摩擦力连接(带动)的连接体,静摩擦力达到最大静摩擦力时是“要滑还没滑”的临界状态.(3)极限分析法:把题中条件推向极大或极小,找到临界状态,分析临界状态的受力特点,列出方程(4)数学分析法:将物理过程用数学表达式表示,由数学方法(如二次函数、不等式、三角函数等)求极值.3.解题基本思路(1)认真审题,详细分析问题中变化的过程(包括分析整个过程中有几个阶段);(2)寻找过程中变化的物理量;(3)探索物理量的变化规律;(4)确定临界状态,分析临界条件,找出临界关系.4. 解题方法二、针对练习1、(多选)如图所示,长木板放置在水平面上,一小物块置于长木板的中央,长木板和物块的质量均为m ,物块与木板间的动摩擦因数为μ,木板与水平面间的动摩擦因数为4μ,已知最大静摩擦力与滑动摩擦力大小相等,重力加速度为g .现对物块施加一水平向右的拉力,则木板加速度a 大小可能是( )A .0a =B .4ga μ=C .3g a μ=D .23ga μ=2、(多选)如图所示,A 、B 两物块的质量分别为2m 和m ,静止叠放在水平地面上.A 、B 间的动摩擦因数为μ,B 与地面间的动摩擦因数为12μ.最大静摩擦力等于滑动摩擦力,重力加速度为g .现对A 施加一水平拉力F ,则( ) A .当F <2μmg 时,A 、B 都相对地面静止 B .当F =52μmg 时,A 的加速度为13μgC .当F >3μmg 时,A 相对B 滑动D .无论F 为何值,B 的加速度不会超过12μg3、如图所示,木块A 、B 静止叠放在光滑水平面上,A 的质量为m ,B 的质量为2m 。

临界问题

临界问题

临界问题在某些物理情境中,物体运动状态变化的过程中,由于条件的变化,会出现两种状态的衔接,两种现象的分界,同时使某个物理量在特定状态时,具有最大值或最小值。

这类问题称为临界问题。

在解决临界问题时,进行正确的受力分析和运动分析,找出临界状态是解题的关键。

1.如图所示,在倾角为θ的粗糙斜面上,有一个质量为m 的物体被水平力F推着静止于斜面上,已知物体与斜面间的动摩擦因数为μ,且μ<tan θ,若物体恰好不滑动,则推力F 为多少?(最大静摩擦力等于滑动摩擦力) 2如图所示,m A =1kg ,m B =2kg ,A 、B 间静摩擦力的最大值是5N ,水平面光滑。

用水平力F 拉B ,当拉力大小分别是F =10N 和F =20N 时,A 、B 的加速度各多大?解析:先确定临界值,即刚好使A 、B 发生相对滑动的F 值。

当A 、B 间的静摩擦力达到5N 时,既可以认为它们仍然保持相对静止,有共同的加速度,又可以认为它们间已经发生了相对滑动,A 在滑动摩擦力作用下加速运动。

这时以A 为对象得到a =5m/s 2;再以A 、B 系统为对象得到 F =(m A +m B )a =15N(1)当F =10N<15N 时, A 、B 一定仍相对静止,所以2BA B A 3.3m/s =+==m m F a a (2)当F =20N>15N 时,A 、B 间一定发生了相对滑动,用质点组牛顿第二定律列方程:B B A A a m a m F +=,而a A =5m/s 2,于是可以得到a B =7.5m/s 23.一个质量为0.2 kg 的小球用细线吊在倾角θ=53°的斜面顶端,如图,斜面静止时,球紧靠在斜面上,绳与斜面平行,不计摩擦,当斜面以10 m/s 2的加速度向右做加速运动时,求绳的拉力及斜面对小球的弹力.命题意图:考查对牛顿第二定律的理解应用能力、分析推理能力及临界条件的挖掘能力。

错解分析:对物理过程缺乏清醒认识,无法用极限分析法挖掘题目隐含的临界状态及条件,使问题难以切入.解题方法与技巧:当加速度a 较小时,小球与斜面体一起运动,此时小球受重力、绳拉力和斜面的支持力作用,绳平行于斜面,当加速度a 足够大时,小球将“飞离”斜面,此时小球受重力和绳的拉力作用,绳与水平方向的夹角未知,题目中要求a =10 m/s 2时绳的拉力及斜面的支持力,必须先求出小球离开斜面的临界加速度a 0.(此时,小球所受斜面支持力恰好为零)由mg cot θ=ma 0所以a 0=g cot θ=7.5 m/s 2因为a =10 m/s 2>a 0所以小球离开斜面N =0,小球受力情况如图,则Tc os α=ma , T sin α=mg所以T =22)()(mg ma +=2.83 N ,N =0.4.如图1—1所示,质量为m 的物体放在水平地面上,物体与地面间的动摩擦因数为μ,对物体施加一个与水平方向成θ角的力F ,试求:(1)物体在水平面上运动时力F 的值;(2)物体在水平面上运动所获得的最大加速度。

高2024届-物理-练习-临界问题(答案)

高2024届-物理-练习-临界问题(答案)

牛顿运动定律(3)——临界问题一、分离类临界问题【例1】.如图所示,细线的一端固定于倾角为45˚的光滑斜面A 的顶端P 处,细线的另一端拴一质量为m 的小球。

当斜面至少以加速度a =___g______ 向左运动时,小球对的压力等于零,当斜面以a=2g 的加速度向左运动时,线中拉力T =____5mg ____。

【变式1】如图所示,在光滑水平面上放着紧靠在一起的AB 两物体,B 的质量是A 的2倍,B 受到向右的恒力F B =2N ,A 受到的水平力F A =(9-2t )N ,(t 的单位是s)。

从t =0开始计时,则( ABD )A .A 物体在3s 末时刻的加速度是初始时刻的511倍;B .t >4s 后,B 物体做匀加速直线运动;C .t =4.5s 时,A 物体的速度为零;D .t >4.5s 后,AB 的加速度方向相反。

【例2】.一根劲度系数为k ,质量不计的轻弹簧,上端固定,下端系一质量为m 的物体,有一水平板将物体托住,并使弹簧处于自然长度,如图所示。

现让木板由静止开始以加速度a (a <g ) 匀加速向下移动,求经过多长时间木板开始与物体分离。

答案:t =2m (g —a )ka【变式2】. 一个弹簧测力计放在水平地面上,Q 为与轻弹簧上端连在一起的秤盘,P 为一重物,已知P 的质量M =10.5 kg ,Q 的质量m =1.5 kg ,弹簧的质量不计,劲度系数k =800 N/m ,系统处于静止.如图所示,现给P 施加一个方向竖直向上的力F ,使它从静止开始向上做匀加速运动,已知在前0.2 s 内,F 为变力,0.2 s 以后,F 为恒力.求力F 的最大值与最小值.(取g =10 m/s 2)解析:设开始时弹簧压缩量为x 1,t =0.2 s 时弹簧的压缩量为x 2,物体P 的加速度为a ,则有kx 1=(M +m )g ①kx 2-mg =ma ②x 1-x 2=12at 2 ③ 由①式得x 1=(M +m )g k=0.15 m , ④ 由②③④式得a =6 m/s 2F 小=(M +m )a =72 N ,F 大=M (g +a )=168 N.二、相对滑动类临界问题【例3】.如图所示,在光滑水平面上有一辆小车A,其质量为m A=2.0 kg,小车上放一个物体B,其质量为m B=1.0 kg.如图甲所示,给B一个水平推力F,当F增大到稍大于3.0 N时,A、B开始相对滑动.如果撤去F,对A施加一水平推力F′,如图乙所示.要使A、B不相对滑动,则F′的最大值F max为(C)A.2.0 N B.3.0 N C.6.0 N D.9.0 N解析:选C.根据题图甲所示,设A,B间的静摩擦力达到最大值F fmax时,系统的加速度为a.根据牛顿第二定律,对A、B整体有F=(m A+m B)a,对A有F fmax=m A a,代入数据解得F fmax=2.0 N.根据题图乙所示情况,设A、B刚开始滑动时系统的加速度为a′,根据牛顿第二定律得:以B为研究对象有F fmax=m B a′以A、B整体为研究对象,有F max=(m A+m B)a′代入数据解得F max=6.0 N.故C正确.【变式3】. (多选)如图甲所示,物块A与木板B叠放在粗糙水平面上,其中A的质量为m,B的质量为2m,且B足够长,A与B、B与地面间的动摩擦因数均为μ。

高中物理-动力学中的临界和极值问题

高中物理-动力学中的临界和极值问题

高中物理-动力学中的临界和极值问题在应用牛顿运动定律解决动力学问题时,会出现一些临界或极值条件的标志: 1.若题目中出现“恰好”“刚好”等字眼,明显表示过程中存在临界点.2.若题目中有“取值范围”“多长时间”“多大距离”等词语,表明过程中存在着“起止点”,而这些“起止点”往往就对应临界状态.3.若题目中有“最大”“最小”“至多”“至少”等字眼,表明过程中存在着极值,而极值点往往是临界点.4.若题目要求“最终加速度”“稳定加速度”等即是求收尾加速度或收尾速度. 一、接触与分离的临界条件物体分离的临界条件是相互作用力由原来的不为零变为零.因此解答此类问题,应该对原状态下研究对象的受力和运动状态进行分析,由牛顿第二定律或平衡条件列方程,令其中相互作用的弹力为零解得临界状态的加速度,以临界加速度为依据分析各种状态下物体的受力情况及运动状态的变化.质量为m 、半径为R 的小球用长度也为R 的轻质细线悬挂在小车车厢水平顶部的A 点,现观察到小球与车顶有接触,重力加速度为g ,则下列判断正确的是( )A .小车正向右做减速运动,加速度大小可能为3gB .小车正向左做减速运动,加速度大小可能为33gC .若小车向右的加速度大小为23g ,则车厢顶部对小球的弹力为mgD .若细线张力减小,则小球一定离开车厢顶部 [解析] 如图所示,小球恰好与车顶接触的临界状态是车顶对小球的弹力恰为零,故临界加速度a 0=g tan θ,由线长等于小球半径可得,θ=60°,a 0=3g .小球与车顶接触时,小车具有向右的加速度,加速度大小a ≥3g ,A 、B 项错;当小车向右的加速度大小a =23g 时,ma F N +mg=tan θ,解得F N =mg ,C 项正确;细线张力F T =ma sin θ,小球与车顶接触的临界(最小)值F Tmin =2mg ,当张力的初始值F T >2mg 时,张力减小时只要仍大于或等于临界值,小球就不会离开车厢顶部,D 项错误.[答案] C二、绳子断裂与松弛的临界条件绳子所能承受的张力是有限的,绳子断与不断的临界条件是绳中张力等于它所能承受的最大张力,绳子松弛的临界条件是F T =0.如图所示,小车内固定一个倾角为θ=37°的光滑斜面,用一根平行于斜面的细线系住一个质量为m =2 kg 的小球,取g =10 m/s 2,sin 37°=0.6,cos 37°=0.8,则:(1)当小车以a 1=5 m/s 2的加速度向右匀加速运动时,细线上的拉力为多大?(2)当小车以a 2=20 m/s 2的加速度向右匀加速运动时,细线上的拉力为多大?[解析] 本题中存在一个临界状态,即小球刚好脱离斜面的状态,设此时加速度为a 0,对小球受力分析如图甲所示.将细线拉力分解为水平x 方向和竖直y 方向两个分力,则得到F cos θ=ma 0 F sin θ-mg =0a 0=g tan θ=403m/s 2.(1)a 1=5 m/s 2<a 0,这时小球没有脱离斜面,对小球受力分析如图乙所示,由牛顿第二定律得 F cos θ-F N sin θ=ma 1 F sin θ+F N cos θ-mg =0 解得F =20 N ,F N =10 N.(2)a2=20 m/s2>a0,这时小球脱离斜面,设此时细线与水平方向之间的夹角为α,对小球受力分析如图丙所示,由牛顿第二定律得F cos α=ma2F sin α=mg两式平方后相加得F2=(ma2)2+(mg)2解得F=(ma2)2+(mg)2=20 5 N.[答案](1)20 N(2)20 5 N三、相对滑动的临界条件两物体相接触且处于相对静止时,常存在着静摩擦力,则相对滑动的临界条件是:静摩擦力达到最大值,并且还要考虑摩擦力方向的多样性.(多选)如图所示,小车内有一质量为m的物块,一轻质弹簧两端与小车和物块相连,处于压缩状态且在弹性限度内,弹簧的劲度系数为k,形变量为x,物块和小车之间的动摩擦因数为μ,设最大静摩擦力等于滑动摩擦力,运动过程中,物块和小车始终保持相对静止,则下列说法正确的是()A.若μmg小于kx,则小车的加速度方向一定向左B.若μmg小于kx,则小车的加速度最小值为a=kx-μmgm,且小车只能向左加速运动C.若μmg大于kx,则小车的加速度方向可以向左也可以向右D.若μmg大于kx,则小车的加速度最大值为kx+μmgm,最小值为kx-μmgm[解析]若μmg小于kx,而弹簧又处于压缩状态,则物块所受弹簧弹力和静摩擦力的合力水平向左,即小车的加速度一定向左,A对;由牛顿第二定律得kx-F f=ma,当F f=μmg时,加速度方向向左且最小值为a min=kx-μmgm,随着加速度的增加,F f减小到零后又反向增大,当再次出现F f=μmg时,加速度方向向左达最大值a max =kx+μmgm,但小车可向左加速,也可向右减速,B错;若μmg大于kx,则物块所受弹簧弹力和静摩擦力的合力(即加速度)可能水平向左,也可能水平向右,即小车的加速度方向可以向左也可以向右,C对;当物块的合外力水平向右时,加速度的最大值为μmg-kxm,物块的合外力水平向左时,加速度的最大值为μmg+kxm,则小车的加速度最大值为kx+μmgm,最小值为0,D错.[答案]AC四、加速度或速度最大的临界条件当物体在受到变化的外力作用下运动时,其加速度和速度都会不断变化,当所受合外力最大时,具有最大加速度;合外力最小时,具有最小加速度.当出现加速度有最大值或最小值的临界条件时,物体处于临界状态,所对应的速度便会出现最大值或最小值.(多选)(2016·潍坊模拟)如图所示,一个质量为m 的圆环套在一根固定的水平长直杆上,环与杆的动摩擦因数为μ,现给环一个水平向右的恒力F ,使圆环由静止开始运动,同时对环施加一个竖直向上、大小随速度变化的作用力F 1=kv ,其中k 为常数,则圆环运动过程中( )A .最大加速度为FmB .最大加速度为F +μmgmC .最大速度为F +μmgμkD .最大速度为mgk[解析] 当F 1<mg 时,由牛顿第二定律得F -μ(mg -kv )=ma ,当v =mg k 时,圆环的加速度最大,即a max =Fm ,选项A 正确,B 错误;圆环速度逐渐增大,F 1=kv >mg ,由牛顿第二定律得F -μ(kv -mg )=ma ,当a =0时,圆环的速度最大,即v max =F +μmgμk,选项C 正确,D 错误. [答案] AC五、数学推导中的极值问题将物理过程通过数学公式表达出来,根据数学表达式解出临界条件,通常用到三角函数关系.如图所示,一质量m =0.4 kg 的小物块,以v 0=2 m/s 的初速度,在与斜面成某一夹角的拉力F 作用下,沿斜面向上做匀加速运动,经t =2 s 的时间物块由A 点运动到B 点,A 、B 之间的距离L =10 m .已知斜面倾角θ=30°,物块与斜面之间的动摩擦因数μ=33.重力加速度g 取10 m/s 2. (1)求物块加速度的大小及到达B 点时速度的大小;(2)拉力F 与斜面的夹角多大时,拉力F 最小?拉力F 的最小值是多少?[解析] (1)设物块加速度的大小为a ,到达B 点时速度的大小为v ,由运动学公式得: L =v 0t +12at 2①v =v 0+at ②联立①②式,代入数据解得:a =3 m/s 2,v =8 m/s.(2)设物块所受支持力为F N ,所受摩擦力为F f ,拉力与斜面之间的夹角为α,受力分析如图所示,由牛顿第二定律得:F cos α-mg sin θ-F f =ma ③F sin α+F N -mg cos θ=0④ 又F f =μF N ⑤联立③④⑤解得:F =mg (sin θ+μcos θ)+macos α+μsin α⑥由数学知识得:cos α+33sin α=233sin(60°+α)⑦ 由⑥⑦式可知对应的F 最小值与斜面的夹角α=30°⑧ 联立⑥⑧式,代入数据得F 的最小值为: F min =1335N. [答案] (1)3 m/s 2 8 m/s (2)30°1335N 六、滑块一滑板模型中的临界问题在滑块—滑板模型中,若两者一起运动时优先考虑“被动”的“弱势”物体,该物体通常具有最大加速度,该加速度也为系统一起运动的最大加速度,否则两者将发生相对运动.(2016·湖北荆州模拟)物体A 的质量m 1=1 kg ,静止在光滑水平面上的木板B 的质量为m 2=0.5 kg 、长l =1 m ,某时刻A 以v 0=4 m/s 的初速度滑上木板B 的上表面,为使A不至于从B 上滑落,在A 滑上B 的同时,给B 施加一个水平向右的拉力F ,若A 与B 之间的动摩擦因数μ=0.2,试求拉力F 应满足的条件.(忽略物体A 的大小)[解析] 物体A 滑上木板B 以后,做匀减速运动, 加速度a A =μg ①木板B 做加速运动,有F +μm 1g =m 2a B ②物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度v t ,则v 20-v 2t 2a A =v 2t2a B+l ③ 且v 0-v t a A =v ta B④ 由③④式,可得a B =v 202l-a A =6 m/s 2,代入②式得F =m 2a B -μm 1g =0.5×6 N -0.2×1×10 N =1 N ,若F <1 N ,则A 滑到B 的右端时,速度仍大于B 的速度,于是将从B 上滑落,所以F 必须大于等于1 N. 当F 较大时,在A 到达B 的右端之前,就与B 具有相同的速度,之后,A 必须相对B 静止,才能不会从B的左端滑落.即有:F =(m 1+m 2)a , μm 1g =m 1a ,所以F =3 N ,若F 大于3 N ,A 就会相对B 向左端滑下. 综上,力F 应满足的条件是1 N ≤F ≤3 N. [答案] 1 N ≤F ≤3 N1.(2016·西安质检)如图所示,将小砝码置于桌面上的薄纸板上,用水平向右的拉力将纸板迅速抽出,砝码的移动很小,几乎观察不到,这就是大家熟悉的惯性演示实验.若砝码和纸板的质量分别为2m和m,各接触面间的动摩擦因数均为μ.重力加速度为g.要使纸板相对砝码运动,所需拉力的大小至少应大于()A.3μmg B.4μmg C.5μmg D.6μmg解析:选D.纸板相对砝码恰好运动时,对纸板和砝码构成的系统,由牛顿第二定律可得:F-μ(2m+m)g=(2m +m)a,对砝码,由牛顿第二定律可得:2μmg=2ma,联立可得:F=6μmg,选项D正确.2.(多选)(2016·湖北黄冈模拟)如图甲所示,一轻质弹簧的下端固定在水平面上,上端放置一物体(物体与弹簧不连接),初始时物体处于静止状态,现用竖直向上的拉力F作用在物体上,使物体开始向上做匀加速运动,拉力F与物体位移x的关系如图乙所示(g=10 m/s2),下列结论正确的是()A.物体与弹簧分离时,弹簧处于原长状态B.弹簧的劲度系数为750 N/mC.物体的质量为2 kgD.物体的加速度大小为5 m/s2解析:选ACD.物体与弹簧分离时,弹簧的弹力为零,轻弹簧无形变,所以选项A正确;从题图乙中可知ma =10 N,ma=30 N-mg,解得物体的质量为m=2 kg,物体的加速度大小为a=5 m/s2,所以选项C、D正确;弹簧的劲度系数k=mgx0=200.04N/m=500 N/m,所以选项B错误.3.(多选)如图所示,质量均为m的A、B两物块置于光滑水平地面上,A、B接触面光滑,倾角为θ,现分别以水平恒力F作用于A物块上,保持A、B相对静止共同运动,则下列说法中正确的是()A.采用甲方式比采用乙方式的最大加速度大B.两种情况下获取的最大加速度相同C.两种情况下所加的最大推力相同D.采用乙方式可用的最大推力大于甲方式的最大推力解析:选BC.甲方式中,F最大时,A刚要离开地面,A受力如图丙所示,则F N1cos θ=mg①对B:F′N1sin θ=ma1②由牛顿第三定律可知F′N1=F N1③乙方式中,F 最大时,B 刚要离开地面,B 受力如图丁所示,则F N2cos θ=mg ④ F N2sin θ=ma 2⑤由①③④可知F N2=F N1=F N1′⑥由②⑤⑥式可得a 2=a 1,对整体易知F 2=F 1, 故选项B 、C 正确,选项A 、D 错误.4.如图所示,水平桌面光滑,A 、B 物体间的动摩擦因数为μ(可认为最大静摩擦力等于滑动摩擦力),A 物体质量为2m ,B 和C 物体的质量均为m ,滑轮光滑,砝码盘中可以任意加减砝码.在保持A 、B 、C 三个物体相对静止共同向左运动的情况下,B 、C 间绳子所能达到的最大拉力是( )A.12μmg B .μmg C .2μmg D .3μmg 解析:选B.因桌面光滑,当A 、B 、C 三者共同的加速度最大时,F BC =m C a 才能最大.这时,A 、B 间的相互作用力F AB 应是最大静摩擦力2μmg ,对B 、C 整体来讲:F AB =2μmg =(m B +m C )a =2ma ,a =μg ,所以F BC =m C a =μmg ,选项B 正确.5.如图所示,用细线将质量为m 的氢气球拴在车厢地板上的A 点,此时细线与水平方向成θ=37°角,气球与固定在水平车顶上的压力传感器接触,小车静止时,细线恰好伸直但无弹力,压力传感器的示数为气球重力的12.重力加速度为g ,sin37°=0.6,cos 37°=0.8.现要保持细线方向不变而传感器示数为零,下列方法中可行的是( )A .小车向右加速运动,加速度大小为12gB .小车向左加速运动,加速度大小为12gC .小车向右减速运动,加速度大小为23gD .小车向左减速运动,加速度大小为23g解析:选C.小车静止时细线无弹力,气球受到重力mg 、空气浮力f 和车顶压力F N ,由平衡条件得f =mg +F N =32mg ,即浮力与重力的合力为12mg ,方向向上.要使传感器示数为零,则细线有拉力F T ,气球受力如图甲所示,由图乙可得12mg ma =tan 37°,小车加速度大小为a =23g ,方向向左.故小车可以向左做加速运动,也可以向右做减速运动,C 选项正确.6.如图所示,质量为m =1 kg 的物体,放在倾角θ=37°的斜面上,已知物体与斜面间的动摩擦因数μ=0.3,最大静摩擦力等于滑动摩擦力,取g =9.8 m/s 2,sin 37°=0.6,cos 37°=0.8.要使物体与斜面相对静止且一起沿水平方向向左做加速运动,则其加速度多大?解析:当物体恰不向下滑动时,受力分析如图甲所示 F N1sin 37°-F f1cos 37°=ma 1F f1sin 37°+F N1cos 37°=mg F f1=μF N1解得a 1=3.6 m/s 2当物体恰不向上滑动时,受力分析如图乙所示F N2sin 37°+F f2cos 37°=ma2F N2cos 37°=mg+F f2sin 37°F f2=μF N2解得a2=13.3 m/s2因此加速度的取值范围为3.6 m/s2≤a≤13.3 m/s2.答案:3.6 m/s2≤a≤13.3 m/s2。

牛顿第二定律的应用-临界问题(附答案)

牛顿第二定律的应用-临界问题(附答案)

例1.如图所示,一质量为M=5 kg的斜面体放在水平地面上,斜面体与地面的动摩擦因数为μ1=0.5,斜面高度为h=0.45 m,斜面体右侧竖直面与小物块的动摩擦因数为μ2=0.8,小物块的质量为m=1 kg,起初小物块在斜面的竖直面上的最高点。

现在从静止开始在M上作用一水平恒力F,并且同时释放m,取g=10 m/s2,设小物块与斜面体右侧竖直面间最大静摩擦力等于它们之间的滑动摩擦力,小物块可视为质点。

问:(1)要使M、m保持相对静止一起向右做匀加速运动,加速度至少多大?(2)此过程中水平恒力至少为多少?例1解析:(1)以m为研究对象,竖直方向有:mg-F f=0水平方向有:F N=ma又F f=μ2F N得:a=12.5 m/s2。

(2)以小物块和斜面体为整体作为研究对象,由牛顿第二定律得:F-μ1(M+m)g=(M+m)a水平恒力至少为:F=105 N。

答案:(1)12.5 m/s2(2)105 N例2.如图所示,质量为m的光滑小球,用轻绳连接后,挂在三角劈的顶端,绳与斜面平行,劈置于光滑水平面上,求:(1)劈的加速度至少多大时小球对劈无压力?加速度方向如何?(2)劈以加速度a1 = g/3水平向左加速运动时,绳的拉力多大?(3)当劈以加速度a3 = 2g向左运动时,绳的拉力多大?例2解:(1)恰无压力时,对球受力分析,得(2),对球受力分析,得(3),对球受力分析,得(无支持力)练习:1.如图所示,质量为M的木板上放着质量为m的木块,木块与木板间的动摩擦因数为μ1,木板与水平地面间的动摩擦因数为μ2,求加在木板上的力F为多大时,才能将木板从木块下抽出?(取最大静摩擦力与滑动摩擦力相等)1解:只有当二者发生相对滑动时,才有可能将M从m下抽出,此时对应的临界状态是:M与m间的摩擦力必定是最大静摩擦力,且m运动的加速度必定是二者共同运动时的最大加速度隔离受力较简单的物体m,则有:,a m就是系统在此临界状态的加速度设此时作用于M的力为F min,再取M、m整体为研究对象,则有:F min-μ2(M+m)g=(M+m)a m,故F min=(μ1+μ2)(M+m)g当F> F min时,才能将M抽出,故F>(μ1+μ2)(M+m)g2.一条不可伸长的轻绳跨过质量可忽略不计的定滑轮,绳的一端系一质量M=15kg的重物,重物静止于地面上,有一质量m=10kg的猴从绳子另一端沿绳向上爬,如图所示,不计滑轮摩擦,在重物不离开地面条件下,猴子向上爬的最大加速度为(g=10m/s2)()A.25m/s2B.5m/s2C.10m/s2D.15m/s22.分析:当小猴以最大加速度向上爬行时,重物对地压力为零,故小猴对细绳的拉力等于重物的重力,对小猴受力分析,运用牛顿第二定律求解加速度.解答:解:小猴以最大加速度向上爬行时,重物对地压力为零,故小猴对细绳的拉力等于重物的重力,即F=Mg ; 小猴对细绳的拉力等于细绳对小猴的拉力F ′=F ; 对小猴受力分析,受重力和拉力,根据牛顿第二定律,有F ′-mg=ma解得()M m g a m-==5m/s 故选B .3、如图所示,光滑水平面上放置质量分别为m 和2m 的四个木块,其中两个质量为m 的木块间用一不可伸长的轻绳相连,木块间的最大静摩擦力是μmg.现用水平拉力F 拉其中一个质量为2m 的木块,使四个木块以同一加速度运动,则轻绳对m 的最大拉力为( )A .5mg 3μ B .4mg 3μ C .2mg 3μ D .mg 3μ3、答案B 。

牛顿运动定律运用中的临界问题

牛顿运动定律运用中的临界问题

图1—1 牛顿运动定律运用中的临界问题在应用牛顿定律解题时常遇到临界问题,它包括:1. 平衡物体(a=0)的平衡状态即将被打破而还没有被打破的瞬间;2. 动态物体(a ≠0)的状态即将发生突变而还没有变化的瞬间。

临界状态也可归纳为加速度即将发生突变的状态。

加速度发生突变的本质原因是物体的外力发生了突变,物体处于临界状态,必然隐含着某些力(如弹力、摩擦力等)的突变。

抓住这些力突变的条件,是我们解题的关键。

对于此类问题的解法一般有以下三种方法:一.极限法在题目中如果出现“最大”、“最小”、“刚好”等关键词时,一般隐藏着临界问题,处理这类问题时,常常把物理问题或过程推向极端,从而将临界状态及临界条件显露出来,达到尽快求解的目的。

例1.如图1—1所示,质量为m 的物体放在水平地面上,物体与地面间的动摩擦因数为μ,对物体施加一个与水平方向成θ角的力F ,试求: (1)物体在水平面上运动时力F 的值; (2)物体在水平面上运动所获得的最大加速度。

例2.(和静摩擦力相联系的临界情况)如图,质量为m=1Kg 的物块放在倾角为θ的斜面上,斜面体质量为M=2Kg ,斜面与物块间的动摩擦因数μ=0.2,地面光滑,θ=370,现对斜面体施一水平推力F ,要使物体m 相对斜面静止,力F 应为多大?(设物体与斜面间的最大静摩擦力等于滑动摩擦力,g 取10m/s 2)例3.(和弹力相联系的临界条件)如图2—1所示,质量均为M 的两个木块A 、B 在水平力F 的作用下,一起沿光滑的水平面运动,A 与B 的接触面光滑,且与水平面的夹角为60° ,求使A 与B 一起运动时的水平力F 的范围。

图2—1例4 如图所示,光滑小球恰好放在木块的圆弧槽中,它左边的接触点为A ,槽的半径为R ,且OA 与水平线成α角,通过实验知道,当木块的加速度过大时,小球可以从槽中滚出来,圆球的质量为m ,木块的质量为M ,各种摩擦及绳和滑轮的质量不计,则木块向右的加速度最小为多大时,小球恰好能滚出圆弧槽。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

牛顿定律中的临界问题(一)有关弹力的临界问题——明确弹力变化的特点1. 如图所示,在斜面体上用平行于斜面的轻绳挂一小球,小球质量为m ,斜面体倾角为θ,置于光滑水平面上 (g 取10m/s 2),求:(1)当斜面体向右匀速直线运动时,轻绳拉力为多大;(2)当斜面体向左加速运动时,使小球对斜面体的压力为零时,斜面体加速度为多大? (3)为使小球不相对斜面滑动,斜面体水平向右运动的加速度应不大于______.2.如图所示,车厢内光滑的墙壁上,用线拴住一个重球.车静止时,线的拉力为T ,墙对球的支持力为N .车向右作加速运动时,线的拉力为T ′,墙对球的支持力为N ′,则这四个力的关系应为:T ′ T ;N ′ N .(填>、<或=)若墙对球的支持力为0,则物体的运动状态可能是 或3.一斜面体固定在水平放置的平板车上,斜面倾角为θ,质量为m 的小球处于竖直挡板和斜面之间,当小车以加速度a 向右加速度运动时,小球对斜面的压力和对竖直挡板的压力各是多少?(如下图所示)4.如图所示,光滑的圆球恰好放存木块的圆弧槽内,它们的左边接触点为A ,槽半径为R ,且OA 与水平面成α角.球的质量为m ,木块的质量为M ,M 所处的平面是水平的,各种摩擦及绳、滑轮的质量都不计.则释放悬挂物P 后,要使球和木块保持相对静止,P 物的质量的最大值是多少?(二)有关斜面上摩擦力的临界问题——物体在斜面上滑动的条件5.如图所示,物体A 放存固定的斜面B 上,在A 上施加一个竖直向下的恒力F ,下列说法中正确的有( )(A )若A 原来是静止的,则施加力F 后,A 仍保持静止(B )若A 原来是静止的,则施加力F 后,A 将加速下滑(C )若A 原来是加速下滑的,则施加力F 后,A 的加速度不变(D )若A 原来是加速下滑的,则施加力F 后,A 的加速度将增大6.(09·北京·18)如图所示,将质量为m 的滑块放在倾角为θ的固定斜面上。

滑块与斜面之间的动摩擦因数为μ。

若滑块与斜面之间的最大静摩擦力合滑动摩擦力大小相等,重力加速度为g ,则( C )A .将滑块由静止释放,如果μ>tan θ,滑块将下滑B .给滑块沿斜面向下的初速度,如果μ<tan θ,滑块将减速下滑C .用平行于斜面向上的力拉滑块向上匀速滑动,如果μ=tan θ,拉力大小应是2mgsin θD .用平行于斜面向下的力拉滑块向下匀速滑动,如果μ=tan θ,拉力大小应是mgsin θ7.(08·全国Ⅱ·16)如右图,一固定斜面上两个质量相同的小物块A 和B 紧挨着匀速下滑,A 与B 的接触面光滑.已知A 与斜面之间的动摩擦因数是B 与斜面之间动摩擦因数的2倍,斜面倾角为α.B 与斜面之间的动摩擦因数是( )A.αtan 32B.αcot 32C.αtanD.αcot(三)有关水平面上摩擦力的临界问题——注意产生加速度的原因8.长车上载有木箱,木箱与长车接触面间的静摩擦因数为0.25.如长车以v=36km /h 的速度行驶,长车至少在多大一段距离内刹车,才能使木箱与长车间无滑动(g 取10m /s 2)?9.(07江苏6)如图所示,光滑水平面上放置质量分别为m 和2m 的四个木块,其中两个质量为m 的木块间用可伸长的轻绳相连,木块间的最大静摩擦力是μmg.现用水平拉力F 拉其中一个质量为2m 的木块,使四个木块以同一加速度运动,则轻绳对m 的最大拉力为 ( ) A.53mg μ B. 43mg μ C. 23mg μ D. 3μmg 10.如图所示,质量为M 的木板上放着一质量为m 的木块,木块与木板间的动摩擦因数为μ1,木板与水平地面间的动摩擦因数为μ2,加在小板上的力F 为多大,才能将木板从木块下抽出?11.如图所示,一条轻绳两端各系着质量为m 1和m 2的两个物体,通过定滑轮悬挂在车厢顶上,m 1>m 2,绳与滑轮的摩擦忽略不计.若车以加速度a 向右运动,m 1仍然与车厢地板相对静止,试问:(1)此时绳上的张力T.(2)m 1与地板之间的摩擦因数μ至少要多大?12.质量分别为m 1和m 2的木块重叠后放存光滑的水平面上,如图所示.m 1和m 2间的动摩擦因数为μ.现给m 2施加随时间t 增大的力F=kt ,式中k 是常数,试求m 1、m 2的加速度a 1、a 2与时间的关系,并绘出此关系的曲线图.13如图8-5所示,长方形盒子长为L ,放在水平地面上,盒内小物体A 与盒底之间的动摩擦因数为μ,初始二者均静止,且A 靠在盒子的右壁上.当盒子突然以水平加速度a 起动时,(1)此时加速度多大,物体A 才能相对于盒子滑动?(2)若物体A 已相对于盒子滑动,且盒子的加速度a 为定值,则需要多长时间物体A 与盒子左壁相撞?(四)经典试题赏析14.如图,质量为M 的长木板B 静止位于水平面上,另有一质量为m 的木块A 由木板左端以V 0初速度开始向右滑动.已知A 与B 间的动摩擦因素为μ1,B 与水平面间的动摩擦因数为μ2,木块A 的大小可不计.试求:(1)若木板B 足够长,木块A 与木板到相对静止时两者的共同速度多大?(2)木块A 开始滑动经多长时间可与木板B 有共同速度?(3)为使A 与B 达到共同速度,木板B 的长度至少为多大?(4)为使B 能在水平面滑行,则1μ和2μ之间应满足什么条件?(5)为使物体A 与B 达到共同速度后,能以相同的加速度减速,则1μ和2μ之间应满足什么条件?15.(09·山东·24)如图所示,某货场而将质量为m1=100 kg 的货物(可视为质点)从高处运送至地面,为避免货物与地面发生撞击,现利用固定于地面的光滑四分之一圆轨道,使货物中轨道顶端无初速滑下,轨道半径R=1.8 m 。

地面上紧靠轨道次排放两声完全相同的木板A 、B ,长度均为l=2m ,质量均为m 2=100 kg ,木板上表面与轨道末端相切。

货物与木板间的动摩擦因数为μ1,木板与地面间的动摩擦因数μ=0.2。

(最大静摩擦力与滑动摩擦力大小相等,取g=10 m/s 2)(1)求货物到达圆轨道末端时对轨道的压力。

(2)若货物滑上木板4时,木板不动,而滑上木板B 时,木板B 开始滑动,求μ1应满足的条件。

(3)若μ1=0。

5,求货物滑到木板A 末端时的速度和在木板A 上运动的时间。

1.θsin mg ;θgctg. 2. “=”;“>” 向左的加速运动 向右的减速运动3解析:以小球为研究对象,小球匀加速运动时受到重力G 、斜面对小球的支持力1F 和竖直挡板对小球的支持力2F 的作用.如下图所示,将1F 正交分解,据牛顿第二定律列方程:ma F F =-θsin 12 …… ① mg F =θcos 1 …… ② 由①、②解得:θcos 1mg F =θtan 2mg ma F += 根据牛顿第三定律,小球对斜面的压力θcos 11mg F F ==',对竖直挡板的压力大小θtan 22mg ma F F +=='.4答案:α≤45°时,不论P 多大,小球均不会翻出.α>45°时,ααcot 1cot )m M (m P -+= 5答案:AD (提示:注意对物体A 正确的受力分析,然后根据牛顿第二定律求解)6.解析:对处于斜面上的物块受力分析,要使物块沿斜面下滑则mgsin θ>μmgcos θ,故μ<tan θ,故AB 错误;若要使物块在平行于斜面向上的拉力F 的作用下沿斜面匀速上滑,由平衡条件有:F-mgsin θ-μmgcos θ=0故F= mgsin θ+μmgcos θ,若μ=tan θ,则mgsin θ=μmgcos θ, 即F=2mgsin θ故C 项正确;若要使物块在平行于斜面向下的拉力F 作用下沿斜面向下匀速滑动,由平衡条件有:F+mgsin θ-μmgcos θ=0 则 F=μmgcos θ- mgsin θ 若μ=tan θ,则mgsin θ=μmgcos θ,即F=0,故D 项错误。

7答案A 解析:对于AB 做匀速直线运动,根据共点力的平衡条件有:2mgsin α-3μmgcos α=0 所以B 与斜面间的动摩擦因数为:μ=32tan α. 8答案:20m 9答案B 解析 以四个木块为研究对象,由牛顿第二定律得:F=6ma,绳的拉力最大时,m 与2m 间的摩擦力刚好为最大静摩擦力μmg,以2m 为研究对象,则:F-μmg=2ma,对m 有:μmg- T =ma,联立以上三式得:T=43μmg.10答案:F>(μ1+μ2)(M+m)g 11答案:(1)222a g m T +=(2)22211a g m g m am +-≥μ12答案:当t ≤t 0时,)m m (kt a a 2121+==;当t>t 0时,g )m kt (a ,m g m a 22121μμ-==, 13答案:g a μ>;)(2g a L T μ-= 14.))((])[(310221μμμμμ-+--m M V M m ;g m M MV ))((210μμ-+;g m M MV ))((22120μμ-+; 21μμmm M +> 1μ>2μ 15.解析:(1)设货物滑到圆轨道末端是的速度为0v ,对货物的下滑过程中根据机械能守恒定律得,21012mgR m v =①设货物在轨道末端所受支持力的大小为N F , 根据牛顿第二定律得,2011N v F m g m R -=② 联立以上两式代入数据得3000N F N = ③根据牛顿第三定律,货物到达圆轨道末端时对轨道的压力大小为3000N ,方向竖直向下。

(2)若滑上木板A 时,木板不动,由受力分析得11212(2)m g m m g μμ≤+ ④若滑上木板B 时,木板B 开始滑动,由受力分析得11212()m g m m g μμ>+ ⑤联立④⑤式代入数据得10.6μ0.4<≤ ⑥。

(3)10.5μ=,由⑥式可知,货物在木板A 上滑动时,木板不动。

设货物在木板A 上做减速运动时的加速度大小为1a ,由牛顿第二定律得1111m g m a μ≤ ⑦设货物滑到木板A 末端是的速度为1v ,由运动学公式得221012v v a l -=- ⑧联立①⑦⑧式代入数据得14/v m s = ⑨设在木板A 上运动的时间为t ,由运动学公式得101v v a t =- ⑩联立①⑦⑨⑩式代入数据得0.4t s =。

考点:机械能守恒定律、牛顿第二定律、运动学方程、受力分析。

相关文档
最新文档