SPSS实验6-回归分析
实训6教学演示:直线相关与回归分析的SPSS软件实现方法

【实训结果】
【结果解释】
实训表29相关分析结果显示,身高与前臂 长两个变量的相关系数为0.795。经检验, P=0.002(P<0.05),有统计学意义,可认为 身高与前臂长之间存在线性相关关系,且为 正相关。
项目二:回归分析
【实训目的】
运用SPSS“分析”菜单中的“回归”选项, 建立回归方程,并检验总体回归系数是否 为0,正确解释SPSS的输出结果。
【实训结果】
【结果解释】
✓ 实训表30为模型摘要表,显示了模型的拟合优度情况, 相关系数为0.795,决定系数为0.633,校正决定系数为 0.596。
✓ 实训表31为回归方程的方差分析表,显示了变异分解情 况,F=17.216,P<0.01,建立的模型具有统计学意义。
✓ 实训表32为回归系数表,给出了回归系数的估计及检验, 回归方程的常数项为10.700,身高的回归系数为0.200。 经回归系数t检验,t=4.149,P<0.01,说明身高与前臂 长之间存在线性回归关系,回归方程:^Y=10.7+0.2X。
项目一:直线相关分析
【实训目的】
运用SPSS“分析”菜单中“相关”选项, 计算相关系数,并检验两变量总体相关系 数是否为0,正确解释SPSS的输出结果。
【实训内容】
✓ 见第十一章例11-1,某医师测量12名20岁健康男大学生 的身高与前臂长,资料见表11-1。试求身高与前臂长的 相关系数。
表11-1 12名20岁健康男大学生身高与前臂长资料
实训6 直线相关与回归分析的SPSS软件实现方166
155
188
190
171
前臂 长 43 45 47 47 44 42 46 44 41 49 50 47 /cm
SPSS回归分析

SPSS回归分析SPSS(统计包统计软件,Statistical Package for the Social Sciences)是一种强大的统计分析软件,广泛应用于各个领域的数据分析。
在SPSS中,回归分析是最常用的方法之一,用于研究和预测变量之间的关系。
接下来,我将详细介绍SPSS回归分析的步骤和意义。
一、回归分析的定义和意义回归分析是一种对于因变量和自变量之间关系的统计方法,通过建立一个回归方程,可以对未来的数据进行预测和预估。
在实际应用中,回归分析广泛应用于经济学、社会科学、医学、市场营销等领域,帮助研究人员发现变量之间的关联、预测和解释未来的趋势。
二、SPSS回归分析的步骤1. 导入数据:首先,需要将需要进行回归分析的数据导入SPSS软件中。
数据可以以Excel、CSV等格式准备好,然后使用SPSS的数据导入功能将数据导入软件。
2. 变量选择:选择需要作为自变量和因变量的变量。
自变量是被用来预测或解释因变量的变量,而因变量是我们希望研究或预测的变量。
可以通过点击"Variable View"选项卡来定义变量的属性。
3. 回归分析:选择菜单栏中的"Analyze" -> "Regression" -> "Linear"。
然后将因变量和自变量添加到正确的框中。
4.回归模型选择:选择回归方法和模型。
SPSS提供了多种回归方法,通常使用最小二乘法进行回归分析。
然后,选择要放入回归模型的自变量。
可以进行逐步回归或者全模型回归。
6.残差分析:通过检查残差(因变量和回归方程预测值之间的差异)来评估回归模型的拟合程度。
可以使用SPSS的统计模块来生成残差,并进行残差分析。
7.结果解释:最后,对回归结果进行解释,并提出对于研究问题的结论。
要注意的是,回归分析只能描述变量之间的关系,不能说明因果关系。
因此,在解释回归结果时要慎重。
spss分析实验报告

SPSS分析实验报告引言SPSS(统计包括社会科学)是一种常用的统计分析软件,广泛应用于社会科学领域的数据分析。
本文将以“step by step thinking”为思维导向,详细介绍如何使用SPSS进行实验数据的分析和结果解读。
步骤一:数据导入首先,我们需要将实验数据导入SPSS软件中。
打开SPSS软件,点击“文件”菜单,并选择“导入数据”。
选择数据文件所在位置,并按照指示完成数据导入过程。
确认数据导入完成后,我们可以开始进行下一步分析。
步骤二:数据清洗在进行实验数据分析之前,我们需要对数据进行清洗,以确保数据的准确性和可靠性。
数据清洗的步骤包括删除重复数据、处理缺失值和异常值等。
通过点击SPSS软件中的“数据”菜单,我们可以找到相应的数据清洗工具,并按照指示进行操作。
步骤三:描述性统计描述性统计是对数据进行总体特征描述的过程。
在SPSS软件中,我们可以使用“统计”菜单中的“描述统计”工具进行描述性统计分析。
该工具可以计算数据的均值、标准差、中位数等统计量,为后续的分析提供参考。
步骤四:检验假设在进行实验数据分析时,我们通常需要检验某些假设是否成立。
SPSS软件提供了多种假设检验工具,如t检验、方差分析等。
通过点击“分析”菜单,并选择相应的假设检验工具,我们可以输入所需的参数,并进行假设检验。
根据检验结果,我们可以判断实验数据是否支持或拒绝了我们的假设。
步骤五:相关性分析相关性分析用于研究两个或多个变量之间的关系。
SPSS软件中的“相关”工具可以计算出变量之间的相关系数,并绘制相应的相关图表。
通过相关性分析,我们可以了解变量之间的线性关系,并得出相关系数的显著性程度。
步骤六:回归分析回归分析是一种用于预测和解释变量之间关系的统计方法。
在SPSS软件中,我们可以使用“回归”工具进行回归分析。
通过输入自变量和因变量,并进行回归分析,我们可以得到回归方程和相关统计指标,进而进行预测和解释。
结果解读根据以上分析步骤,我们可以得到一系列实验数据的统计分析结果。
如何使用统计软件SPSS进行回归分析

如何使用统计软件SPSS进行回归分析如何使用统计软件SPSS进行回归分析引言:回归分析是一种广泛应用于统计学和数据分析领域的方法,用于研究变量之间的关系和预测未来的趋势。
SPSS作为一款功能强大的统计软件,在进行回归分析方面提供了很多便捷的工具和功能。
本文将介绍如何使用SPSS进行回归分析,包括数据准备、模型建立和结果解释等方面的内容。
一、数据准备在进行回归分析前,首先需要准备好需要分析的数据。
将数据保存为SPSS支持的格式(.sav),然后打开SPSS软件。
1. 导入数据:在SPSS软件中选择“文件”-“导入”-“数据”命令,找到数据文件并选择打开。
此时数据文件将被导入到SPSS的数据编辑器中。
2. 数据清洗:在进行回归分析之前,需要对数据进行清洗,包括处理缺失值、异常值和离群值等。
可以使用SPSS中的“转换”-“计算变量”功能来对数据进行处理。
3. 变量选择:根据回归分析的目的,选择合适的自变量和因变量。
可以使用SPSS的“变量视图”或“数据视图”来查看和选择变量。
二、模型建立在进行回归分析时,需要建立合适的模型来描述变量之间的关系。
1. 确定回归模型类型:根据研究目的和数据类型,选择适合的回归模型,如线性回归、多项式回归、对数回归等。
2. 自变量的选择:根据自变量与因变量的相关性和理论基础,选择合适的自变量。
可以使用SPSS的“逐步回归”功能来进行自动选择变量。
3. 建立回归模型:在SPSS软件中选择“回归”-“线性”命令,然后将因变量和自变量添加到相应的框中。
点击“确定”即可建立回归模型。
三、结果解释在进行回归分析后,需要对结果进行解释和验证。
1. 检验模型拟合度:可以使用SPSS的“模型拟合度”命令来检验模型的拟合度,包括R方值、调整R方值和显著性水平等指标。
2. 检验回归系数:回归系数表示自变量对因变量的影响程度。
通过检验回归系数的显著性,可以判断自变量是否对因变量有统计上显著的影响。
SPSS多元线性回归分析实例操作步骤

SPSS多元线性回归分析实例操作步骤多元线性回归是一种常用的统计分析方法,用于探究多个自变量对因变量的影响程度。
SPSS(Statistical Package for the Social Sciences)是一款常用的统计软件,可以进行多元线性回归分析,并提供了简便易用的操作界面。
本文将介绍SPSS中进行多元线性回归分析的实例操作步骤,帮助您快速掌握该分析方法的使用。
步骤一:准备数据在进行多元线性回归分析之前,首先需要准备好相关的数据。
数据应包含一个或多个自变量和一个因变量,以便进行回归分析。
数据可以来自实验、调查或其他来源,但应确保数据的质量和可靠性。
步骤二:导入数据在SPSS软件中,打开或创建一个新的数据集,然后将准备好的数据导入到数据集中。
可以通过导入Excel、CSV等格式的文件或手动输入数据的方式进行数据导入。
确保数据被正确地导入到SPSS中,并正确地显示在数据集的各个变量列中。
步骤三:进行多元线性回归分析在SPSS软件中,通过依次点击"分析"-"回归"-"线性",打开线性回归分析对话框。
在对话框中,将因变量和自变量移入相应的输入框中。
可以使用鼠标拖拽或双击变量名称来快速进行变量的移动。
步骤四:设置分析选项在线性回归分析对话框中,可以设置一些分析选项,以满足具体的分析需求。
例如,可以选择是否计算标准化回归权重、残差和预测值,并选择是否进行方差分析和共线性统计检验等。
根据需要,适当调整这些选项。
步骤五:获取多元线性回归分析结果点击对话框中的"确定"按钮后,SPSS将自动进行多元线性回归分析,并生成相应的分析结果。
结果包括回归系数、显著性检验、残差统计和模型拟合度等信息,这些信息可以帮助我们理解自变量对因变量的贡献情况和模型的拟合程度。
步骤六:解读多元线性回归分析结果在获取多元线性回归分析结果之后,需要对结果进行解读,以得出准确的结论。
SPSS-回归分析

SPSS-回归分析回归分析(⼀元线性回归分析、多元线性回归分析、⾮线性回归分析、曲线估计、时间序列的曲线估计、含虚拟⾃变量的回归分析以及逻辑回归分析)回归分析中,⼀般⾸先绘制⾃变量和因变量间的散点图,然后通过数据在散点图中的分布特点选择所要进⾏回归分析的类型,是使⽤线性回归分析还是某种⾮线性的回归分析。
回归分析与相关分析对⽐:在回归分析中,变量y称为因变量,处于被解释的特殊地位;;⽽在相关分析中,变量y与变量x处于平等的地位。
在回归分析中,因变量y是随机变量,⾃变量x可以是随机变量,也可以是⾮随机的确定变量;⽽在相关分析中,变量x和变量y都是随机变量。
相关分析是测定变量之间的关系密切程度,所使⽤的⼯具是相关系数;⽽回归分析则是侧重于考察变量之间的数量变化规律。
统计检验概念:为了确定从样本(sample)统计结果推论⾄总体时所犯错的概率。
F值和t值就是这些统计检定值,与它们相对应的概率分布,就是F分布和t分布。
统计显著性(sig)就是出现⽬前样本这结果的机率。
标准差表⽰数据的离散程度,标准误表⽰抽样误差的⼤⼩。
统计检验的分类:拟合优度检验:检验样本数据聚集在样本回归直线周围的密集程度,从⽽判断回归⽅程对样本数据的代表程度。
回归⽅程的拟合优度检验⼀般⽤判定系数R2实现。
回归⽅程的显著性检验(F检验):是对因变量与所有⾃变量之间的线性关系是否显著的⼀种假设检验。
回归⽅程的显著性检验⼀般采⽤F 检验。
回归系数的显著性检验(t检验): 根据样本估计的结果对总体回归系数的有关假设进⾏检验。
1.⼀元线性回归分析定义:在排除其他影响因素或假定其他影响因素确定的条件下,分析某⼀个因素(⾃变量)是如何影响另⼀事物(因变量)的过程。
SPSS操作2.多元线性回归分析定义:研究在线性相关条件下,两个或两个以上⾃变量对⼀个因变量的数量变化关系。
表现这⼀数量关系的数学公式,称为多元线性回归模型。
SPSS操作3.⾮线性回归分析定义:研究在⾮线性相关条件下,⾃变量对因变量的数量变化关系⾮线性回归问题⼤多数可以化为线性回归问题来求解,也就是通过对⾮线性回归模型进⾏适当的变量变换,使其化为线性模型来求解。
研一spss复习资料 06_回归分析

2021/8/17
17
(2)回归方程的显著性检验(F检验)
回归方程的显著性检验是对因变量与所有 自变量之间的线性关系是否显著的一种假 设检验。
回归方程的显著性检验一般采用F检验,利 用方差分析的方法进行。
条件指标: 0<k<10 无多重共线性; 10<=k<=100 较强; k>=100 严重
2021/8/17
37
回归分析中的自变量筛选
多元回归分析引入多个自变量. 如果引入自变 量个数较少,则不能较好说明因变量的变化;
并非自变量引入越多越好.原因:
有些自变量可能对因变量的解释没有贡献 自变量间可能存在较强的线性关系,即:多重共线性.
绘制指定序列的散点图,检测残差的随机性、 异方差性
ZPRED:标准化预测值 ZRESID:标准化残差 SRESID:学生化残差
2021/8/17
32
线性回归方程的残差分析
残差序列的正态性检验
绘制标准化残差的直方图或累计概率图
残差序列的随机性检验
绘制残差和预测值的散点图,应随机分布在经 过零的一条直线上下
因而不能全部引入回归方程.
2021/8/17
38
自变量向前筛选法(forward)
即自变量不断进入回归方程的过程. 首先,选择与因变量具有最高相关系数的自变量进入方
程,并进行各种检验; 其次,在剩余的自变量中寻找偏相关系数最高的变量进
入回归方程,并进行检验; 默认:回归系数检验的概率值小于(0.05)才可以进入方
SSE
A dj.R 2 1 n p1 SST n 1
SPSS回归分析实验报告

中国计量学院现代科技学院实验报告实验课程:应用统计学实验名称:回归分析班级:学号:姓名:实验日期: 2012.05.23 实验成绩:指导教师签名:一.实验目的一元线性回归简单地说是涉及一个自变量的回归分析,主要功能是处理两个变量之间的线性关系,建立线性数学模型并进行评价预测。
本实验要求掌握一元线性回归的求解和多元线性回归理论与方法。
二.实验环境中国计量学院现代科技学院机房310三.实验步骤与内容1打开应用统计学实验指导书,新建excel表地区供水管道长度(公里)全年供水总量(万平方米)北京15896 128823 天津6822 64537 河北10771.2 160132 山西5669.3 77525 内蒙古5635.5 59276 辽宁21999 280510 吉林6384.9 159570 黑龙江9065.9 153387 上海22098.8 308309 江苏36632.4 380395 浙江24126.9 235535 安徽7389.4 204128 福建6270.4 118512 江西5094.7 143240 山东26073.9 259782 河南11405.6 185092 湖北15668.6 257787 湖南9341.8 262691 广东35728.8 568949 广西6923.1 134412 海南1726.7 20241 重庆6082.7 71077 四川12251.3 165632 贵州3275.3 45198 云南5208.5 52742 西藏364.9 5363陕西4270 73580甘肃5010 62127青海893 14390宁夏1538.2 22921新疆3670.2 766852.打开SPSS,将数据导入3.打开分析,选择回归分析再选择线性因变量选全年供水总量,自变量选供水管道长度统计里回归系数选估计,再选择模型拟合按继续再按确定会出来分析的结果对以上结果进行分析:(1)回归方程为:y=28484.712+11.610X(X是自变量供水管道长度,Y是因变量全年供水总量)(2)检验1)拟合效果检验根据表2可知,R2=0.819,即拟合效果好,线性成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SPSS作业6:回归分析(一)回归分析多元线性回归模型的基本操作:(1)选择菜单Analyze-Regression-Linear;(2)选择被解释变量(能源消费标准煤总量)和解释变量(国内生产总值、工业增加值、建筑业增加值、交通运输邮电业增加值、人均电力消费、能源加工转换效率)到对应框中;(3)在Method框中,选择Enter方法;在Statistics框中,选择Estimates、Model fit、Covariancematrix、Collinearity diagnostics选项;在Plots框中,选择ZRESED到Y框,ZPRED到X框,再选择Histogram和Normal plot;(4)选择菜单Analyze-Non Test-1-Sanple K-S;选择菜单Analyze-Correlate-Brivariate;结果如下:Regression能源消费需求的多元线性回归分析结果(强制进入策略)(一)Model Summary bModel R R Square Adjusted R Square Std. Error of the Estimate1 .990a.980 .973 8480.38783a. Predictors: (Constant), 能源加工转换效率/%, 交通运输邮电业增加值/亿元, 工业增加值/亿元, 人均电力消费/千瓦时, 建筑业增加值/亿元, 国内生产总值/亿元b. Dependent Variable: 能源消费标准煤总量/万吨分析:被解释变量和解释变量的复相关系数为0.990,判定系数为0.980,调整的判定系数为0.973,回归方程的估计标准误差为8480.38783。
该方程有6个解释变量,调整的判定系数为0.973,,接近于1,所以拟合优度较高,被解释变量可以被模型解释的部分较多,未能解释的部分较少。
分析:由上可知,被解释变量的总离差平方和为5.882E10,回归平方和及均方分别为5.766E10和9.611E9,剩余平方和及均方分别为1.151E9和7.192E7,F检验统计量的观测值为133.636,对应的概率p值近似为0。
如果显著性水平a为0.05,由于p值小于a,所以拒绝回归方程显著性检验的零假设,认为各回归系数不同时为0,被解释变量与解释变量全体的线性关系是显著的,可建立线性模型。
能源消费需求的多元线性回归分析结果(强制进入策略)(三)分析:上表各列分别为方程的偏回归系数、偏回归系数的标准误差、标准化偏回归系数、回归系数显著性检验中t统计量的观测值、对应的概率p值、解释变量的容忍度和方差膨胀因子。
由上可以看出,如果显著性水平a为0.05,几乎所有变量的回归系数显著性t检验的概率p值都大于显著性水平,因此不应拒绝零假设,认为这些偏回归系数与0无显著差异,它们与被解释变量的线性关系是不显著的,不应该保留在方程中。
同时,从容忍度和方差膨胀因子来看,该方程的解释变量的多重共线性严重,该模型中保留了一些不应该保留的变量,因此该模型目前是不可用的,应重新建模,而且在重新建模时,考虑剔除一些不应该保留的变量。
分析:上表中各列数据项的含义依次为:特征根、条件指数、各特征根解释各解释变量的方差比(各列比例之和等于1)。
依据该表可以进行多重共线性检测。
从方差比来看,第6个特征根既能解释国内生产总值方差的99%,也可以解释建筑业增加值方差的62%,同时还可以解释人均电力消费方差的43%,因此有理由认为这些变量间存在多重共线性。
从条件指数来看,第4、5、6、7个条件指数都大于10,说明变量间确实存在多重共线性。
多元线性回归模型的其他操作:(1)选择菜单Analyze-Regression-Linear;(2)选择被解释变量(能源消费标准煤总量)和解释变量(国内生产总值、工业增加值、建筑业增加值、交通运输邮电业增加值、人均电力消费、能源加工转换效率)到对应框中;(3)在Method框中,选择Backward方法;在Statistics框中,选择Estimates、Model fit、R-squared change、Durbin-Watson选项;在Plots框中,选择ZRESED到Y框,ZPRED到X框,再选择Histogram和Normal plot;在Save框中,选择Predicted Values中的Standardized,Residuals中的Standardized选项;结果如下:c. Predictors: (Constant), 能源加工转换效率/%, 交通运输邮电业增加值/亿元, 工业增加值/亿元, 建筑业增加值/亿元d. Predictors: (Constant), 交通运输邮电业增加值/亿元, 工业增加值/亿元, 建筑业增加值/亿元e. Predictors: (Constant), 工业增加值/亿元, 建筑业增加值/亿元f. Dependent Variable: 能源消费标准煤总量/万吨分析:利用向后筛选策略共经过五步完成回归方程的建立,最终模型为第五个模型。
从方程建立的过程来看,随着解释变量的不断减少,方程的拟合优度下降了。
依次剔除方程的变量是国内生产总值、人均电力消费、能源加工转换效率、交通运输邮电业增加值。
如果显著性水平a为0.05,可以看到这些被剔除变量的偏F检验的概率p值均大于显著性水平,因此均不能拒绝检验的零假设,这些变量的偏回归系数与零无显著差异,它们对被解释变量的线性解释没有显著贡献,不应保留在方程中。
最终保留在方程中的变量是工业增加值、建筑业增加值。
方程的DW检验值为0.741,残差存在一定程度的正自相关。
分析:表中的第五个模型是最终的方程。
如果显著性水平a为0.05,由于回归方程显著性检验的概率p值小于显著性水平,因此被解释变量与解释变量的线性关系显著,建立线性模型是恰当的。
分析:表中展示了每个模型中各解释变量的偏回归系数、偏回归系数显著性检验的情况。
如果显著性水平a为0.05,则前四个模型中由于都存在回归系数不显著的解释变量,因此这些方程都不可用。
第五个模型是最终的方程,其回归系数显著性检验的概率p值小于显著性水平,因此工业增加值、建筑业增加值与被解释变量间的线性关系显著,它们保留在模型中是合理的。
最终的回归方程是,能源消费需求=80452.139+0.464工业增加值+0.696建筑业增加值,意味着当工业增加值每增加一个单位或建筑业增加值每增加一个单位,能源消费需求分别平均增加0.464个单位或0.696个单位。
能源消费需求的多元线性回归分析结果(向后筛选策略)(四)分析:上表展示了变量剔除方程的过程。
各数据项的含义依次是:在剔除其他变量的情况下,如果该变量保留在模型中其标准化回归系数、t检验值和概率p值。
在模型3中,剔除国内生产总值的情况下,如果保留人均电力消费,那么它的标准化回归系数为0.269,但回归系数的检验不显著(概率p值为0.520)。
剔除人均电力消费的情况下,如果保留国内生产总值,那么它的标准化回归系数为0.217,但回归系数的检验不显著(概率p值为0.777)。
Charts能源消费需求多元线性回归分析的残差累计概率图分析:上图中,数据点围绕基准线还存在一定的规律性,但标准化残差的非参数检验结果(见下表)表明标准化残差与标准正态分布不存在显著差异,可以认为残差满足了线性模型的前提要求。
标准化残差的非参数检验结果One-Sample Kolmogorov-Smirnov TestStandardizedResidualN 23Normal Parameters a Mean .0000000Std. Deviation .95346259Most Extreme Differences Absolute .162Positive .108Negative -.162Kolmogorov-Smirnov Z .776Asymp. Sig. (2-tailed) .584a. Test distribution is Normal.分析:在上面残差累计概率图种,随着标准化预测值的变化,残差点在0线周围随机分布,但残差的等方差性并不完全满足,方差似乎有增大的趋势。
而计算残差与预测值的Spearman等级相关系数为-0.027(见下表Spearman等级相关分析结果),且检验不显著,因此认为异方差现象并不明显。
能源消费需求多元线性回归分析的残差图标准化残差与标准化预测值的Spearman等级相关分析结果CorrelationsStandardized Predicted Value Standardized ResidualSpearman's rho Standardized PredictedValue Correlation Coefficient 1.000 -.027 Sig. (2-tailed) . .904 N 23 23Standardized Residual Correlation Coefficient -.027 1.000Sig. (2-tailed) .904 .N 23 23 原始数据:能源消费数据分析年份X1 能源消费标准煤总量X2/万吨国内生产总值X3/亿元工业增加值X4/亿元建筑业增加值X5/亿元交通运输邮电业增加值X6/亿元人均电力消费X7/千瓦时能源加工转换效率X8/%1985 76682 9016 3448.7 417.9 406.9 21.3 68.29 1986 80850 10275.2 3967 525.7 475.6 23.2 68.32 1987 86632 12058.6 4585.8 665.8 544.9 26.4 67.48 1988 92997 15042.8 5777.2 810 661 31.2 66.541989 96934 16092.3 6484 794 786 35.3 66.51 1990 98703 18667.8 6858 859.4 1147.5 42.4 67.2 1991 103783 21781.5 8087.1 1015.1 1409.7 46.9 65.9 1992 109170 26923.5 10284.5 1415 1681.8 54.6 66 1993 115993 35333.9 14188 2266.5 2205.6 61.2 67.32 1994 122737 48197.9 19480.7 2964.7 2898.3 72.7 65.2 1995 131176 60793.7 24950.6 3728.8 3424.1 83.5 71.05 1996 138948 71176.6 29447.6 4387.4 4068.5 93.1 71.5 1997 137798 78973 32921.4 4621.6 4593 101.8 69.23 1998 132214 84402.3 34018.4 4985.8 5278.4 106.6 69.44 1999 133831 89677.1 35861.5 5172.1 5821.8 118.2 69.19 2000 138553 99214.6 4003.6 5522.3 7333.4 132.4 69.04 2001 143199 109655.2 43580.6 5931.7 8406.1 144.6 69.03 2002 151797 120332.7 47431.3 6465.5 93930.4 156.3 69.04 2003 174990 135822.8 54945.5 7490.8 10098.4 173.7 69.4 2004 203227 159878.3 65210 8694.3 12147.6 190.2 70.71 2005 223319 183084.8 76912.9 10133.8 10526.1 216.7 71.08 2006 246270 211923.5 91310.9 11851.1 12481.1 249.4 71.24 2007 265583 249529.9 107367.2 14014.1 14604.1 274.9 71.25。