大学物理第二章解析

合集下载

大学物理习题答案解析第二章

大学物理习题答案解析第二章

第二章牛顿定律2 -1如图(a)所示,质量为m的物体用平行于斜面的细线联络置于圆滑的斜面上,若斜面向左方作加速运动 ,当物体刚离开斜面时,它的加快度的大小为()(A) gsin θ(B) gcos θ(C) gtan θ(D) gcot θ剖析与解当物体走开斜面瞬时 ,斜面对物体的支持力消逝为零,物体在绳索拉力 F T (其方向仍可认为平行于斜面 )和重力作用下产平生行水平面向左的加快度a,如图 (b) 所示 ,由其可解得合外力为 mgcot θ,应选 (D).求解的重点是正确剖析物体刚走开斜面瞬时的物体受力状况和状态特点.2 -2 用水平力 F N把一个物体压着靠在粗拙的竖直墙面上保持静止.当 F N渐渐增大时 ,物体所受的静摩擦力 F f的大小 ()(A)不为零 ,但保持不变(B)随 F N成正比地增大(C)开始随 F N增大 ,达到某一最大值后 ,就保持不变(D)没法确立剖析与解与滑动摩擦力不一样的是 ,静摩擦力可在零与最大值μF N范围内取值.当F N增加时,静摩擦力可取的最大值成正比增加 ,但详细大小则取决于被作用物体的运动状态.由题意知 ,物体向来保持静止状态 ,故静摩擦力与重力大小相等 ,方向相反 ,并保持不变 ,应选 (A) .2 -3一段路面水平的公路,转弯处轨道半径为R,汽车轮胎与路面间的摩擦因数为μ,要使汽车不至于发生侧向打滑,汽车在该处的行驶速率()(A)不得小于(C)不得大于μgR (B) 一定等于μgRμgR (D) 还应由汽车的质量m 决定剖析与解由题意知 ,汽车应在水平面内作匀速率圆周运动,为保证汽车转弯时不侧向打滑,所需向心力只好由路面与轮胎间的静摩擦力供给,能够供给的最大向心力应为μF N.由此可算得汽车转弯的最大速率应为 v=μRg.所以只需汽车转弯时的实质速率不大于此值,均能保证不侧向打滑.应选 (C) .2 -4 一物体沿固定圆弧形圆滑轨道由静止下滑,在下滑过程中 ,则 ( )(A)它的加快度方向永久指向圆心,其速率保持不变(B)它遇到的轨道的作使劲的大小不停增加(C)它遇到的合外力大小变化 ,方向永久指向圆心(D)它遇到的合外力大小不变 ,其速率不停增加剖析与解 由图可知 ,物体在下滑过程中遇到大小和方向不变的重力以实时辰指向圆轨道中心的轨 道支持力 F N 作用 ,其合外力方向并不是指向圆心 ,其大小和方向均与物体所在地点有关.重力的切向分 量 (m g cos θ) 使物体的速率将会不停增加 ( 由机械能守恒亦可判断 ),则物体作圆周运动的向心力 (又称法向力 )将不停增大 ,由轨道法向方向上的动力学方程F Nmgsin θ mv 2可判断 ,随 θ 角的不停增R大过程 ,轨道支持力 F N 也将不停增大 ,因而可知应选 (B) .2 -5 图 (a)示系统置于以 a = 1/4 g 的加快度上涨的起落机内 ,A 、B 两物体质量相同均为 m,A 所在的桌面是水平的 ,绳索和定滑轮质量均不计 ,若忽视滑轮轴上和桌面上的摩擦,其实不计空气阻力 ,则绳中张力为 ( )(A) 58 mg (B) 12 mg (C) mg (D) 2 mg剖析与解此题可考虑对 A 、B 两物体加上惯性力后 ,以电梯这个非惯性参照系进行求解. 此时 A 、B两物体受力状况如图 (b)所示 ,图中 a ′为 A 、B 两物体相对电梯的加快度 ,ma ′为惯性力. 对 A 、B 两物体 应用牛顿第二定律 ,可解得 F = 5/8 mg .应选 (A) .T议论 关于习题 2 -5 这种种类的物理问题 ,常常从非惯性参照系 (此题为电梯 )察看到的运动图像较为 明确 ,但因为牛顿定律只合用于惯性参照系,故从非惯性参照系求解力学识题时,一定对物体加上一个虚构的惯性力.如以地面为惯性参照系求解,则两物体的加快度 a A 和a B 均应付地而言 ,此题中 a A 和 a 的大小与方向均不相同.此中 aA 应斜向上.对 a A 、a 、a 和a ′之间还要用到相对运动规律 ,求解BB过程较繁.有兴趣的读者不如自己试试试看.2 -6 图示一斜面 ,倾角为 α,底边 AB 长为 l = 2.1 m,质量为 m 的物体从题 2 -6 图斜面顶端由静止开始向下滑动 ,斜面的摩擦因数为 μ= 0.14 .试问 ,当 α为何值时 ,物体在斜面上下滑的时间最短? 其数值为多少?剖析动力学识题一般分为两类:(1) 已知物体受力争其运动状况;(2) 已知物体的运动状况来剖析其所受的力.自然,在一个详细题目中,这两类问题并没有截然的界线,且都是以加快度作为中介,把动力学方程和运动学规律联系起来.此题重点在列出动力学和运动学方程后,解出倾角与时间的函数关系α= f(t),而后运用对 t 求极值的方法即可得出数值来.解取沿斜面为坐标轴Ox,原点 O 位于斜面极点,则由牛顿第二定律有mgsin α mgμcosαma(1) 又物体在斜面上作匀变速直线运动,故有l 1 at2 1g sin α μcosαt 2cosα 2 2则t2l(2) gcosαsin α μcosα为使下滑的时间最短,可令dt0 ,由式(2)有dα则可得此时sin αsin α μcosαcosαcosα μsin α0 tan 2α 1 , 49oμt 2l 0.99 sgcosαsin α μcosα2 -7 工地上有一吊车 ,将甲、乙两块混凝土预制板吊起送至高空.甲块质量为 m 2 k g,乙块= 2.00 10×1质量为 m2= 1.00 ×102 kg.设吊车、框架和钢丝绳的质量不计.试求下述两种状况下,钢丝绳所受的张力以及乙块对甲块的作使劲:(1) 两物块以 10.0 m ·s-2的加快度上涨; (2) 两物块以 1.0 m s·-2的加快度上涨.从此题的结果,你能领会到起吊重物时一定迟缓加快的道理吗?剖析预制板、吊车框架、钢丝等可视为一组物体.办理动力学识题往常采纳“隔绝体”的方法物体所受的各样作使劲 ,在所选定的惯性系中列出它们各自的动力学方程.依据连结体中物体的多少可列出相应数量的方程式.联合各物体之间的互相作用和联系 ,可解决物体的运动或互相作使劲.,剖析解按题意 ,可分别取吊车(含甲、乙 )和乙作为隔绝体,画示力争 ,并取竖直向上为Oy 轴正方向 (如图所示 ).当框架以加快度 a 上涨时 ,有FT-(m1 + m )g =(m + m )a (1)2 1 2FN2- m g = m a (2)2 2解上述方程 ,得F = 1 2 (3)TFN2 =m (g + a) (4) 2(1)当整个装置以加快度 a = 10 m ·s-2上涨时 ,由式 (3) 可得绳所受张力的值为FT=10×3 N乙对甲的作使劲为N2 N2 2(g + a) =3F′=-F = -m 10× N(2)当整个装置以加快度 a = 1 m·s-2上涨时 ,得绳张力的值为FT=10×3 N此时 ,乙对甲的作使劲则为F′ N2=103× N由上述计算可见,在起吊相同重量的物体时,因为起吊加快度不一样 ,绳中所受张力也不一样,加快度大 ,绳中张力也大.所以,起吊重物时一定迟缓加快,以保证起吊过程的安全.2 -8 如图 (a)所示 ,已知两物体 A、 B 的质量均为 m = 3.0kg 物体 A 以加快度 a = 1.0 m ·s-2 运动 ,求物体 B 与桌面间的摩擦力. (滑轮与连结绳的质量不计)剖析该题为连结体问题 ,相同可用隔绝体法求解.剖析时应注意到绳中张力大小到处相等是有条件的 ,即一定在绳的质量和伸长可忽视、滑轮与绳之间的摩擦不计的前提下成立.同时也要注意到张力方向是不一样的.解分别对物体和滑轮作受力剖析[图(b)].由牛顿定律分别对物体 A 、B 及滑轮列动力学方程,有m A g -F T=m A a (1)F′1 -Ff= m B a′(2)TF′ -2FT1= 0 (3)T考虑到 mTTT1 T,a ′= 2a,可联立解得物体与桌面的摩擦力A =mB =m, F =F′ ,F = F′1F f mg m 4m a7.2 N2议论动力学识题的一般解题步骤可分为:(1) 剖析题意 ,确立研究对象,剖析受力 ,选定坐标; (2) 根据物理的定理和定律列出原始方程组; (3) 解方程组 ,得出文字结果; (4) 查对量纲 ,再代入数据 ,计算出结果来.2 -9 质量为m′的长平板 A 以速度v′在圆滑平面上作直线运动,现将质量为m 的木块 B 轻轻安稳地放在长平板上 ,板与木块之间的动摩擦因数为μ,求木块在长平板上滑行多远才能与板获得共同速度?剖析当木块 B 安稳地轻轻放至运动着的平板 A 上时 ,木块的初速度可视为零,因为它与平板之间速度的差别而存在滑动摩擦力,该力将改变它们的运动状态.依据牛顿定律可获得它们各自相对地面的加快度.换以平板为参照系来剖析,此时 ,木块以初速度-v ′(与平板运动速率大小相等、方向相反)作匀减速运动 ,其加快度为相对加快度,按运动学公式即可解得.该题也可应用第三章所叙述的系统的动能定理来解.将平板与木块作为系统,该系统的动能由平板原有的动能变成木块和平板一同运动的动能,而它们的共同速度可依据动量定理求得.又因为系统内只有摩擦力作功,依据系统的动能定理,摩擦力的功应等于系统动能的增量.木块相对平板挪动的距离即可求出.解 1 以地面为参照系 ,在摩擦力 Ff=μmg的作用下 ,依据牛顿定律分别对木块、平板列出动力学方程F f=μ mg=ma1F ′f=-F f= m′a2a1和 a2分别是木块和木板相对地面参照系的加快度.若以木板为参照系,木块相对平板的加快度 a = a1+ a2 ,木块相对平板以初速度- v ′作匀减速运动直至最后停止.由运动学规律有2- v′= 2as由上述各式可得木块有关于平板所挪动的距离为sm v 22 μg m m解 2 以木块和平板为系统 ,它们之间一对摩擦力作的总功为W =F f(s +l ) -F fl=μ mgs式中 l 为平板相对地面挪动的距离.因为系统在水平方向上不受外力,当木块放至平板上时,依据动量守恒定律,有m′v′= (m′+ m) v″由系统的动能定理 ,有μmgs 1 m v 2 1 m m v 22 2由上述各式可得sm v 22 μg m m2 -10 如图 (a)所示 ,在一只半径为 R 的半球形碗内 ,有一粒质量为 m 的小钢球 ,当小球以角速度ω在水平面内沿碗内壁作匀速圆周运动时 ,它距碗底有多高?剖析保持钢球在水平面内作匀角速度转动时,一定使钢球遇到一与向心加快度相对应的力(向心力 ), 而该力是由碗内壁对球的支持力 F N的分力来供给的 ,因为支持力 F N一直垂直于碗内壁,所以支持力的大小和方向是随ω而变的.取图示 Oxy 坐标 ,列出动力学方程 ,即可求解钢球距碗底的高度.解取钢球为隔绝体 ,其受力剖析如图 (b) 所示.在图示坐标中列动力学方程F N sin θ ma n mRω2sin θ(1)F N cosθ mg (2)且有由上述各式可解得钢球距碗底的高度为R h cos θ(3)Rgh Rω2可见 ,h 随 ω的变化而变化.2 -11 火车转弯时需要较大的向心力,假如两条铁轨都在同一水平面内 (内轨、外轨等高 ),这个向心力只好由外轨供给 ,也就是说外轨会遇到车轮对它很大的向外侧压力 ,这是很危险的.所以 ,对应于火车的速率及转弯处的曲率半径,一定使外轨适合地超出内轨,称为外轨超高.现有一质量为m 的火车 ,以速率 v 沿半径为 R 的圆弧轨道转弯 ,已知路面倾角为 θ,试求: (1) 在此条件下 ,火车速率 v 0 为多大时 ,才能使车轮对铁轨内外轨的侧压力均为零?(2) 假如火车的速率 v ≠v 0 ,则车轮对铁轨的侧压力为多少?剖析如题所述 ,外轨超高的目的欲使火车转弯的所需向心力仅由轨道支持力的水平重量F N sin θ 提供 (式中 θ角为路面倾角 ).从而不会对内外轨产生挤压. 与其对应的是火车转弯时一定以规定的速率v 0行驶.当火车行驶速率 v ≠v 0 时,则会产生两种状况: 如下图 ,如 v > v 0 时 ,外轨将会对车轮产生斜向 内的侧压力 F 1 ,以赔偿原向心力的不足,如 v < v 0时 ,则内轨对车轮产生斜向外的侧压力F 2 ,以抵消剩余的向心力 ,不论哪一种状况火车都将对外轨或内轨产生挤压. 由此可知 ,铁路部门为何会在每个铁轨的转弯处规准时速 ,从而保证行车安全.解 (1) 以火车为研究对象 ,成立如下图坐标系.据剖析 ,由牛顿定律有F N sin θ mv 2(1)RF N cos θ mg 0(2)解 (1)(2) 两式可得火车转弯时规定速率为v 0gRtan θ(2) 当 v > v 0 时 ,依据剖析有F N sin θ F 1cos θ m v2(3)RF N cos θ F 1sin θ mg 0(4)解 (3)(4) 两式 ,可得外轨侧压力为F 1 m v 2cos θ gsin θR当 v < v 0 时,依据剖析有2F N sin θ F 2cos θ mv(5)RF N cos θ F 2sin θ mg(6)解 (5)(6) 两式 ,可得内轨侧压力为F 2 m gsin θ v 2cos θR2 -12 一杂技演员在圆筒形建筑物内表演飞车走壁.设演员和摩托车的总质量为 m,圆筒半径为 R,演员骑摩托车在直壁上以速率 v 作匀速圆周螺旋运动 ,每绕一周上涨距离为 h,如下图.求壁对演员和摩托车的作使劲.剖析 杂技演员 (连同摩托车 )的运动能够当作一个水平面内的匀速率圆周运动和一个竖直向上匀速直线运动的叠加.其旋转一周所形成的旋线轨迹睁开后,相当于如图 (b)所示的斜面. 把演员的运动速度分解为图示的 v 1 和 v 2 两个重量 ,明显 v 1是竖直向上作匀速直线运动的分速度 ,而 v 2则是绕圆筒壁作水平圆周运动的分速度,此中向心力由筒壁对演员的支持力F N 的水平重量 F N2 供给 ,而竖直重量 F N1则与重力相均衡.如图 (c) 所示 ,此中 φ角为摩托车与筒壁所夹角.运用牛顿定律即可求得筒壁支持力 的大小和方向解 设杂技演员连同摩托车整体为研究对象 ,据 (b)(c)两图应有FN1mg 0(1) F N 2m v 2(2)Rv 2vcos θ v2πR(3)R 2 h 22πF NF N 21 F N 2 2(4)以式 (3) 代入式 (2),得22 22 2m4π R v4π RmF N 222222v2(5)RhR 4πRh 4π将式 (1) 和式 (5)代入式 (4),可求出圆筒壁对杂技演员的作使劲( 即支承力 )大小为2222224πRF NFN1F N 2 m g2 2 v2h4πR与壁的夹角 φ为FN 222arctan4πRv2arctan2 2FN 14πRh g议论 表演飞车走壁时 , 演员一定控制好运动速度,行车路线以及摩托车的方向 ,以保证三者之间知足解题用到的各个力学规律.2 -13 一质点沿 x 轴运动 ,其受力如下图 ,设 t = 0 时 ,v 0= 5m ·s-1,x 0= 2 m, 质点质量 m = 1kg, 试求该 质点 7s末的速度和地点坐标.剖析 第一应由题图求得两个时间段的 F(t)函数 ,从而求得相应的加快度函数,运用积分方法求解题目所问 ,积分时应注意积分上下限的取值应与两时间段相应的时辰相对应. 解 由题图得F t2t, 0 t 5s 35 5t,5s t 7s由牛顿定律可得两时间段质点的加快度分别为a 2t , 0 t 5sa 35 5t , 5s t 7s对 0 < t < 5s 时间段 ,由 adv 得dtvd tv 0 adtv积分后得 v 5 t 2再由 vdx 得dtxt dxvdtx 0积分后得 x 2 5t1 t 33将 t = 5s 代入 ,得 v 5= 30 m ·s-1 和 x 5 = 68.7 m 对 5s< t <7s 时间段 ,用相同方法有vtdva 2dtv 0 5 s得v 35t2xt再由dx vdtx5 5 s得x =23 -82.5t +将 t =7s代入分别得 v 7= 40 m ·s -1 和 x 7 = 142 m2 -14 一质量为 10 kg 的质点在力 F 的作用下沿 x 轴作直线运动 ,已知 F =120t + 40,式中 F 的单位为 N, t 的单位的s.在 t = 0 时 ,质点位于 x =5.0 m 处 ,其速度 v 0 =6.0 m ·s-1 .求质点在随意时辰的速度和地点.剖析 这是在变力作用下的动力学识题. 因为力是时间的函数 ,而加快度 a = dv/dt,这时 ,动力学方程就成为速度对时间的一阶微分方程 ,解此微分方程可得质点的速度v (t);由速度的定义 v =dx /d t,用积分的方法可求出质点的地点.解 因加快度 a = dv/dt,在直线运动中 ,依据牛顿运动定律有120t40m dvdt依照质点运动的初始条件 ,即t 0 = 0 时 v 0 = 6.0 m s·-1 ,运用分别变量法对上式积分,得vt4.0 dtdv 0 vv =2又因 v = dx /dt,并由质点运动的初始条件: t 0 = 0 时 x 0 = 5.0 m,对上式分别变量后积分 ,有xt6.0t 2dtdxx 0x =2 +2.0 t 32 -15 轻型飞机连同驾驶员总质量为10×3 kg .飞机以 55.0 m s·-1 的速率在水平跑道上着陆后,驾驶员开始制动 ,若阻力与时间成正比 ,比率系数 α= 5.0 ×102 N ·s -1,空气对飞机升力不计 ,求: (1) 10 s后飞机的速率; (2) 飞机着陆后 10s内滑行的距离.剖析 飞机连同驾驶员在水平跑道上运动可视为质点作直线运动. 其水平方向所受制动力 F 为变力 ,且是时间的函数.在求速率和距离时,可依据动力学方程和运动学规律,采纳分别变量法求解.解 以地面飞机滑行方向为坐标正方向,由牛顿运动定律及初始条件,有 Fma mdvαtαt dtdtvdt vmv 0得v v 0α t 22m所以 ,飞机着陆 10s后的速率为v = 30 m s· -1xt α t 2 dt又dxv 0x02m故飞机着陆后 10s内所滑行的距离s x x 0 v 0tα t 3 467 m6m2 -16 质量为 m 的跳水运动员 ,从 10.0 m 高台上由静止跳下落入水中.高台距水面距离为 h .把跳水运动员视为质点 ,并略去空气阻力.运动员入水后垂直下沉,水对其阻力为 bv 2 ,此中 b 为一常量.若以水面上一点为坐标原点O,竖直向下为Oy轴,求: (1)运动员在水中的速率v 与 y的函数关系;(2) 如 b/m=-1 , 跳水运动员在水中下沉多少距离才能使其速率v 减少到落水速率v 0的1 /10?(假设跳水运动员在水中的浮力与所受的重力大小恰巧相等)剖析该题能够分为两个过程,入水前是自由落体运动,入水后 ,物体受重力 P、浮力 F 和水的阻力 F f的作用 ,其协力是一变力 ,所以 ,物体作变加快运动.固然物体的受力剖析比较简单 ,可是 ,因为变力是速度的函数(在有些问题中变力是时间、地点的函数 ),对这种问题列出动力学方程其实不复杂 ,但要从它计算出物体运动的地点和速度就比较困难了.往常需要采纳积分的方法去解所列出的微分方程.这也成认识题过程中的难点.在解方程的过程中 ,特别需要注意到积分变量的一致和初始条件确实定.解 (1) 运动员入水前可视为自由落体运动,故入水时的速度为v02gh运动员入水后,由牛顿定律得P -F f-F =ma由题意 P = F、 F f= bv2 ,而a = dv /dt = v (d v /dy),代入上式后得-bv2= mv (d v /dy)考虑到初始条件 y0=0 时 , v0 2gh ,对上式积分,有mv dvtdy0b v0 vv v0e by / m 2ghe by / m(2) 将已知条件 b/m = 0.4 m -1 ,v =0 代入上式 ,则得y m ln v 5.76 mb v0*2 -17 直升飞机的螺旋桨由两个对称的叶片构成.每一叶片的质量m= 136 kg,长 l = 3.66 m.求当它的转速 n= 320 r/min 时 ,两个叶片根部的张力.(设叶片是宽度必定、厚度平均的薄片)剖析 螺旋桨旋转时 ,叶片上各点的加快度不一样,在其各部分双侧的张力也不一样;因为叶片的质量是连续散布的 ,在求叶片根部的张力时 ,可选用叶片上一小段 ,剖析其受力 ,列出动力学方程 ,而后采纳积分的方法求解.解 设叶片根部为原点 O,沿叶片背叛原点 O 的方向为正向 ,距原点 O 为 r 处的长为 dr 一小段叶片 ,其 双侧对它的拉力分别为 F T(r) 与 F T (r + dr ).叶片转动时 ,该小段叶片作圆周运动 ,由牛顿定律有dF T F T rF T r drmω2 rdrl因为 r =l 时外侧 F T = 0,所以有t dF Tlm ω2F T rl r drrF T m ω2 2r 22πmn 22r 2rll2ll上式中取 r =0,即得叶片根部的张力F T 0 =10×5 N负号表示张力方向与坐标方向相反.2 -18 一质量为 m 的小球最先位于如图 (a)所示的 A 点 ,而后沿半径为 r 的圆滑圆轨道 ADCB 下滑.试求小球抵达点 C 时的角速度和对圆轨道的作使劲.剖析 该题可由牛顿第二定律求解. 在取自然坐标的状况下 ,沿圆弧方向的加快度就是切向加快度a ,t与其相对应的外力 F 是重力的切向重量 mgsin α,而与法向加快度 a n 相对应的外力是支持力 F N 和重力t的法向重量 mgcos α.由此 ,可分别列出切向和法向的动力学方程F = mdv/dt 和F n =ma n .因为小球在t滑动过程中加快度不是恒定的 ,所以 ,需应用积分求解 ,为使运算简易 ,可变换积分变量. 倡该题也能应用以小球、圆弧与地球为系统的机械能守恒定律求解小球的速度和角速度 ,方法比较简易.但它不可以直接给出小球与圆弧表面之间的作使劲.解 小球在运动过程中遇到重力 P 和圆轨道对它的支持力 F N .取图 (b) 所示的自然坐标系,由牛顿定律得F tmgsin α mdv(1)dtF n F Nmgcos α mmv 2(2)R由 vdsr α r α运动到点 C 的始末条件 ,进行积分 ,有d ,得 dtd ,代入式 (1),并依据小球从点 Adtdtvvαv 0d90org sin αd αv v得v2rgcos α则小球在点 C 的角速度为ωv2 cos α/rr g由式 (2)得F Nm mv 2 mgcos α 3mgcos αr由此可得小球对圆轨道的作使劲为F NF N 3mgcos α负号表示 F ′N 与 e n 反向.2 -19 圆滑的水平桌面上搁置一半径为 R 的固定圆环 ,物体紧贴环的内侧作圆周运动 ,其摩擦因数为μ,开始时物体的速率为 v 0 ,求: (1) t 时辰物体的速率; (2) 当物体速率从 v 0减少到 12 v 0时 ,物体所经历的时间及经过的行程.剖析运动学与动力学之间的联系是以加快度为桥梁的,因此 ,可先剖析动力学识题.物体在作圆周运动的过程中,促进其运动状态发生变化的是圆环内侧对物体的支持力 F N和环与物体之间的摩擦力 F f,而摩擦力大小与正压力 F N′成正比 ,且F N与F N′又是作使劲与反作使劲 ,这样 ,便可经过它们把切向和法向两个加快度联系起来了 ,从而可用运动学的积分关系式求解速率和行程.解 (1) 设物体质量为 m,取图中所示的自然坐标 ,按牛顿定律 ,有mv2F N ma nRdvF f ma tdt由剖析中可知,摩擦力的大小 Ff=μF ,由上述各式可得N2μv dvR dt取初始条件 t =0 时 v =v 0 ,并对上式进行积分,有t R v dvdt20 μ v0 vv Rv0R v0μt(2)当物体的速率从 v 0减少到 1/2v 0时 ,由上式可得所需的时间为tRμv0物体在这段时间内所经过的行程t stRv0dt vdtv0μt0 RsRln 2μ2 -20 质量为 45.0 kg 的物体 ,由地面以初速 60.0 m·s-1 竖直向上发射 ,物体遇到空气的阻力为 F r=kv, 且 k = 0.03 N/( m-1最大高度为多少?s· ). (1) 求物体发射到最大高度所需的时间.(2)剖析物体在发射过程中 ,同时遇到重力和空气阻力的作用,其协力是速率v 的一次函数 ,动力学方程是速率的一阶微分方程,求解时 ,只需采纳分别变量的数学方法即可.可是,在求解高度时 ,则一定将时间变量经过速度定义式变换为地点变量后求解 ,并注意到物体上涨至最大高度时 ,速率应为零.解 (1) 物体在空中受重力 mg 和空气阻力 F r = kv 作用而减速.由牛顿定律得mg k mdv(1)vdt依据始末条件对上式积分,有t vddtmvvv 0mg kvtmln 1 kv 06.11 skmgdv dv(2) 利用v 的关系代入式 (1),可得dtdydvmg kv mv分别变量后积分y 0dyv 0mvdvmgkv故m mg ln 1kv 0 v 0183 mykmgkv 0 和 y 2议论 如不考虑空气阻力 ,则物体向上作匀减速运动.由公式tv 0 分别算得 t ≈s和g2gy ≈184 m,均比实质值略大一些.2 -21 一物体自地球表面以速率 v 0 竖直上抛.假设空气对物体阻力的值为F r = kmv 2 ,此中 m 为物体的质量 ,k 为常量.试求: (1) 该物体能上涨的高度; (2)物体返回地面时速度的值. (设重力加快度为常量. )剖析因为空气对物体的阻力一直与物体运动的方向相反 ,所以 ,物体在上抛过程中所受重力 P 和阻力 F r 的方向相同;而下落过程中 ,所受重力 P 和阻力 Fr 的方向则相反.又因阻力是变力 ,在解动力学方程时 ,需用积分的方法.解 分别对物体上抛、 下落时作受力剖析 ,以地面为原点 ,竖直向上为 y 轴 (如下图 ) .(1) 物体在上抛过程中 ,依据牛顿定律有mg km 2 m dv m vdvv dt dy 依照初始条件对上式积分,有y 0 v ddy v2v0 g kvy 1ln g kv 2 2k g kv02物体抵达最高处时, v = 0,故有hymax 1 ln g kv 022k g (2)物体下落过程中 ,有2vdvmg kmv m对上式积分 ,有ydy 0vdv0 v0 g k2vkv 2 1/ 2v则v0 1g2 -22 质量为 m 的摩托车 ,在恒定的牵引力 F 的作用下工作 ,它所受的阻力与其速率的平方成正比,它能达到的最大速率是 v m.试计算从静止加快到mv /2所需的时间以及所走过的行程.剖析该题依旧是运用动力学方程求解变力作用下的速度和地点的问题,求解方法与前两题相像,只是在解题过程中一定想法求出阻力系数k.因为阻力 Fr = kv2 ,且 F r又与恒力 F 的方向相反;故当阻力随速度增加至与恒力大小相等时,加快度为零 ,此时速度达到最大.所以,依据速度最大值可求出阻力系数来.但在求摩托车所走行程时,需对变量作变换.解设摩托车沿 x 轴正方向运动 ,在牵引力 F 和阻力 F r同时作用下 ,由牛顿定律有F k 2 m dv(1)v dt当加快度 a = dv/dt = 0 时,摩托车的速率最大,所以可得k=F/v m2 (2) 由式 (1) 和式 (2)可得依据始末条件对式(3)积分 ,有t mdtFF 1 v 2 m dv (3)v m2 dt1v m v2 12 dv1 2v m则tmv m ln3 dvmvdv 2F(3)积分 ,有又因式 (3) 中 m,再利用始末条件对式dtdxxmdxF 1v m v212 dv0 12v m则xmv m2ln40.144 mv m 22F3F*2 -23 飞机下降时 ,以 v 0 的水平速度下落伍自由滑行,滑行时期飞机遇到的空气阻力 F 1= -k 1 v 2, 升力F 2= k 2 v 2, 此中 v 为飞机的滑行速度 ,两个系数之比 k 1/ k 2 称为飞机的升阻比.实验表示,物体在流体中运动时 ,所受阻力与速度的关系与多种要素有关 ,如速度大小、流体性质、物体形状等.在速度较小或流体密度较小时有 F ∝ v,而在速度较大或流体密度较大的有 F ∝ v 2 ,需要精准计算时则应由实验测定.此题中因为飞机速率较大,故取 F ∝v 2 作为计算依照.设飞机与跑道间的滑动摩擦因数为μ,试求飞机从触地到静止所滑行的距离.以上计算实质上已成为飞机跑道长度设计的依照之一.剖析 如下图 ,飞机触地后滑行时期遇到 5 个力作用 ,此中 F 1 为空气阻力 , F 2 为空气升力 , F 3 为跑道作用于飞机的摩擦力 , 很明显飞机是在合外力为变力的状况下作减速运动 ,列出牛顿第二定律方程 后 ,用运动学第二类问题的有关规律解题.因为作用于飞机的合外力为速度 v 的函数 ,所求的又是飞机 滑行距离 x,所以比较简易方法是直接对牛顿第二定律方程中的积分变量dt 进行代换 ,将 dt 用dx取代 ,获得一个有关 v 和 x 的微分方程 ,分别变量后再作积分.v解 取飞机滑行方向为 x 的正方向 ,着陆点为坐标原点,如下图 ,依据牛顿第二定律有F N k 1v 2m dv(1)k 2v 2dtF Nmg 0(2)将式 (2)代入式 (1),并整理得μmg k μkv 2m dvm dv12dt v dx分别变量并积分 ,有vm dvv2dxμmgk 1 μk 2v 0v得飞机滑行距离xm ln μmg k 1 μk 2 v 2(3)2 k 1 μk 2 μmg考虑飞机着陆瞬时有 F N = 0 和v = v 0 ,应有 k 2v 02= mg,将其代入 (3)式 ,可得飞机滑行距离 x 的另一表达。

大学物理-第二章-牛顿定律(运动定律)

大学物理-第二章-牛顿定律(运动定律)

二 弹性力:(压力、支持力、张力、弹簧弹性力等)
物体在受力形变时,有恢复原状的趋势, 这种抵抗外 力, 力图恢复原状的的力就是弹性力.
在弹性限度内弹性力遵从胡克定律
FP
FT

F FT
FT (l) FT (l)
F kx

al
l
FT (l l) FT (l l)
害处: 消耗大量有用的能量, 使机器运转部分发热等. 减少摩擦的主要方法:
化滑动摩擦为滚动摩擦, 化干摩擦为湿摩擦. 摩擦的必要性:
人行走, 车辆启动与制动, 机器转动(皮带轮), 弦乐器演奏等.
失重状态下悬浮在飞船舱内的宇航员, 因几乎受 不到摩擦力将遇到许多问题. 若他去拧紧螺丝钉, 自 己会向相反的方向旋转, 所以必须先将自己固定才行.
1、关于力的概念
1)力是物体与物体间的相互作用,这种作用可使物体产生形 变,可使物体获得加速度。
2)物体之间的四种基本相互作用;
两种长程作用电引磁力作作用用 两种短程作用弱 强相 相互 互作 作用 用
7
3)力的叠加原理 若一个物体同时受到几个力作用,则合力产生的加速
度,等于这些力单独存在时所产生的加速度之矢量和。 力的叠加原理的成立,不能自动地导致运动的叠加。 牛顿第二定律给出了力、质量、加速度三者间瞬 时的定量关系
17
讨论:胖子和瘦子拔河,两人彼此之间施与的力 是一对作用力和反作用力(绳子质量可略),大小 相等,方向相反,那么他们的输赢与什么有关?
50kg
胜负的关键在于脚下的摩擦力.
18
扩展:
四种基本相互作用
力的种类 相互作用的粒子 力的强度 力程
万有引力 一切质点

大学物理练习题及答案解析---第二章牛顿定律

大学物理练习题及答案解析---第二章牛顿定律

大学物理练习题第二章牛顿定律一、选择题1. 下列四种说法中,正确的为( )A. 物体在恒力作用下,不可能作曲线运动B. 物体在变力作用下,不可能作曲线运动C. 物体在垂直于速度方向,且大小不变的力作用下作匀速圆周运动D. 物体在不垂直于速度方向的力作用下,不可能作圆周运动2. 关于惯性有下面四种说法,正确的为( )A. 物体静止或作匀速运动时才具有惯性B. 物体受力作变速运动时才具有惯性C. 物体受力作变速运动时才没有惯性D. 惯性是物体的一种固有属性,在任何情况下物体均有惯性3. 在足够长的管中装有粘滞液体,放入钢球由静止开始向下运动,下列说法中正确的是( )A. 钢球运动越来越慢,最后静止不动B. 钢球运动越来越慢,最后达到稳定的速度C. 钢球运动越来越快,一直无限制地增加D. 钢球运动越来越快,最后达到稳定的速度4. 一人肩扛一重量为P的米袋从高台上往下跳,当其在空中运动时,米袋作用在他肩上的力应为( )A. 0B. P/4 C P D P/25. 质量分别为m 1和m 2的两滑块A和B通过一轻弹簧水平连结后置于水平桌面上,滑块与桌面间的滑动摩擦系数均为μ。

系统在水平拉力F作用下做匀速运动,如图所示.设水平向右为正方向,如突然撤消拉力,则刚撤去力F的瞬间,二者的加速度a A 和a B分别为( )A.a A=0,a B=0B. a A>0,a B<0C. a A<0,a B>0D . a A <0,a B =06. 质量为m 的物体最初位于x 0处,在力F =−K/x 2作用下由静止开始沿直线运动,k 为一常数,则物体在任一位置 x 处的速度应为( ) A. √k m (1x −1x 0) B. √2k m (1x −1x 0) C. √3k m (1x −1x 0) D. √m k (1x −1x 0) 二、填空题1. 一物体的质量M =2kg ,在合外力i t F )23(+=(SI) 作用下,从静止出发沿水平x 轴作直线运动,则当t =1s 时物体的速度=1v 。

《大学物理》第二章答案解析

《大学物理》第二章答案解析

* *(1)题2-2图由①、②式消去t ,得1 2 g sin2v 2当t = 2 s 时质点的 ⑴位矢;(2)速度.7aym 16m习题二1 一个质量为P 的质点,在光滑的固定斜面(倾角为 )上以初速度V o 运动, 斜面底边的水平线 AB 平行,如图所示,求这质点的运动轨道. 解:物体置于斜面上受到重力 mg ,斜面支持力N .建立坐标:取V 0方向为X v 0的方向与,平行斜面与X 轴垂直方向为Y 轴•如图2-2. X 方向: F x x V o t Y 方向:F ymg sinma yv yy ^gsint 2x 22 质量为16 kg 的质点在 xOy 平面内运动,受一恒力作用,力的分量为6 N , f y =-7 N ,当 t = 0 时,x y0 , v x = -2 m s -1V y = 0 .解:a xm6 16* *1⑶质点停止运动时速度为零,即 t *,23v xv x0 0 a x dt2 8 227 7v yv y00 a y dt2 —168于是质点在2s 时的速度5 7 .v i j m s 4 8(v °t 1 a x t 2)i1 a.2 .y t J 221 31 7 (2 2 — —4)i -()4J2 82 1613.7 .i j m48v v 0ex vdt: v 0e^dt3 质点在流体中作直线运动,受与速度成正比的阻力 kv (k 为常数)作用,t =0时质点的速度为v o ,证明(1) t 时刻的速度为v = v 0e m ; (2) 由0到t 的时间内经过的距离为d )tx =(一二)[1- e m ]; (3)停止运动前经过的距离为 k mv o 代);⑷证明当t mk 时速答:⑴••• kv amdvdt分离变量,得 dv kdt v vdv v 0vm t kdtln — v °In kte扁故有xkt mv0v0e m dt0k⑷当t= m时,其速度为kV k mv°e m^ v°e 1v e1即速度减至V。

大学物理第2章 牛顿运动定律

大学物理第2章 牛顿运动定律
1、第一定律(物体在没有外力作用的情况下会保持原有的状态);
推论:当你不去追求一个美眉,这个美眉就会待在那里不动。 2、第二定律(F=ma,物体的加速度,与施加在该物体上的外力成正比); 推论:当你强烈地追求一个美眉,这个美眉也会有强烈的反应。 评述:这个显然也是错误的!如果你是一只蛤蟆,那么公主是不会动心的。 你的鲜花送得越勤,电话费花得越多,可能对方越是反感,还可能肥了不费力 气的对手。更可能的情况是,当多个人同时在追求一个美眉时,该美眉反而无 动于衷,心想:机会多着呢,再挑一挑。所以,紧了绷,轻了松,火候要拿捏 得好。
mgR 2 F r2
R2 dv mg 2 m 由牛顿第二定律得: r dt 2 dv dv dr dv gR 又 v dr vdv 2 dt dr dt dr r
当r0 = R 时,v = v0,作定积分,得:
v gR 2 R r 2 dr v0 vdv r
故有
k
例题2-4 不计空气阻力和其他作用力,竖直上抛物体的初速 v0最小应取多大,才不再返回地球?
分析:初始条件,r R 时的速度为 v0 只要求出速率方程 v v ( r ) “不会返回地球”的数学表示式为: 当
r 时, v 0
结论:用牛顿运动定律求出加速度后,问 题变成已知加速度和初始条件求速度方程或运动 方程的第二类运动学问题。 解∶地球半径为R,地面引力 = 重力= mg, 物体距地心 r 处引力为F,则有:
说明
1)定义力
2)力的瞬时作用规律
3)矢量性
4)说明了质量的实质 : 物体惯性大小的量度
5)适用条件:质点、宏观、低速、惯性系
在直角坐标系中,牛顿第二定律的分量式为
d ( mv x ) Fx dt

大学物理第二章习题答案

大学物理第二章习题答案

大学物理第二章习题答案大学物理第二章习题答案大学物理是大多数理工科学生必修的一门课程,其中第二章是关于向量和运动学的内容。

本文将为大家提供一些大学物理第二章习题的答案,希望能够帮助大家更好地理解和掌握这一章节的知识。

1. 问题:一个物体以5 m/s的速度从斜坡上滑下来,斜坡的倾角为30°。

求物体滑下斜坡所需的时间。

解答:首先,我们需要将斜坡的倾角转换为弧度。

倾角为30°,转换为弧度的公式为弧度 = 角度× π / 180。

所以,30°转换为弧度为30 × π / 180 = π / 6。

然后,我们可以利用运动学中的公式来求解。

物体在斜坡上滑动,可以将其分解为水平和竖直方向上的运动。

在水平方向上,物体的速度不变,为5 m/s。

在竖直方向上,物体受到重力的作用,加速度为g = 9.8 m/s²。

根据运动学的公式,竖直方向上的位移可以表示为h = (1/2) × g × t²,其中 h 为位移,g 为加速度,t 为时间。

由于物体滑下斜坡的竖直位移为 0,所以我们可以得到以下方程:0 = (1/2) × g × t²解方程得到 t = 0 或t = 2 × 0 / g = 0。

因此,物体滑下斜坡所需的时间为0秒。

2. 问题:一个物体从斜坡上滑下来,滑下斜坡后继续在水平地面上滑行。

已知物体从斜坡上滑下所需的时间为2秒,滑下斜坡后在水平地面上滑行的距离为6米。

求物体在斜坡上的滑动距离。

解答:首先,我们可以利用已知条件求解物体在水平地面上的速度。

根据物体在斜坡上滑行的时间和水平距离,我们可以得到以下方程:6 = 2 × v解方程得到 v = 6 / 2 = 3 m/s。

然后,我们可以利用运动学中的公式来求解物体在斜坡上的滑动距离。

物体在斜坡上滑行的时间为2秒,速度为3 m/s。

大学物理第二章液体表面现象

大学物理第二章液体表面现象

日 常 生 活 中 观 察 到 的 现 象
空气中或荷叶上的小水滴呈球状 小昆虫能停留在水面不下沉 加热使玻璃的锐利边缘熔化, 边缘变得圆滑 密度比水大的小钢针可以浮在水面 水滴在水龙头上悬挂一段时间不掉下来
表明液 体表面具有 像绷紧的弹 性膜那样的 张力。这种 张力与固体 弹性膜的张 力不同,它 不是由于弹 性形变引起 的,称为表 面张力。
2 1 1 h ( + ) 5.5 102 (m) g R r
第三节 润湿和不润湿 毛细现象
一、润湿与不润湿
1. 定义
润湿: 液体沿固体表面 延展的现象,称液体润 湿固体。 不润湿:液体在固体表 面上收缩的现象,称液 体不润湿固体。
润湿、不润湿与相互接触的液体、固体的性质有关。
2. 接触角
从表面层中任取 一分子B,其受合力 与液面垂直,指向 液内,这使得表面 层内的分子与液体 内部的分子不同,都 受一个指向液体内 部的合力 。 在这些力作用下, 液体表面的分子有 被拉进液体内部的 趋势。
f

在宏观上就表现为液体表面有收缩的趋势。
②从能量观点来分析
把分子从液体内部移到表面层,需克服 f ⊥ 作功;外力作功,分子势能增加,即表面层内分子 的势能比液体内部分子的势能大,表面层为高 势能区;各个分子势能增量的总和称为表面能, 用E 表示。 任何系统的势能越小越稳定,所以表面层 内的分子有尽量挤入液体内部的趋势,即液面 有收缩的趋势,这种趋势在宏观上就表现为液 体的表面张力。表面张力是宏观力,与液面相 切; f ⊥是微观力,与液面垂直。
2 pi p0 R
2 2 2 R 1.44 106 (m) pi p0 2 p0 p0 p0
例2.5 在内半径r=0.3 mm的细玻璃管中注水,一部分水 在管的下端形成一凸液面,其半径R=3 mm,管中凹 液面的曲率半径与毛细管的内半径相同。求管中所悬 水柱的长度h。设水的表面张力系数=73×10-3N· -1 m

大学物理第二章习题答案

大学物理第二章习题答案

大学物理第二章习题答案# 大学物理第二章习题答案开始部分在解答大学物理的习题之前,我们需要对第二章的物理概念和公式有一个清晰的理解。

本章通常涵盖了经典力学的基础知识,包括牛顿运动定律、功和能量等概念。

习题1:牛顿运动定律的应用问题描述:一个物体在水平面上受到一个恒定的力F=10N,求物体的加速度a。

解答:根据牛顿第二定律,\[ F = ma \],其中m是物体的质量。

设物体的质量为m,我们可以解出加速度a:\[ a = \frac{F}{m} = \frac{10}{m} \, \text{m/s}^2 \]注意,这里我们假设物体的质量m是已知的。

习题2:斜面上的物体问题描述:一个质量为m=5kg的物体放在一个倾斜角度为30°的斜面上,求物体受到的重力分量。

解答:物体受到的重力分量可以分解为两个方向的力:平行于斜面的分量和垂直于斜面的分量。

垂直分量为:\[ F_{垂直} = mg \sin(30°) = 5 \times 9.8 \times 0.5 = 24.5 \, \text{N} \]平行分量为:\[ F_{平行} = mg \cos(30°) = 5 \times 9.8 \times\frac{\sqrt{3}}{2} \approx 49.04 \, \text{N} \]习题3:功和能量问题描述:一个物体从高度h=10m的平台上自由落体,求物体落地时的动能。

解答:首先,我们需要计算物体在自由落体过程中重力做的功W,它等于物体的重力势能变化:\[ W = mgh = 5 \times 9.8 \times 10 \]根据能量守恒定律,这个功将转化为物体的动能:\[ KE = W = 5 \times 9.8 \times 10 = 490 \, \text{J} \]结束部分在解答物理习题时,重要的是理解每个物理量的含义以及它们之间的关系。

通过逐步分析问题,应用适当的物理定律和公式,我们可以找到正确的答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、填空题补充:刚体绕固定转轴转动时角加速度与力矩关系的数学表达式为=M J β;易1、转动惯量为1002.kg m 的刚体以角加速度为52.rad s -绕定轴转动,则刚体所受的合外力矩为500()N m ⋅ N.m 。

中2、一根匀质的细棒,可绕右端o 轴在竖直平内转动。

设它在水平位置上所受重力矩为M ,则当此棒被切去三分之二只剩右边的三分之一时,所受重力矩变为 9M。

易3、在刚体作定轴转动时,公式t t βωω+=0成立的条件是 β=恒量 。

中4、一飞轮以300rad1min -⋅的转速旋转,转动惯量为5kg.m2,现加一恒定的制动力矩,使飞轮在20s 内停止转动,则该恒定制动力矩的大小为 2.5(.)N m π .易5、如图所示,质量为M 、半径为R 的均匀圆盘对通过它的边缘端点A 且垂直于盘面的轴的转动惯量A J =232MR 。

难6、如图示一长为L ,质量为M 的均匀细杆,两端分别固定有质量都为m 的小球。

当转轴垂直通过杆的一端时,其转动惯量为 2213mL ML + ;当转轴通过垂直杆的1/3(1/2;1/4)处时,转动惯量为225199mL ML + 。

易7、瞬时平动刚体上各点速度大小相等,但方向可以 相同 (填不同或相同)。

易8、刚体的转动惯量与刚体的形状、大小、质量分布有关、与转轴位置 有关 (填无关或有关)。

易9、所谓理想流体是指 绝对不可压缩和 完全没有粘滞性 的流体,并且在同一流管内遵循 连续性 原理。

中10、一水平流管,满足定常流动时,流速大处流线分布较密,压强较 小 ; 流线分布较疏时,压强较 大 ;若此两处半径比为1∶2,则其流速比为 4:1易11、已知消防队员使用的喷水龙头入水口的截面直径是-26.410m ´,出水口的截面直径是-22.510m ´,若入水的速度是14.0m S -×,则射出水的速度为 126()ms -⋅易12、一长l 为的均匀细棒可绕通过其端、且与棒垂直的水平o 自由转动,其转动慣量为231ml J =,若将棒拉到水平位置,然后由静止释放,此时棒的角加速度大小为32gl。

易13、一飞轮的转动惯量为J ,在t=0时角加速度为0ω,次后飞轮的经历制动过程,阻力矩的大小与角速度成正比,即ωk M -=,式中比例恒量0 k ,当3ωω=时,飞轮的角加速度为 03k Jω- 。

易14、长为1m ,质量为0.6kg 的均匀细杆,可绕其中心且与杆垂直的水平轴转动其 转动惯量为2121ml J =.若杆的转速为30rad.min 1-,其转动动能为0.25()J 。

难15、均匀细棒的质量为M ,长为L ,其一端用光滑铰链固定,另一端固定一质量为m 的小球,现将棒在水平位置释放,则棒经过铅直位置时角速度大小为363Mg mgML mL++ (棒的转动惯量231ML J =)。

中16、一长为L 、质量可以忽略的直杆,可绕通过其一端的固定水平轴在竖直平面内自由转动,在杆的另一端固定着一质量为m 的小球,在杆与水平方向夹角为060时,将杆由静止释放。

则杆的刚被释放时的角加速度为2gL;杆转到水平位置时的角加速度为 gL。

难17、细棒可绕光滑水平轴转动,该轴垂直地通过棒的一个端点。

今使棒从水平位置开始下摆,在棒转到竖直位置的过程中,棒的角速度ω和角加速度β的变化情况是: ω由小到大, β由大到小。

中18、质量为m 和2m 的两个质点A 和B ,用一长为的轻质杆件相连,系统绕通过杆上的o 点与杆垂直的轴转动。

已知o 点与A 点相距l 31,B 点的线速度为v ,且与杆件垂直。

则该系统对转动的转动惯量J 为 2ml 。

二、判断题易1、平动刚体的轨迹可以是曲线; ( )√易2、瞬时平动刚体上各点速度大小相等,但方向可以不同; ( )× 易3、流体连续性原理又称为质量流量守恒定律 ( )√ 易4、在合力矩逐渐减小时,刚体转动的角速度也逐渐减小。

( )× 易5、刚体绕定轴转动的动能221ωJ E k =等于刚体上各质点动能的总和。

( )√ 易6、刚体的转动惯量与刚体的形状、大小、质量分布有关、与转轴位置无关。

( )× 易7、把飞轮的质量集中在轮的边缘上是为了减小飞轮对轴的转动惯量。

( )× 易8、力矩的数学表达式为F r M ×=。

( )√易9、细棒可绕光滑水平轴转动,该轴垂直地通过棒的一个端点。

今使棒从水平位置开始下摆,在棒转到竖直位置的过程中,棒的角速度ω的变化情况是:ω从小到大。

( )√易10、伯努利方程说明,当理想流体在流管中作定常流动时,单位体积的动能(或称动能体密度)和重力势能(或称势能体密度)以及该处的压强之和为一常量。

()√三、选择题易1、一飞轮绕定铀转动,其角坐标与时间的关系为3a bt ct=++,式中a、b、c均为常量。

则:(1)飞轮绕定铀作匀速转动;(2)飞轮绕定铀作匀变速转动;(3)飞轮的角加速度与时间成正比;(4)上述说法都不对。

中2、刚体绕定轴做匀变速转动时,刚体上距转轴为r的任一点的()(1)切向、法向加速度的大小均随时间变化;(2)切向、法向加速度的大小均保持恒定;(3)切向加速度的大小恒定,法向加速度的大小随时间变化;(4)法向加速度的大小恒定,切向加速度的大小随时间变化中3、作定轴转动的刚体,以下说法正确的是:()(1)、作用于它的力越大,则其角速度一定越大;(2)、作用于它的力矩越大,则作用于它的力一定越大;(3)、角速度越大时,它所受的合外力矩越大;(4)、角加速度越大时,它所受的合外力矩越大。

易4、刚体平动时则:()(1)平动刚体的轨迹一定是直线;(2)平动刚体的轨迹可以是曲线;(3)某瞬时平动刚体上各点速度大小相等,但方向可以不同。

(4)上述说法都不对。

中5、对于作定轴转动的刚体,以下说法正确的是:()(1)、若作用于它的力很大,则其角速度一定很大;(2)、若作用于它的力矩很大,则作用于它的力一定很大;(3)、当其角速度很大时,它所受的合外力矩可以为零;(4)、若其转动动能很小,则它所受的合外力矩一定很小易6、花样滑冰运动员绕过自身的竖直轴转动,开始时两臂伸开,然后她将两臂收回;则她的转动惯量:(1)花样滑冰运动员的转动惯量变大;(2)花样滑冰运动员的转动惯量变小;(3)花样滑冰运动员的转动惯量不变;(4)上述说法都不对中7、细棒可绕光滑水平轴转动,该轴垂直地通过棒的一个端点。

今使棒从水平位置开始下摆,在棒转到竖直位置的过程中,棒的角速度ω的变化情况是:()(1)ω从小到大;(2)ω不变;(3)ω从大到小;(4)无法确定。

难8、一均匀细杆绕垂直通过其一端的轴(忽略转轴的摩擦),从水平位置由静止开始下摆。

则在下摆的过程中杆的另一端处的()(1)、ω逐渐增大;(2)、υ逐渐减小;(3)、β逐渐增大;(4)、无法确定。

易9、理想流体的不可压缩性表现在()(1)、它有流线和流管;(2)、满足连续性原理;(3)、满足定常流动;(4)、流体内部没有内摩擦力。

中10、几个力同时作用绕定轴转动的刚体上,如果这几个力的矢量和为零,则:()(1)、刚体必然不会转动;(2)、转速必然不变;(3)、转速必然会变;(4)、不能确定。

易11、如图所示,一圆盘绕通过盘心且与盘面垂直的轴0以角速度ω作转动。

今将两大小相等、方向相反、但不在同一直线上的力F和—F沿盘面同时作用到圆盘上,则圆盘的角速度:( )(1)必然减少; (2)必然增大;(3)不会变化; (4)如何变化,不能确定。

中12、一质量为m ,长为L 的均匀细棒,一端铰接于水平地板,且竖直直立着。

若让其自由倒下,则杆以角速度ω撞击地板。

如果把此棒切成L /2长度,仍由竖直自由倒下,则杆撞击地板的角速度应为 ( )。

(1)2ω; (2)ω2; (3)ω; (4)2ω难13、细棒可绕光滑水平轴转动,该轴垂直地通过棒的一个端点。

今使棒从水平位置开始下摆,在棒转到竖直位置的过程中,棒的角速度ω和角加速度β的变化情况是:( )(1)ω从小到大,β从大到小; (2)ω从小到大,β从小到大; (3)ω从大到小,;β从大到小(4)ω从大到小,β从小到大。

中14、一轻绳绕在具有水平转轴的定滑轮上,绳下端挂一物体,物体的质量为m ,此时滑轮的角加速度为β。

若将物体卸掉,而用大小为mg 、方向向下的力拉绳子,则滑轮的角加速度将:(1)变大; (2)不变; (3)变小; (4)无法判断。

易15、站在转台上的人伸出去的两手各握一重物,然后使他转动。

当他向着胸部收回他的双手及重物时,下列结论中,不正确的有 (1)系统的转动惯量减小。

(2)系统的转动角速度增加。

(3)系统的角动量不变。

(4)系统的转动动能保持不变。

易16、关于刚体的转动惯量:(1)刚体的转动惯量与刚体的形状、大小、质量分布有关、与转轴位置有关。

(2)刚体的转动惯量与刚体的形状、大小、质量分布无关、与转轴位置有关。

(3)刚体的转动惯量与刚体的形状、大小、质量分布有关、与转轴位置无关。

(4)刚体的转动惯量与刚体的形状、大小、质量分布无关、与转轴位置无关。

易17、一水平流管,理想流体满足定常流动时:(1)流速大处流线分布较密,压强较小;(2)流速小处流线分布较疏时,压强较小;(3)流速大处流线分布较密,压强较大;(4)流速小处流线分布较密,压强较大;。

难18、一轻绳绕在具有水平转轴的定滑轮上,绳下端挂一物体,物体的质量为m,此时滑轮的角加速度为β。

若将物体卸掉,而用大小为mg、方向向下的力拉绳子,则滑轮的角加速度、绳子的拉力T将:(1)β变大、T变小;(2)β变小、T变小;(3)β变小、T变大;(4)β变大、T变大;易19、如图所示,管中的水作稳定流动.水流过A管后,分B、C两支管流出。

已知三管的横截面积分别为A、B两管中的流速分别为则C管中的流速等于(1)15(2)35(3) 50(4) 65易20、流体在图所示的水平管中流动,在1处的横截面直径大于2处的横截面直径。

流体的流速和压强在1处和2处分别为、和、。

则它们之间的正确关系为(1)=,>; (2)> ,>;(3 ) > , <; (4) < ,<.四、计算题易1、一飞轮绕定轴转动,其角坐标与时间的关系为3a bt ct=++,式中a、b、c均为常量。

试求(1)飞轮的角速度和角加速度;(2)距转轴r处的质点的切向加速度和法向加速度解:(1)由角速度和角加速度的定义可得飞轮的角速度和角加速度分别为 23==+θωd b ct dt6==ωβd ct dt(2)距转轴r 处的质点的切向加速度和法向加速度分别为 6==τβa r ctr()2223==+ωn a r b ct r易2、一滑轮绕定轴转动,其角加速度随时间变化的关系为2at bt β=-,式中,a 、b均为常量,设t =0时,沿轮的角速度和角坐标分别为0ω和0θ,试求滑轮在t 时刻的角速度和角坐标。

相关文档
最新文档