数学建模与数学实验2
数学建模实验报告

湖南城市学院数学与计算科学学院《数学建模》实验报告专业:学号:姓名:指导教师:成绩:年月日目录实验一 初等模型........................................................................ 错误!未定义书签。
实验二 优化模型........................................................................ 错误!未定义书签。
实验三 微分方程模型................................................................ 错误!未定义书签。
实验四 稳定性模型.................................................................... 错误!未定义书签。
实验五 差分方程模型................................................................ 错误!未定义书签。
实验六 离散模型........................................................................ 错误!未定义书签。
实验七 数据处理........................................................................ 错误!未定义书签。
实验八 回归分析模型................................................................ 错误!未定义书签。
实验一 初等模型实验目的:掌握数学建模的基本步骤,会用初等数学知识分析和解决实际问题。
实验内容:A 、B 两题选作一题,撰写实验报告,包括问题分析、模型假设、模型构建、模型求解和结果分析与解释五个步骤。
《数学建模与数学实验》

建模实例分析
通过分析和学习一些优秀的数学建模实例或论文。使学生初步了解数学建模的一般流程,对使用数学知识解决实际问题有较直观的感受,在这个过程中激发学生想自己动手尝试的实践热情。
3
论文写作指导
指导学生正确的论文结构以及书写要求,使学生初步体验规范的学术研究过程。
●“科目实施”
1
教学组织形式
规模:一般15—20个人的规模开展教学活动
1.用数学语言描述实际现象的“翻译”能力。
2.综合应用已学过的数学知识,对问题进行分析处理的能力。
3.想象力和洞察力。进而提高学生的综合素质和创新能力。
4
活动总量
共有超过40个专题,可供高一高二的学生选择,以学期为单位,共4期。学生每学完1期,要求提交一片独立完整的数学建模小论文。
●“科目目标”
1
知识与技能
3.通过交流和讨论,培养学生互相尊重、团队协作的意识。
4.通过论文撰写和答辩,体会研究求实的学术精神。
4
教学目标
设计原则和要求
1.教学目标要注重结合基础教材内容。
2.教学目标要注重对规律的总结,授之以渔。
3.教学目标要注重多样性和开放性。
4.教学目标的设计要从学生的实际水平出发,对于高一高二的学生,所能够使用的数学模型多局限于初等数学模型,因此在制定面向大多数学生的实际情况教学目标时要注意这方面的考虑,选取适合学生的材料和内容。
4
实施要求和德育思考
1.通过多种建模方法的培训和大量实例的分析,提高学生学习数学的兴趣与热情。
2.体会应用数学的广泛应用,感悟学有所用的成就感。
3.通过交流和讨论,培养学生互相尊重、团队协作的意识。
4.通过论文撰写和答辩,体会研究求实的学术精神。
数学建模基础实验报告(3篇)

第1篇一、实验目的本次实验旨在让学生掌握数学建模的基本步骤,学会运用数学知识分析和解决实际问题。
通过本次实验,培养学生主动探索、努力进取的学风,增强学生的应用意识和创新能力,为今后从事科研工作打下初步的基础。
二、实验内容本次实验选取了一道实际问题进行建模与分析,具体如下:题目:某公司想用全行业的销售额作为自变量来预测公司的销售量。
表中给出了1977—1981年公司的销售额和行业销售额的分季度数据(单位:百万元)。
1. 数据准备:将数据整理成表格形式,并输入到计算机中。
2. 数据分析:观察数据分布情况,初步判断是否适合使用线性回归模型进行拟合。
3. 模型建立:利用统计软件(如MATLAB、SPSS等)进行线性回归分析,建立公司销售额对全行业的回归模型。
4. 模型检验:对模型进行检验,包括残差分析、DW检验等,以判断模型的拟合效果。
5. 结果分析:分析模型的拟合效果,并对公司销售量的预测进行评估。
三、实验步骤1. 数据准备将数据整理成表格形式,包括年份、季度、公司销售额和行业销售额。
将数据输入到计算机中,为后续分析做准备。
2. 数据分析观察数据分布情况,绘制散点图,初步判断是否适合使用线性回归模型进行拟合。
3. 模型建立利用统计软件进行线性回归分析,建立公司销售额对全行业的回归模型。
具体步骤如下:(1)选择合适的统计软件,如MATLAB。
(2)输入数据,进行数据预处理。
(3)编写线性回归分析程序,计算回归系数。
(4)输出回归系数、截距等参数。
4. 模型检验对模型进行检验,包括残差分析、DW检验等。
(1)残差分析:计算残差,绘制残差图,观察残差的分布情况。
(2)DW检验:计算DW值,判断随机误差项是否存在自相关性。
5. 结果分析分析模型的拟合效果,并对公司销售量的预测进行评估。
四、实验结果与分析1. 数据分析通过绘制散点图,观察数据分布情况,初步判断数据适合使用线性回归模型进行拟合。
2. 模型建立利用MATLAB进行线性回归分析,得到回归模型如下:公司销售额 = 0.9656 行业销售额 + 0.01143. 模型检验(1)残差分析:绘制残差图,观察残差的分布情况,发现残差基本呈随机分布,说明模型拟合效果较好。
数学实验与数学建模(校本教材)

x x x + + = 60
11
12
13
x x x + + = 80
21
22
23
②各销地运进的数量应等于其当地预测的销售量,即
x x + = 50
11
21
x x + = 50
12
22
x x + = 40
13
23
③从各产地运往各销地的数量不能为负值,即
x ≥ 0(i = 1,2; j = 1,2,3) ij
400
A2
400
700
300
问每个产地向每个销地各发货多少,才能使总的运费最少? 解 (1)在该问题中,所要确定的量是各产地运往各销地的香蕉数量,即决策变量是运输量。 设 Xij(i=1,2; j =1,2,3)分别表示由产地 Ai 运往销地 Bi 的数量。
(2)在解决问题的过程中,要受到如下条件限制,即约束条件: 1各产地运出的数量应等于其产量,即
a C x C x C x b ≤
+
+ ... +
≤
n
1n 1
2n 2
mn n
n
x1 + x2 + ... + xm = 1
xi ≥ 0,(i = 1,..., m)
d x d x 并使目标函数 S =
+ ... +
最小。
11
mm
一、 线性规划问题数学模型的一般形式和标准形式
上面我们建立了经济领域中常见的实际问题的数学模型,尽管这些实际问题本身是多种多样的,
42
的精确在允许的范围内。
数学实验与数学建模(校本教材)
数学建模实验二:微分方程模型Matlab求解与分析

实验二: 微分方程模型Matlab 求解与分析一、实验目的[1] 掌握解析、数值解法,并学会用图形观察解的形态和进行解的定性分析; [2] 熟悉MATLAB 软件关于微分方程求解的各种命令;[3] 通过范例学习建立微分方程方面的数学模型以及求解全过程; [4] 熟悉离散 Logistic 模型的求解与混沌的产生过程。
二、实验原理1. 微分方程模型与MATLAB 求解解析解用MATLAB 命令dsolve(‘eqn1’,’eqn2’, ...) 求常微分方程(组)的解析解。
其中‘eqni'表示第i 个微分方程,Dny 表示y 的n 阶导数,默认的自变量为t 。
(1) 微分方程 例1 求解一阶微分方程 21y dxdy+= (1) 求通解 输入:dsolve('Dy=1+y^2')输出:ans =tan(t+C1)(2)求特解 输入:dsolve('Dy=1+y^2','y(0)=1','x')指定初值为1,自变量为x 输出:ans =tan(x+1/4*pi)例2 求解二阶微分方程 221()04(/2)2(/2)2/x y xy x y y y πππ'''++-=='=-原方程两边都除以2x ,得211(1)04y y y x x'''++-= 输入:dsolve('D2y+(1/x)*Dy+(1-1/4/x^2)*y=0','y(pi/2)=2,Dy(pi/2)=-2/pi','x')ans =- (exp(x*i)*(pi/2)^(1/2)*i)/x^(1/2) +(exp(x*i)*exp(-x*2*i)*(pi/2)^(3/2)*2*i)/(pi*x^(1/2))试试能不用用simplify 函数化简 输入: simplify(ans)ans =2^(1/2)*pi^(1/2)/x^(1/2)*sin(x) (2)微分方程组例3 求解 d f /d x =3f +4g ; d g /d x =-4f +3g 。
数学建模实验答案

14.5714
第86页例3
>> c=[2;3;1];
>> a=[1,4,2;3,2,0];
>> b=[8;6];
>> [x,y]=linprog(c,-a,-b,[],[],zeros(3,1))
Optimization terminated.
x =
0.8066
-2.2943
rint =
-4.0390 4.0485
-3.2331 6.2555
-5.3126 1.9707
-6.5603 3.1061
-4.5773 5.0788
-0.5623 8.4132
-6.0767 3.1794
25.1698
0.0000
20.0000
14.8302
40.0000
y =
574.8302
实验报告三、 第二部分
data=[0,0.8,1.4,2.0,2.4,3.2,4.0,4.8,5.4,6.0,7.0,8.0,10.0;0,0.74,2.25,5.25,8.25,15,21.38,26.25,28.88,30.6,32.25,33,35];
b =
62.4054
1.5511
0.5102
0.1019
-0.1441
bint =
-99.1786 223.9893
-0.1663 3.2685
-1.1589 2.1792
-1.6385 1.8423
x5 = [1.62 1.79 1.51 1.60 1.61 1.31 1.02 1.08 1.02 0.82 1.03 1.08 0.92 0.79 0.86 1.27 1.10]';
数学建模与数学实验的比较

数学建模其实并不是什么新东西,可以说有了 数学并需要用数学去解决实际问题,就一定要用数学 的语言、方法去近似地刻划该实际问题,这种刻划的 数学表述的就是一个数学模型,其过程就是数学建模 的过程。数学模型一经提出,就要用一定的技术手段 (计算、证明等)来求解并验证,其中大量的计算往 往是必不可少的,高性能的计算机的出现使数学建模 这一方法如虎添翼似的得到了飞速的发展,掀起一个 高潮。
建模过程示意图
三、数学模型及其分类
模型
具体模型
直观模型 物理模型 思维模型
抽象模型
符号模型
数学模型的分类:
数学模型
数式模型 图形模型
◆ 按研究方法和对象的数学特征分:初等模型、几何模型
、优化模型、微分方程模型、图论模型、逻辑模型、稳定性模
型、扩散模型等。
◆ 按研究对象的实际领域(或所属学科)分人口模型、
交通模型、环境模型、生态模型、生理模型、城镇规划模型、
水资源模型、污染模型、经济模型、社会模型等。
数学建模实例
1、如何预报人口? 要预报未来若干年(如2005)的人口数,
最重要的影响因素是今年的人口数和今后这 些年的增长率(即人口出身率减死亡率), 根据这两个数据进行人口预报是很容易的。 记今年人口为 ,k年后人口为 xk ,年增长 率为r,则预报公式为:
数学建模 VS
数学实验
什么是数学建模?
数学建模简介
1.关于数学建模
2.数学建模实例
A.人口预报问题 B. 椅子能在不平的地面上放稳吗? C.双层玻璃的功效
3.数学建模论文的撰写方法
一、名词解释
1、什么是数学模型?
数学模型是对于现实世界的一个特定对象,一个 特定目的,根据特有的内在规律,做出一些必要的假 设,运用适当的数学工具,得到一个数学结构。
数学建模实验二 无约束优化

数学建模试验报告(五 )姓名 学号 班级问题:.陈酒出售的最佳时机问题某酒厂有批新酿的好酒,如果现在就出售,可得总收入0R =50万元(人民币),如果窖藏起来待来日(第n 年)按陈酒价格出售,第n 年末可得总收入60en R R (万元),而银行利率为r =0.05,试分析这批好酒窖藏多少年后出售可使总收入的现值最大. (假设现有资金X 万元,将其存入银行,到第n 年时增值为()R n 万元,则称X 为()R n 的现值.)并填下表. 第一种方案:将酒现在出售,所获50万元本金存入银行; 第二种方案:将酒窖藏起来,待第n 年出售.(1)计算15年内采用两种方案,50万元增值的数目并填入表1,2中; (2)计算15年内陈酒出售后总收入()R n 的现值填入 表3中.表1 第一种方案第1年 第2年 第3年 第4年 第5年 59.0680 63.2899 66.7329 69.7806 72.5808 第6年 第7年 第8年 第9年 第10年 75.2090 77.7098 80.1121 82.4361 84.6961 第11年 第12年 第13年 第14年 第15年 86.9031 89.0656 91.1903 93.2825 95.3467 表2 第二种方案第1年 第2年第3年第4年第5年第6年第7年第8年第9年第10年第11年第12年第13年第14年第15年表3 陈酒出售后的现值第1年 第2年第3年第4年第5年第6年第7年第8年第9年第10年第11年第12年第13年第14年第15年问题的分析和假设:假设问题不受市场上其他因素的影响,忽略通货膨胀的因素,假设酒水没有人为的损坏, 对问题分析。
存款存入银行的问题,可以建模为递增的函数。
问题二和问题一的原理相同。
建模:第一种方案,过n年出售:设第n年的收益为bn,则根据题目,写出运算公式为:r=50bn=r*exp(sqrt(n)/6)第二种方案,立即出售,存款存入银行:可以设存入银行的年收入为r,初始值为r0=50(万元)则,第n年的时候r=r0*(1+0.05)^nr0=50求解的Matlab程序代码:第一种方案,过n年出售:在m文件种编辑:输入为,for n=1:15b(n)=50*exp(sqrt(n)/6);endbb =用来计算1-15年的收益。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.填空题:(每题2分,共10分) 1. 用Matlab 做AHP 数学实验,常用的命令有 , 等等。
2. 矩阵A 关于模36可逆的充要条件是:detA 不能被2和3整除。
泛函()104230()()2()3ln 1J x tx t t x t x t dt ⎡⎤=+++⎣⎦⎰取极值的必要条件为 。
3. 请补充一致矩阵缺失的元素113612131621A ⎛⎫ ⎪= ⎪ ⎪⎝⎭。
4. 请列出本人提交的上机实验内容(标题即可) 。
二.选择题:(每题2分,共10分) 1. 在下列Leslie 矩阵中,能保证主特征值唯一的是 ( ) A. 0230.20000.40⎛⎫ ⎪ ⎪ ⎪⎝⎭; B. 0 1.200.10000.30⎛⎫ ⎪ ⎪ ⎪⎝⎭; C. 0070.30000.10⎛⎫ ⎪ ⎪ ⎪⎝⎭; D.以上都对 2. 下列论述正确的是 ( ) A.判断矩阵一定是一致矩阵 B.正互反矩阵一定是判断矩阵 C.能通过一致性检验的矩阵是一致矩阵 D.一致矩阵一定能通过一致性检验 3. n 阶Leslie 矩阵有 个零元素。
( )
A.不超过2(1)n -;
B.不少于2(1)n -;
C.恰好2
(1)n -; D.恰好21n -
4. Matlab 软件内置命令不可以 ( )
A.求矩阵的主特征值
B. 做曲线拟合;
C. 求解整数线性规划
D. 求样条插值函数
5. 关于等周问题,下面的描述不正确的有 ( )
A.目标泛函可以表示为最简泛函;
B.条件泛函为最简泛函;
C.条件泛函取值为常数;
D. 函数在区间两个端点处可以取任意值
三.判断题(每题2分,共10分)
1. 马氏链模型中,矩阵一定有特征值1。
( )
2. 插值函数不要求通过样本数据点。
( )
3. Matlab 软件内置命令程序可以直接求解0-1整数线性规划问题。
( )
4.Volterra 模型得到的周期解里,当食饵数量最小时,捕食者数量也最小。
( )
5.如果1(,)a a -称为一对倒数,则模42倒数表中的对数是12。
( )
自
觉
遵
守
考
场
纪
律
如
考
试
作
弊
此
答
卷
无
效
四.应用题(共70分)
1.(15分)某人决定用10万元投资A 、B 、C 、D 四支股票,已知购买时四支股票股价分别为每股10元,15元,30元,95元,股市交易要求购买的每支股票数量以手为单位,至少为1手(1手=100股),四只股票的预期收益率分别为30%,20%,50%和15%,如果希望持有股票数量不超过80手,为了使得收益达到最大,请为他的投资建立合适的数学模型,并判断该数学模型的类型。
不需要求出具体数值结果。
2(15分)用无量纲化思想化简下面的数学模型(假设所有的参数均为正常数),使得参数个数尽可能减少。
1111122()()dx x r a x b y dt dy y r a x dt
⎧=--⎪⎪⎨⎪=-⎪⎩
3.(20分)请写出求解下图中从点1到点7的最短路的函数优化模型。
4.(20分)某零件寿命X (单位:月)的分布函数为[]21
40,0(),0,21,2t F t t t t t <⎧⎪=-∈⎨⎪>⎩。
零件损坏时更换和预防性更换费用分别为3万元和2万元。
(1)请建立数学模型,讨论是否存在最佳预防性更换策略。
(2)如果存在,求出最佳更换时间和单位时间最小损失(要求算出具体数值结果)。
如果不存在,请说明理由。
2 3 4 5
6
7 10 12 9 6 8 7 5 7 9 8。