命题及其关系教学讲义

合集下载

《命题及其关系》教案

《命题及其关系》教案

《命题及其关系》教案第一章:命题的基本概念1.1 命题的定义引导学生理解命题的概念,命题是一个陈述句,它要么是真的,要么是假的。

通过举例说明命题的真假性质,如“今天是星期一”是一个命题,它要么是真的,要么是假的。

1.2 命题的构成要素解释命题由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项。

举例说明命题的构成,如“如果下雨,地面会湿”中,“下雨”是题设,“地面会湿”是结论。

第二章:命题的真假判断2.1 判断命题的真假教授学生如何判断命题的真假,只有当命题的所有条件都满足时,命题才为真。

通过举例让学生练习判断命题的真假,如“今天是星期一”这个命题是真的,因为今天是星期一。

2.2 逆命题和反命题解释逆命题和反命题的概念,逆命题是将命题中的题设和结论互换位置得到的新命题,反命题是将命题的题设和结论都取反得到的新命题。

举例说明逆命题和反命题的过程,如“如果下雨,地面会湿”的逆命题是“如果地面会湿,下雨”,反命题是“如果不下雨,地面不会湿”。

第三章:命题的逻辑关系3.1 逻辑连接词介绍逻辑连接词的概念,逻辑连接词是用来连接两个命题的词语,如“且”、“或”、“非”等。

举例说明逻辑连接词的使用,如“今天是星期一且下雨”这个命题只有在今天是星期一且下雨的情况下才为真。

3.2 复合命题解释复合命题的概念,复合命题是由简单命题通过逻辑连接词连接而成的命题。

举例说明复合命题的构成,如“如果下雨,地面会湿”和“如果不下雨,地面不会湿”可以通过逻辑连接词连接成“如果下雨,地面会湿;如果不下雨,地面不会湿”的复合命题。

第四章:命题的等价关系4.1 等价命题的概念解释等价命题的概念,等价命题是指在所有情况下都具有相同真值的命题。

举例说明等价命题的特点,如“今天是星期一”和“今天不是星期日”在所有情况下都具有相同的真值,它们是等价命题。

4.2 等价命题的判断教授学生如何判断两个命题是否为等价命题,可以通过逻辑推理或者真值表来判断。

海门市包场高级中学2014届高三数学教学一体化讲义命题及其关系

海门市包场高级中学2014届高三数学教学一体化讲义命题及其关系

一、考点要求:内 容 要 求 A B C 常用逻辑用语命题的四种形式√ 必要条件、充分条件、充分必要条件 √ 简单的逻辑联结词 √ 全称量词与存在量词√二、知识要点:1、四种命题:①四种命题:原命题:若p 则q ;逆命题: 、否命题: 逆否命题: .②四种命题的关系:原命题为真,它的逆命题 、否命题 、逆否命题 .原命题与它的逆否命题同 、否命题与逆命题同 .③反证法:欲证“若p 则q ”为真命题,从否定其 出发,经过正确的逻辑推理导出矛盾,从而判定原命题为真,这样的方法称为反证法. 2、充要条件①充分条件:如果p q ⇒则p 叫做q 的 条件,q 叫做p 的 条件. ②必要条件:如果q p ⇒则p 叫做q 的 条件,q 叫做p 的 条件. ③充要条件:如果p q ⇒且q p ⇒则p 叫做q 的 条件.注:①p 是q 的充分不必要条件等价于 ②p 的充分不必要条件是q 等价于 ③p 是q 的必要不充分条件等价于 ②p 的必要不充分条件是q 等价于 3、全称量词与存在量词①全称量词:对应日常语言中的“一切”、“任意的”、“所有的”、“凡是”、“任给”、“对每一个”等词,用符号“∀”表示。

②存在量词:对应日常语言中的“存在一个”、“至少有一个”、“有个”、“某个”、“有些”、“有的”等词,用符号“∃”表示。

③全称命题:含有全称量词的命题。

“对∀x ∈M ,有p (x )成立”简记成“∀x ∈M ,p (x )”。

否定形式是 ④存在性命题:含有存在量词的命题。

“∃x ∈M ,有p (x )成立” 简记成“∃x ∈M ,p (x )”。

否定形式是 三、课前热身:1. 对原命题及其逆命题,否命题,逆否命题这四个命题而言,假命题的个数是____ __.2. 命题“若b a >,则122->ba”的否命题为__ ___ 3. 命题“0x ∃<,有20x >”的否定是 .4.设集合A =⎩⎨⎧⎭⎬⎫x |xx -1<0,B ={x |0<x <3},那么“m ∈A ”是“m ∈B ”的_ _条件.5. 已知条件p :(x+1)2>4,条件q:x>a,且q p ⌝⌝是的充分而不必要条件,则a 的取值范围 是6.若命题“∃x ∈R ,使得x 2+(1-a )x +1<0”是真命题,则实数a 的取值范围为______________.四、例题选讲:例1:已知0c >且1c ≠,设:p 函数(21)xy c c =-⋅在R 上为减函数,:q 不等式2(2)1x x c +->的解集为R .若“p 或q ”为真命题,“p 且q ”为假命题,求实数c 的取值范围.例2:已知p : |1-31-x |≤2,q ::x 2-2x +1-m 2≤0(m >0),若p ⌝是q ⌝的必要而不充分条件,求实数m 的取值范围.例3:若a ,b ,c 均为实数,且a =x 2-2y +2π,b =y 2-2z +3π,c =z 2-2x +6π.求证:a 、b 、c 中至少有一个大于0.例4:设,OA OB 是不共线的向量,若(,)OP aOA bOB a b R =+∈,求三点,,A B P 共线的充要条件。

《命题及其关系》教案Word版

《命题及其关系》教案Word版

1.1命题及其关系第一课时 1.1.1 命题及其关系一、教学目标(一)知识目标:了解命题的概念;会判断一个命题的真假;并会将一个命题改写成“若p,则q”的形式.(二)能力目标:培养学生的概括能力和思维能力;培养学生的辨析能力及培养他们分析问题和解决问题的能力(三)德育目标:激发学生学习的兴趣和积极性;养成良好的学习习惯二、教学的重难点及教学设计(一)教学重点:命题的改写.(二)教学难点:命题概念的理解.(三)授课类型:新授课(四)教学方法:教师引导,合作交流与独立探究相结合三、教具准备:多媒体课件四、教学过程:(一)导入新课(用PPT给出)思考:请判断下列语句的真假,能否看出这些语句的表达形式有什么特点?(1)若直线a∥b,则直线a和直线b无公共点;(2) 2 + 4 = 7;(3)垂直于同一条直线的两个平面平行;(4)若 x2 = 1 , 则 x = 1 ;(5)两个全等的三角形面积相等;(6)3能被2整除.引导学生归纳以上语句特点:1 都是陈述句2 可以判断真假,其中,(2)(4)(6)判断为假,其它3个判断为真。

(二)讲授新课1. 教学命题的概念:①命题:我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.强调,判断一个语句是不是命题关键是看它是否符合“是陈述句”和“可以判断真假”这两个条件.上述6个语句中,(1)(2)(3)(4)(5)(6)是命题.②真命题:判断为真的语句叫做真命题;假命题:判断为假的语句叫做假命题.上述5个命题中,(2)(4)(6)是假命题,其它3个都是真命题.③例1:判断下列语句中哪些是命题?是真命题还是假命题?、(1)空集是任何集合的子集;(2)若整数a是素数,则a是奇数;(3)指数函数是增函数吗?(4)若平面上两条直线不相交,则这两条直线平行=-(52(6)x>15(学生自练→个别回答→教师点评)分析加固对命题概念的理解分析:判断一个语句是不是命题,就是要看它是否符合“是陈述句”和“可以判断真假”这两个条件解:上面6个语句中,(3)不是陈述句,所以不是命题;(6)虽然是陈述句,但因为无法判断它的真假,所以它也不是命题;其余四个都是陈述句,并且都可以判断真假,所以都是命题,其中(1)(4)是真命题,(2)(5)是假命题。

《命题及其关系》课件人教版1

《命题及其关系》课件人教版1
观察命题(1)与命题(4)的条件和结论之间 分别有什么关系?
(1)若f(x)是正弦函数,则f(x)是周期函数;
p
q
(4)若f(x)不是周期函数,则f(x)不是正弦函数.
┐q
┐p
互为逆否命题
原命题 (原命题的)逆否命题
原命题: 若p, 则q 逆否命题: 若┐q, 则┐p
《命题及其关系》课件人教版1-精品 课件ppt (实用 版)
第一章 常用逻辑用语
1.1命题及其关系 1.1.1 命题
教学目标:
1、了解命题的概念; 2、会判断命题的真假,能够把命题化 为“若p,则q”的形式.
重点:命题的概念及结构. 难点:命题真假的判断.
在我们日常交往、学习和工作中,逻辑用语是必 不可少的工具.正确使用逻辑用语是现代社会公民应具 备的基本素质.
原结论 反设词 原结论
反设词
是 都是 大于 小于
对所有x, 成立
不是 至少有一个
不都是 至多有一个
不大于 至少有n个
不小于 至多有n个
存在某x, 对任何x,
不成立
不成立
一个也没有 至少有两个 至多有(n-1)个 至少有(n+1)个
存在某x, 成立
练习:课本p6
《命题及其关系》课件人教版1-精品 课件ppt (实用 版)
观察命题(1)与命题(3)的条件和结论之间 分别有什么关系?
(1)若f(x)是正弦函数p,则f(x)是周期函数;q
(3)若f(x)不是正弦函数,则f(x)不是周期函数.
┐p
┐q
为书写简便,常把条件p的否定和结论 q的否定分别记作 “┐p”, “┐q”.
互否命题 原命题 (原命题的)否命题
原命题:若p,则q. 否命题:若┐p,则┐q.

命题及其关系公开课ppt课件

命题及其关系公开课ppt课件

例2 下列命题: ①“若xy=1,则x、y互为倒数”的逆命题 ②“四边相等的四边形是正方形”的否命题; ③“梯形不是平行四边形”的逆否命题; ④“若ac2>bc2,则a>b”的逆命题. 其中的真命题是__①__②__③____.
跟踪训练2 有下列四个命题:
①"若x+y=0,则x、y互为相反数"的否命题;
∴f(a)<f(-b),f(b)<f(-a). ∴f(a)+f(b)<f(-a)+f(-b). 这与已知条件f(a)+f(b)≥f(-a)+f(-b)相矛盾. 因此假设不成立,故a+b≥0.
小结 在解答命题的过程中很容易把逆否命题的证法与 反证法混淆,导致错误的原因是忽视了这两种证法的本质 区别.
跟踪训练3证明:若a2-4b2-2a+1≠0,则a≠2b+1.
(4)若两个角不相等, 则它们不是对顶角 逆否命题: 若 ┐q ,则┐p
原命题,逆命题,否命题,逆否命题
四种命题形式: 原命题: 若p,则q 逆命题: 若q,则p 否命题: 若¬p,则¬q
逆否命题: 若¬q,则¬p
四种命题之间的关系
原命题 若p则q
互逆
逆命题 若q则p
互 否
否命题 若﹁p则﹁q 互逆
由原命题与逆否命题具有相同的真假性可知,结论正确.
1.命题“若 f(x)是奇函数,则 f(-x)是奇函数”的否命题是
(B )
A.若 f(x)是偶函数,则 f(-x)是偶函数 B.若 f(x)不是奇函数,则 f(-x)不是奇函数 C.若 f(-x)是奇函数,则 f(x)是奇函数 D.若 f(-x)不是奇函数,则 f(x)不是奇函数
例3证明:已知函数f ( x)是(, )上的增函数, a, b R, 若f (a) f (b) f (a) f (b),则a b 0.

《命题及其关系》教案

《命题及其关系》教案

《命题及其关系》教案一、教学目标1. 让学生理解命题的概念,掌握命题的构成要素。

2. 培养学生分析、判断和推理的能力。

3. 使学生了解命题之间的关系,学会运用逻辑推理解决问题。

二、教学内容1. 命题的概念与构成要素2. 命题之间的关系3. 逻辑推理方法三、教学重点与难点1. 教学重点:命题的概念、命题之间的关系、逻辑推理方法。

2. 教学难点:命题之间的关系,逻辑推理方法的运用。

四、教学方法1. 讲授法:讲解命题的概念、构成要素、关系及逻辑推理方法。

2. 案例分析法:分析具体案例,引导学生理解命题之间的关系。

3. 小组讨论法:分组讨论,培养学生的合作与交流能力。

4. 练习法:设计相关练习题,巩固所学知识。

五、教学过程1. 导入新课:通过生活中的实例,引导学生认识命题。

2. 讲解命题的概念与构成要素:明确命题的定义,讲解命题的构成要素。

3. 讲解命题之间的关系:介绍蕴含、矛盾、反对等关系。

4. 逻辑推理方法:讲解演绎推理、归纳推理、类比推理等方法。

5. 案例分析:分析具体案例,引导学生理解命题之间的关系。

6. 小组讨论:分组讨论,探讨命题之间的关系及逻辑推理方法。

7. 练习巩固:设计相关练习题,让学生运用所学知识解决问题。

8. 总结与反思:对本节课的内容进行总结,引导学生思考命题及其关系在实际生活中的应用。

9. 作业布置:布置练习题,让学生巩固所学知识。

10. 课后辅导:针对学生作业中出现的问题进行辅导,解答学生的疑问。

六、教学评价1. 评价方式:过程性评价与终结性评价相结合。

2. 评价内容:a. 命题的概念与构成要素的理解程度。

b. 命题之间的关系识别和运用能力。

c. 逻辑推理方法的掌握和运用情况。

d. 案例分析与小组讨论的参与度。

e. 练习题的完成质量。

七、教学资源1. 教材:相关章节内容。

2. 案例材料:用于分析和讨论的实际案例。

3. 练习题:设计不同难度的练习题。

4. 教学课件:用于辅助讲解和展示。

命题及其关系教案新人教选修

命题及其关系教案新人教选修

命题及其关系教案(新人教选修1-1)第一课时 1.1.1 命题及其关系(一)教学要求:了解命题的概念,会判断一个命题的真假,并会将一个命题改写成"若,则"的形式.教学重点:命题的改写.教学难点:命题概念的理解.教学过程:一、复习准备:阅读下列语句,你能判断它们的真假吗?(1)矩形的对角线相等;(2)3;(3)3吗?(4)8是24的约数;(5)两条直线相交,有且只有一个交点;(6)他是个高个子.二、讲授新课:1. 教学命题的概念:①命题:可以判断真假的陈述句叫做命题(proposition). 也就是说,判断一个语句是不是命题关键是看它是否符合"是陈述句"和"可以判断真假"这两个条件.上述6个语句中,(1)(2)(4)(5)(6)是命题.②真命题:判断为真的语句叫做真命题(true proposition);假命题:判断为假的语句叫做假命题(false proposition). 上述5个命题中,(2)是假命题,其它4个都是真命题.③例1:判断下列语句中哪些是命题?是真命题还是假命题?(1)空集是任何集合的子集;(2)若整数是素数,则是奇数;(3)2小于或等于2;(4)对数函数是增函数吗?(5);(6)平面内不相交的两条直线一定平行;(7)明天下雨.(学生自练个别回答教师点评)④探究:学生自我举出一些命题,并判断它们的真假.2. 将一个命题改写成"若,则"的形式:①例1中的(2)就是一个"若,则"的命题形式,我们把其中的叫做命题的条件,叫做命题的结论.②试将例1中的命题(6)改写成"若,则"的形式.③例2:将下列命题改写成"若,则"的形式.(1)两条直线相交有且只有一个交点;(2)对顶角相等;(3)全等的两个三角形面积也相等.(学生自练个别回答教师点评)3. 小结:命题概念的理解,会判断一个命题的真假,并会将命题改写"若,则"的形式.三、巩固练习:1. 练习:教材 P4 1、2、32. 作业:教材P9第1题第二课时 1.1.2 命题及其关系(二)教学要求:进一步理解命题的概念,了解命题的逆命题、否命题与逆否命题,会分析四种命题的相互关系.教学重点:四种命题的概念及相互关系.教学难点:四种命题的相互关系.教学过程:一、复习准备:指出下列命题中的条件与结论,并判断真假:(1)矩形的对角线互相垂直且平分;(2)函数有两个零点.[来源:Gk二、讲授新课:1. 教学四种命题的概念:原命题逆命题否命题逆否命题若,则若,则若,则若,则[来源:Gk写出命题"菱形的对角线互相垂直"的逆命题、否命题及逆否命题,并判断它们的真假. (师生共析学生说出答案教师点评)[来源:Gkstk]②例1:写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假:(1)同位角相等,两直线平行;(2)正弦函数是周期函数;(3)线段垂直平分线上的点与这条线段两个端点的距离相等. (学生自练个别回答教师点评)2. 教学四种命题的相互关系:①讨论:例1中命题(2)与它的逆命题、否命题、逆否命题间的关系.②四种命题的相互关系图:[来源:高考试题库][来源:高考试题库Z,X,X,K]③讨论:例1中三个命题的真假与它们的逆命题、否命题、逆否命题的真假间关系.④结论一:原命题与它的逆否命题同真假;结论二:两个命题为互逆命题或互否命题,它们的真假性没有关系.⑤例2 若,则.(利用结论一来证明)(教师引导学生板书教师点评)3. 小结:四种命题的概念及相互关系.三、巩固练习:1. 练习:写出下列命题的逆命题、否命题及逆否命题,并判断它们的真假.(1)函数有两个零点;(2)若,则;(3)若,则全为0;(4)全等三角形一定是相似三角形;(5)相切两圆的连心线经过切点.2. 作业:教材P9页第2(2)题P10页第3(1)题。

命题及其关系PPT教学课件

命题及其关系PPT教学课件

(1)必要不充分 (2)充分不必要 (3)充分不必要 解析: (1)等价转化为判断,q:a=0且b=0是p :ab=0的 什么条件. ∵a=0且b=0,则ab=0成立,∴ q⇒ p, 而ab=0推不出a=0且b=0,如a=0,b=8, ∴p⇒ q, ∴ q是p 的充分不必要条件,即p是q的充分不必要 条件.
【例1】 以下列命题为原命题,分别写出 它们的逆命题、否命题和逆否命题, 并判断它们的真假. (1)内接于圆的四边形的对角互补; (2)已知a、b、c、d是实数, 若a=b,c=d,则a+c=b+d.
解: (1)原命题: “若四边形内接于圆,则它的对角互补”; 逆命题: “若四边形对角互补,则它必内接于某圆”; 否命题: “若四边形不内接于圆,则它的对角不互补”; 逆否命题: “若四边形的对角不互补,则它不内接于圆”. 四种命题都正确.
否命题:“已知a、b、c、d是实数, 若a≠b或c≠d,则a+c≠b+d” (注意“a=b,c=d”的否定是“a≠b或c≠d”, 只需要至少有一个不等即可), 此命题不正确,a=1,c=1,b=1.5,d=0.5, a≠b或c≠d,但a+c=b+d.
逆否命题:“已知a、b、c、d是实数, 若a+c≠b+d,则a≠b或c≠d”. 逆否命题还可以写成:“已知a、b、c、d是实数,若a +c≠b+d, 则a=b,c=d两个等式至少有一个不成立”, 由原命题为真得此命题显然为真.
变式2-1
用“充分不必要”、“必要不充分”、“充要”、 “既不充分也不必要”填空.
(1) “ p:ab 0”是“q:a 0或b 0”的________条件;
(2)若非空集合A,B,C满足A∪B=C, 且B不是A的子集,则“p:x∈C ”是 “q:x∈A ”的________条件; (3)“p:x>0”是“q:x≠0”的________条件.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

命题及其关系、充分条件与必要条件教学讲义1.命题用语言、符号或式子表达的,可以判断真假的__陈述句__叫做命题,其中__判断为真__的语句叫做真命题,__判断为假__的语句叫做假命题.2.四种命题及其关系(1)四种命题间的相互关系(2)四种命题的真假关系①若两个命题互为逆否命题,则它们有__相同__的真假性;②两个命题为互逆命题或互否命题,它们的真假性__没有关系__.3.充分条件、必要条件与充要条件若p⇒q,则p是q的__充分__条件,q是p的__必要__条件p是q的__充分不必要__条件p⇒q且q pp是q的__必要不充分__条件p q且q⇒pp是q的__充要__条件p⇔qp是q的__既不充分又不必要__条件p q且q p1.若A={x|p(x)},B={x|q(x)},则(1)若A⊆B,则p是q的充分条件;(2)若A⊇B,则p是q的必要条件;(3)若A=B,则p是q的充要条件;(4)若A B,则p是q的充分不必要条件;(5)若A B,则p是q的必要不充分条件;(6)若A B且A⊉B,则p是q的既不充分也不必要条件.2.充分条件与必要条件的两个特征:(1)对称性:若p是q的充分条件,则q是p的必要条件,即“p⇒q”⇔“q⇐p”.(2)传递性:若p是q的充分(必要)条件,q是r的充分(必要)条件,则p是r的充分(必要)条件,即“p⇒q且q⇒r”⇒“p⇒r”(“p⇐q且q⇐r”⇒“p⇐r”).注意:不能将“若p,则q”与“p⇒q”混为一谈,只有“若p,则q”为真命题时,才有“p ⇒q”,即“p⇒q”⇔“若p,则q”为真命题.1.下列语句为命题的是(D)A.对角线相等的四边形B.a<5C.x2-x+1=0D.有一个内角是90°的三角形是直角三角形[解析]只有选项D是可以判断真假的陈述句,故选D.2.命题“平行四边形的对角线互相平分”的逆否命题是(A)A.对角线不互相平分的四边形不是平行四边形B.不是平行四边形的四边形对角线不互相平分C.对角线不互相平分的四边形是平行四边形D.不是平行四边形的四边形对角线互相平分[解析]原命题即“若四边形是平行四边形,则其对角线互相平分”,故其逆否命题“若四边形的对角线不互相平分,则其不是平行四边形”,即“对角线不互相平分的四边形不是平行四边形”.3.(教材改编题)“x=2”是“x2-4=0”的(A)A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件[解析]x2-4=0,则x=±2,故是充分不必要条件.故选A.4.若命题p的否命题为r,命题r的逆命题为s,则s是p的(A)A.逆否命题B.逆命题C.否命题D.原命题[解析] 假设命题p 为“若A ,则B ”.根据四种命题的关系可知,命题r 为“若¬A ,则¬B ”,命题s 为“若¬B ,则¬A ”,因此s 是p 的逆否命题. 5.下列命题中为真命题的是( A ) A .命题“若x >y ,则x >|y |”的逆命题 B .命题“若x >1,则x 2>1”的否命题 C .命题“若x =1,则x 2+x -2=0”的否命题 D .命题“若x 2>0,则x >1”的逆否命题[解析] 对于A ,其逆命题是“若x >|y |,则x >y ”,是真命题,这是因为x >|y |≥y ,必有x >y ; 对于B ,其否命题是“若x ≤1,则x 2≤1”,是假命题,如x =-5,x 2=25>1;对于C ,其否命题是“若x ≠1,则x 2+x -2≠0”,由于x =-2时,x 2+x -2=0,所以是假命题;对于D ,若x 2>0,则x ≠0,不一定有x >1,因此原命题的逆否命题是假命题. 6.“tan α=tan β”是“α=β”的( )条件( D ) A .充分不必要 B .必要不充分 C .充要D .既不充分也不必要[解析] 当tan α=tan β时,α=β+k π,k ∈Z ,不一定α=β;当α=β=π2时,tan α,tan β无意义,因此也不能说tan α=tan β,故选D . 7.写出下列命题的否定形式和否命题: (1)若xy =0,则x ,y 中至少有一个为零; (2)若a +b =0,则a ,b 中最多有一个大于零; (3)若四边形是平行四边形,则其相邻两个内角相等; (4)有理数都能写成分数.[解析] (1)否定形式:若xy =0,则x ,y 都不为零. 否命题:若xy ≠0,则x ,y 都不为零. (2)否定形式:若a +b =0,则a ,b 都大于零. 否命题:若a +b ≠0,则a ,b 都大于零.(3)否定形式:若四边形是平行四边形,则它的相邻两个内角不相等. 否命题:若四边形不是平行四边形,则它的相邻两个内角不相等. (4)否定形式:有理数不能都写成分数.否命题:非有理数不能写成分数. [答案] 略考点1 四种命题及其关系——自主练透例1 (1)(2018·长春模拟)已知命题α:如果x <3,那么x <5,命题β:如果x ≥3,那么x ≥5,则命题α是命题β的( A ) A .否命题 B .逆命题 C .逆否命题 D .否定形式(2)给出以下四个命题:①“若x +y =0,则x 、y 互为相反数”的逆命题; ②“全等三角形面积相等”的否命题;③“若q ≤-1,则x 2+x +q =0有实数根”的逆否命题; ④若ab 是正整数,则a 、b 都是正整数. 其中真命题是__①③__(写出所有真命题的序号).(3)(2018·北京,13)能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是__f (x )=sin x ,x ∈[0,2](答案不唯一)__. [解析] (1)命题α:如果x <3,那么x <5, 命题β:如果x ≥3,那么x ≥5, 则命题α是命题β的否命题.(2)①“若x +y =0,则x 、y 互为相反数”的逆命题为“若x 、y 互为相反数,则x +y =0”,显然是真命题;②“全等三角形面积相等”的否命题为“不全等三角形的面积不相等”,假命题;③“若q ≤-1,则x 2+x +q =0有实根”的逆否命题为“若x 2+x +q =0无实根,则q >-1”,x 2+x +q =0无实根则△=1-4q <0,即q >14,从而q >-1,故③为真命题.(也可由原命题为真得出结论);④显然是假命题,如ab =2时,可能a =-1,b =-2,故填①③. (3)本题主要考查函数的单调性及最值.根据函数单调性的概念,只要找到一个定义域为[0,2]的不单调函数,满足在定义域内有唯一的最小值点,且f (x )min =f (0)即可,除所给答案外,还可以举出f (x )=⎩⎪⎨⎪⎧0,x =0,1x ,0<x ≤2等.[导师点睛] 函数的单调性是对一个区间上的任意两个变量而言的.根据题意,本题只要找到一个定义域为[0,2]的不单调函数,满足在[0,2]上有唯一的最小值点,而且f (x )min =f (0)即可. 名师点拨 ☞(1)由原命题写出其他三种命题,关键要分清原命题的条件和结论,如果命题不是“若p ,则q ”的形式,应先改写成“若p ,则q ”的形式;如果命题有大前提,写其他三种命题时需保留大前提不变.(2)判断一个命题为真命题,要给出严格的推理证明;判断一个命题为假命题,只需举出反例. (3)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.考点2 充要条件的判断——师生共研考向1 定义法判断例2 (2018·北京,4)设a ,b ,c ,d 是非零实数,则“ad =bc ”是“a ,b ,c ,d 成等比数列”的( B ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件[解析] 本题主要考查充分条件与必要条件,等比数列的性质. 由a ,b ,c ,d 成等比数列,可得ad =bc ,即必要性成立;当a =1,b =-2,c =-4,d =8时,ad =bc ,但a ,b ,c ,d 不成等比数列,即充分性不成立,故选B . 考向2 集合法判断例3 (文)(2018·天津,3)设x ∈R ,则“x 3>8”是“|x |>2”的( A ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件(理)(2018·天津,4)设x ∈R ,则“|x -12|<12”是“x 3<1”的( A )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件[解析] (文)本题主要考查解不等式和充分、必要条件的判断. 由x 3>8得x >2,由|x |>2得x >2或x <-2. 因为(2,+∞)(-∞,-2)∪(2,+∞),所以“x 3>8”是“|x |>2”的充分而不必要条件.故选A . (理)本题主要考查解不等式和充分、必要条件的判断. 由|x -12|<12得-12<x -12<12,解得0<x <1.由x 3<1得x <1.因为(0,1)(-∞,1),所以“|x -12|<12”是“x 3<1”的充分而不必要条件.[方法总结] (1)充分、必要条件的判断.解决此类问题应分三步:①确定条件是什么,结论是什么;②尝试从条件推结论,从结论推条件;③确定条件和结论是什么关系.(2)探究某结论成立的充要、充分、必要条件.解答此类题目,可先从结论出发,求出使结论成立的必要条件,然后验证得到的必要条件是否满足充分性. 考向3 等价转化法判断例4 (1)给定两个条件p ,q ,若¬p 是q 的必要不充分条件,则p 是¬q 的( A ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件(2)“已知命题p :cos α≠12,命题q :α≠π3”,则命题p 是命题q 的( A )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[解析] (1)因为¬p 是q 的必要不充分条件,则q ⇒¬p ,但¬p q ,其逆否命题为p ⇒¬q ,但¬qp ,所以p 是¬q 的充分不必要条件.(2)¬p :cos α=12,¬q :α=π3,显然¬q ⇒¬p ,¬p¬q ,∴¬q 是¬p 的充分不必要条件,从而p 是q 的充分不必要条件,故选A .另解:若cos α≠12,则α≠2k π±π3(k ∈Z ),则α也必然不等于π3,故p ⇒q ;若α≠π3,但α=-π3时,依然有cos α=12,故q p .所以p 是q 的充分不必要条件.故选A .名师点拨 ☞有关充要条件的判断常用的方法(1)根据定义判断:①弄清条件p 和结论q 分别是什么;②尝试p ⇒q ,q ⇒p .若p ⇒q ,则p 是q 的充分条件;若q ⇒p ,则p 是q 的必要条件;若p ⇒q ,q p ,则p 是q 的充分不必要条件;若pq ,q ⇒p ,则p 是q 的必要不充分条件;若p ⇒q ,q ⇒p ,则p 是q 的充要条件.(2)利用集合判断记法A={x|p(x)},B={x|q(x)}关系A B B A A=B A B且B A结论p是q的充分不必要条件p是q的必要不充分条件p是q的充要条件p是q的既不充分也不必要条件(3)利用等价转化法:对于带有否定性词语的命题,常用此法,既要判断p是q的什么条件,只需判断¬q是¬p的什么条件.〔变式训练1〕(1)(2018·浙江,6)已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的(A) A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件(2)指出下列各组中,p是q的什么条件(在“充分不必要条件”“必要不充分条件”“充要条件”“既不充分也不必要条件”中选出一种作答).①在△ABC中,p:A=B,q:sin A=sin B;②已知x,y∈R,p:(x-1)2+(y-2)2=0,q:(x-1)(y-2)=0;③非空集合A,B中,p:x∈(A∪B),q:x∈B;④对于实数x,y,p:x+y≠8,q:x≠2或y≠6.[解析](1)∵m⊄α,n⊂α,m∥n,∴m∥α,故充分性成立.而由m∥α,n⊂α,得m∥n或m与n异面,故必要性不成立.故选A.(2)①在△ABC中,A=B⇒sin A=sin B;反之,若sin A=sin B,因为A与B不可能互补(三角形三个内角之和为180°),所以只有A=B,故p是q的充要条件.②条件p:x=1且y=2,条件q:x=1或y=2,所以p⇒q但q p,故p是q的充分不必要条件.③显然x∈(A∪B)不一定有x∈B,但x∈B一定有x∈(A∪B),所以p是q的必要不充分条件.④易知¬p:x+y=8,¬q:x=2且y=6,显然¬q⇒¬p,但¬p¬q,但¬q是¬p的充分不必要条件,根据原命题和逆否命题的等价性知,p是q的充分不必要条件.考点3充要条件的应用——多维探究角度1 充要条件的探究例5 (2018·山东烟台诊断)若条件p :|x |≤2,条件q :x ≤a ,且p 是q 的充分不必要条件,则实数a 的取值范围是( A ) A .[2,+∞) B .(-∞,2] C .[-2,+∞)D .(-∞,-2][解析] p :|x |≤2等价于-2≤x ≤2.因为p 是q 的充分不必要条件,所以[-2,2]⊆(-∞,a ],即a ≥2.角度2 等价转化思想的应用例6 (2018·福建三明月考)设命题p :|4x -3|≤1,q :x 2-(2a +1)x +a (a +1)≤0,若¬p 是¬q 的必要不充分条件,则实数a 的取值范围是( A ) A .[0,12]B .(0,12)C .(-∞,0]∪[12,+∞)D .(-∞,0)∪(12,+∞)[解析] 由|4x -3|≤1得12≤x ≤1,由x 2-(2a +1)x +a (a +1)=(x -a )[x -(a +1)]≤0得a ≤x ≤a+1,因为¬p 是¬q 的必要不充分条件,所以p 是q 的充分不必要条件,有⎩⎪⎨⎪⎧a ≤12,a +1≥1得0≤a ≤12.故选A .名师点拨 ☞充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意:(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解;(2)一定要注意端点值的取舍,处理不当容易出现漏解或增解的现象. (3)注意区别以下两种不同说法:①p 是q 的充分不必要条件,是指p ⇒q 但q p ;②p 的充分不必要条件是q ,是指q ⇒p 但pq .(4)注意下列条件的等价转化:①p 是q 的什么条件等价于¬q 是¬p 的什么条件,②p 是¬q 的什么条件等价于q 是¬p 的什么条件. 〔变式训练2〕(1)(角度1)(2018·山西45校联考)下列选项中,a >b 的一个充分不必要条件的是( D ) A .1a >1bB .e a >e bC .a 2>b 2D .lg a >lg b(2)(角度2)已知命题p :⎩⎪⎨⎪⎧x +2≥0,x -10≤0,命题q :1-m ≤x ≤1+m (m >0).①若p 是q 的充分不必要条件,则实数m 的取值范围为__m ≥9__. ②若¬p 的必要不充分条件是¬q ,则实数m 的取值范围为__0<m ≤3__.[分析] (2)①与不等式解集相关的两个命题间充分条件、必要条件问题常转化为集合之间的包含关系,从而列出关于参数的不等式(组)求解;②注意“¬p 的必要不充分条件是¬q ”与“¬p 是¬q 的必要不充分条件”的区别,前者是“¬p ⇒¬q ,¬q¬p ”,后者是“¬q ⇒¬p ,¬p¬q ”.由于¬q 是¬p 的必要不充分条件,故可先求出¬p 、¬q ,再转化为集合之间的包含关系求解.也可利用互为逆否的两个命题的等价性,由¬q 是¬p 的必要不充分条件可知,p 是q 的必要不充分条件(或q 是p 的充分不必要条件),再转化为集合之间的关系求解.[解析] (1)lg a >lg b ⇒a >b ,反之不成立,如a >b =0时.所以a >b 的一个充分不必要条件的是lg a >lg b ,故选D .(2)p :A ={x |-2≤x ≤10},q :B ={x |1-m ≤x ≤1+m },①∵p 是q 的充分不必要条件,∴A B ,∴⎩⎪⎨⎪⎧1-m ≤-2,1+m ≥10,解得m ≥9. ②∵¬p 的必要不充分条件是¬q ,即¬p ⇒¬q ,¬q¬p ,∴q ⇒p ,pq ,即p 是q 的必要不充分条件,∴B A ,又m >0,∴⎩⎪⎨⎪⎧1-m ≥-2,1+m ≤10,解得0<m ≤3.名师点拨 ☞探求充要条件的选择题的破题关键:首先,判断是选项“推”题干,还是题干“推”选项,其次,利用以小推大的技巧,即可得结论.。

相关文档
最新文档