2019年高考数学二轮复习对点练:专题九 选做大题 专题对点练27 Word版含答案
2019年高考数学(文科)二轮复习对点练:二函数与导数专题对点练9(含答案)

专题对点练92.1~2.4组合练(限时90分钟,满分100分)一、选择题(共9小题,满分45分)1.设函数f(x)=则f(f(e))=()A.0B.1C.2D.ln(e2+1)2.设a=60.4,b=log0.40.5,c=log80.4,则a,b,c的大小关系是()A.a<b<cB.c<b<aC.c<a<bD.b<c<a3.已知函数y=log a(x+c)(a,c为常数,其中a>0,a≠1)的图象如图所示,则下列结论成立的是()A.a>1,c>1B.a>1,0<c<1C.0<a<1,c>1D.0<a<1,0<c<14.(2018全国Ⅲ,文9)函数y=-x4+x2+2的图象大致为()5.函数y=1+log0.5(x-1)的图象一定经过点()A.(1,1)B.(1,0)C.(2,1)D.(2,0)6.若函数f(x)=的值域为[-1,1],则实数a的取值范围是()A.[1,+∞)B.(-∞,-1]C.(0,1]D.(-1,0)7.已知函数f(x)=,则()A.∃x0∈R,使得f (x)<0B.∀x∈(0,+∞),f(x)≥0C.∃x1,x2∈[0,+∞),使得<0D.∀x1∈[0,+∞),∃x2∈[0,+∞),使得f(x1)>f(x2)8.已知函数f(x)为偶函数,当x≤0时,f(x)为增函数,则“<x<2”是“f[log2(2x-2)]>f”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件9.已知f(x)=若不等式f(x-1)≥f(x)对一切x∈R恒成立,则实数a的最大值为()A.B.-1 C.-D.1二、填空题(共3小题,满分15分)10.已知x≥0,y≥0,且x+y=1,则x2+y2的取值范围是.11.已知二次函数f(x)=ax2-2x+c的值域为[0,+∞),则的最小值为.12.(2018天津,文14)已知a∈R,函数f(x)=若对任意x∈[-3,+∞),f(x)≤|x|恒成立,则a的取值范围是.三、解答题(共3个题,满分分别为13分,13分,14分)13.(2018全国Ⅰ,文21)已知函数f(x)=a e x-ln x-1.(1)设x=2是f(x)的极值点,求a,并求f(x)的单调区间;(2)证明:当a≥时,f(x)≥0.14.已知函数f(x)=e x-ax2-2x(a∈R).(1)当a=0时,求f(x)的最小值;(2)当a<-1时,证明不等式f(x)> -1在(0,+∞)上恒成立.15.(2018浙江,22)已知函数f(x)=-ln x.(1)若f(x)在x=x1,x2(x1≠x2)处导数相等,证明:f(x1)+f(x2)>8-8ln 2;(2)若a≤3-4ln 2,证明:对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.专题对点练9答案1.C解析f(e)=ln e=1,所以f(f(e))=f(1)=12+1=2.故选C.2.B解析∵a=60.4>1,b=log0.40.5∈(0,1),c=log80.4<0,∴a>b>c.3.D解析∵函数单调递减,∴0<a<1,当x=1时,y=log a(1+c)<0,即1+c>1,即c>0,当x=0时,log a(x+c)=log a c>0,即c<1,即0<c<1,故选D.4.D解析当x=0时,y=2>0,排除A,B;当x=时,y=-+2>2.排除C.故选D.5.C解析∵函数y=log0.5x恒过定点(1,0),而y=1+log0.5(x-1)的图象是由y=log0.5x的图象向右平移一个单位,向上平移一个单位得到,∴定点(1,0)平移以后即为定点(2,1),故选C.6.A解析函数f(x)=的值域为[-1,1],当x≤a时,f(x)=cos x∈[-1,1],满足题意;当x>a时,f(x)=∈[-1,1],应满足0<≤1,解得x≥1.∴a的取值范围是[1,+∞).7.B解析由函数f(x)=,知在A中f(x)≥0恒成立,故A错误,B正确;又f(x)=在[0,+∞)上是递增函数,故C错误;在D中,当x1=0时,不存在x2∈[0,+∞)使得f(x1)>f(x2),故D不成立.故选B.8.D解析由f(x)是偶函数且当x≤0时,f(x)为增函数,则x>0时,f(x)是减函数,故由f[log2(2x-2)]>f,得|log2(2x-2)|<=log2,故0<2x-2<,解得1<x<,故“<x<2”是“1<x<”的既不充分也不必要条件,故选D.9.B解析作出函数f(x)和f(x-1)的图象,当a≥0时,f(x-1)≥f(x)对一切x∈R不恒成立(如图1).图1图2当a<0时,f(x-1)过定点(1,0)(如图2),当x>0时,f(x)=ax2+x的两个零点为x=0和x=-,要使不等式f(x-1)≥f(x)对一切x∈R恒成立,则只需要-≤1,得a≤-1,即a的最大值为-1.10.解析x2+y2=x2+(1-x)2=2x2-2x+1,x∈[0,1],所以当x=0或1时,x2+y2取最大值1;当x=时,x2+y2取最小值.因此x2+y2的取值范围为.11.6解析二次函数f(x)=ax2-2x+c的值域为[0,+∞),可得判别式Δ=4-4ac=0,即有ac=1,且a>0,c>0,可得≥2=2×3=6,当且仅当,即有c=,a=3时,取得最小值6.12.解析当x>0时,f(x)≤|x|可化为-x2+2x-2a≤x,即+2a-≥0,所以a≥;当-3≤x≤0时,f(x)≤|x|可化为x2+2x+a-2≤-x,即x2+3x+a-2≤0.对于函数y=x2+3x+a-2,其图象的对称轴方程为x=-.因为当-3≤x≤0时,y≤0,所以当x=0时,y≤0,即a-2≤0,所以a≤2.综上所述,a的取值范围为.13.解(1)f(x)的定义域为(0,+∞),f'(x)=a e x-.由题设知,f'(2)=0,所以a=.从而f(x)=e x-ln x-1,f'(x)=e x-.当0<x<2时,f'(x)<0;当x>2时,f'(x)>0.所以f(x)在(0,2)单调递减,在(2,+∞)单调递增.(2)当a≥时,f(x)≥-ln x-1.设g(x)=-ln x-1,则g'(x)=.当0<x<1时,g'(x)<0;当x>1时,g'(x)>0.所以x=1是g(x)的最小值点.故当x>0时,g(x)≥g(1)=0.因此,当a≥时,f(x)≥0.14.(1)解a=0时,f(x)=e x-2x,f'(x)=e x-2,令f'(x)>0,解得x>ln 2,令f'(x)<0,解得x<ln 2,故f(x)在(-∞,ln 2)递减,在(ln 2,+∞)递增,故f(x)min=f(ln 2)=2-2ln 2.(2)证明∵f'(x)=e x-2ax-2,∴f'(1)=e-2-2a>e-2-2=0,f'(0)=-1<0,故存在x0∈(0,1),使得f'(x0)=0,令h(x)=e x-2ax-2,则x∈(0,+∞)时,h'(x)=e x-2a>e x+2-e>0,故h(x)在(0,+∞)递增且h(x0)=0,故x=x0是h(x)的唯一零点,且在x=x0处f(x)取最小值f(x0)=-x0(ax0+2),又h(x0)=0,即-2ax0-2=0,得ax0+1=,故f(x0)=-x0,构造函数g(t)=e t-t,则g'(t)=e t-1,[g'(t)]'=e t,故t∈(0,1)时,[g'(t)]'<0,g'(t)在(0,1)递减,故t∈(0,1)时,g'(t)<g'(0)<0,故g(t)在(0,1)递减,故f(x0)在(0,1)递减,故f(x)min=f(x0)>e1-1=-1,原结论成立.15.证明(1)函数f(x)的导函数f'(x)=,由f'(x1)=f'(x2),得,因为x1≠x2,所以.由基本不等式,得≥2,因为x1≠x2,所以x1x2>256.由题意得f(x1)+f(x2)=-ln x1+-ln x2=-ln(x1x2).设g(x)=-ln x,则g'(x)=-4),所以所以g(x)在[256,+∞)上单调递增,故g(x1x2)>g(256)=8-8ln 2,即f(x1)+f(x2)>8-8ln 2.(2)令m=e-(|a|+k),n=+1,则f(m)-km-a>|a|+k-k-a≥0,f(n)-kn-a<n≤n<0,所以,存在x0∈(m,n),使f(x0)=kx0+a.所以,对于任意的a∈R及k∈(0,+∞),直线y=kx+a与曲线y=f(x)有公共点.由f(x)=kx+a,得k=.设h(x)=,则h'(x)=.其中g(x)=-ln x.由(1)可知g(x)≥g(16).又a≤3-4ln 2,故-g(x)-1+a≤-g(16)-1+a=-3+4ln 2+a≤0,所以h'(x)≤0,即函数h(x)在(0,+∞)上单调递减.因此方程f(x)-kx-a=0至多1个实根.综上,当a≤3-4ln 2时,对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.。
2019年高考数学(文)二轮复习对点练第一部分 方法、思想解读 专题对点练1 Word版含答案

专题对点练选择题、填空题的解法一、选择题.方程至少有一个负根的充要条件是()<≤<≤<≤或<.设() <<,若()[()()],则下列关系式中正确的是()<><>.在等差数列{}中,是一个与无关的常数,则该常数的可能值的集合为().{} ....在△中,角所对的边分别为,若成等差数列,则等于(). . . ..已知定义在上的函数()满足:对任意实数,都有()(),且()在(∞]上单调递增.若<,且,则()与()的大小关系是()()<() ()()()>() .不能确定.已知是锐角△的外接圆圆心°·,则的值为()....设函数()则满足(())()的的取值范围是()..[]..[∞).(陕西一模)设∈,定义符号函数则函数() 的图象大致是().已知()()(>,且≠)恒过定点,且点在直线(>>)上,则的最小值为().已知直线与双曲线相切于点与双曲线两条渐近线交于两点,则的值为()二、填空题.设>>,则的大小关系是.(用“<”连接).不论为何实数,直线与圆恒有交点,则实数的取值范围是..函数() ()的零点个数为..已知定义在上的奇函数()满足()(),且在区间[]上是增函数,若方程()(>)在区间[]上有四个不同的根,则. .已知函数()是定义在上的可导函数,其导函数记为'(),若对于∀∈,有()>'(),且()是奇函数,则不等式()<的解集为..设函数()(∈)()则()的值域为.专题对点练答案解析当时,符合题意,排除;当时,符合题意,排除.故选.解析()是增函数,根据条件不妨取,则()>()·[()()].在这种特例情况下满足<,所以选.解析∵是一个与无关的常数,∴结合选项令,则数列{}是一个常数列,满足题意;令,设等差数列的公差为,则(),∴,即(),化简,得,也满足题意;,则,不满足题意.故选.解析(法一)由题意可取特殊值,则,.故选.。
2019年高考数学(文)二轮复习对点练:第一部分 方法、思想解读 专题对点练2 Word版含答案

专题对点练2函数与方程思想、数形结合思想一、选择题1.设a>1,若对于任意的x∈[a,2a],都有y∈[a,a2]满足方程log a x+log a y=3,这时a的取值的集合为()A.{a|1<a≤2}B.{a|a≥2}C.{a|2≤a≤3}D.{2,3}2.若椭圆+y2=1的两个焦点为F1,F2,过F1作垂直于x轴的直线与椭圆相交,其一交点为P,则|PF2|=()A. B. C. D.43.(2018甘肃兰州一模)若关于x的方程2sin=m在上有两个不等实根,则m的取值范围是()A.(1,)B.[0,2]C.[1,2)D.[1,]4.函数f(x)是定义在区间(0,+∞)上的可导函数,其导函数为f'(x),且满足xf'(x)+2f(x)>0,则不等式的解集为()A.{x|x>-2 011}B.{x|x<-2 011}C.{x|-2 016<x<-2 011}D.{x|-2 011<x<0}5.对任意a∈[-1,1],函数f(x)=x2+(a-4)x+4-2a的值总大于零,则x的取值范围是()A.{x|1<x<3}B.{x|x<1或x>3}C.{x|1<x<2}D.{x|x<1或x>2}6.抛物线y2=2px(p>0)的焦点为圆x2+y2-6x=0的圆心,过圆心且斜率为2的直线l与抛物线相交于M,N两点,则|MN|=()A.30B.25C.20D.157.若0<x1<x2<1,则()A.>ln x2-ln x1B.<ln x2-ln x1C.x2>x1D.x2<x18.已知在正四棱锥S-ABCD中,SA=2,则当该棱锥的体积最大时,它的高为()A.1B.C.2D.39.已知函数f(x)=x+x ln x,若k∈Z,且k(x-1)<f(x)对任意的x>1恒成立,则k的最大值为()A.2B.3C.4D.5二、填空题10.使log2(-x)<x+1成立的x的取值范围是.11.若函数f(x)=(a>0,且a≠1)的值域是[4,+∞),则实数a的取值范围是.12.已知奇函数f(x)的定义域是{x|x≠0,x∈R},且在(0,+∞)内单调递增,若f(1)=0,则满足x·f(x)<0的x的取值范围是.13.已知圆M与y轴相切,圆心在直线y=x上,并且在x轴上截得的弦长为2,则圆M的标准方程为.14.已知P是直线l:3x+4y+8=0上的动点,PA,PB是圆x2+y2-2x-2y+1=0的两条切线,A,B是切点,C是圆心,则四边形PACB面积的最小值为.15.我们把函数y1=x2-3x+2(x>0)沿y轴翻折得到函数y2,函数y1与函数y2的图象合起来组成函数y3的图象,若直线y=kx+2与函数y3的图象刚好有两个交点,则满足条件的k的值为.三、解答题16.如图,在直三棱柱ABC-A'B'C'中,AC=BC=5,AA'=AB=6,D,E分别为AB和BB'上的点,且=λ.(1)求证:当λ=1时,A'B⊥CE;(2)当λ为何值时,三棱锥A'-CDE的体积最小,并求出最小体积.专题对点练2答案1.B解析依题意得y=,当x∈[a,2a]时,y=.由题意可知⊆[a,a2],即有a2≥a,又a>1,所以a≥2.故选B.2.C解析如图,令|F1P|=r1,|F2P|=r2,则即故r2=.3.C解析方程2sin=m可化为sin,当x∈时,2x+,画出函数y=f(x)=sin在x∈上的图象如图所示:由题意,得<1,则m的取值范围是[1,2),故选C.4.C解析由xf'(x)+2f(x)>0,则当x∈(0,+∞)时,x2f'(x)+2xf(x)>0,即[x2f(x)] '=x2f'(x)+2xf(x),所以函数x2f(x)为单调递增函数,由,即(x+2 016)2f(x+2 016)<52f(5),所以0<x+2 016<5,所以不等式的解集为{x|-2 016<x<-2 011},故选C.5.B解析由f(x)=x2+(a-4)x+4-2a>0,得a(x-2)+x2-4x+4>0.令g(a)=a(x-2)+x2-4x+4,由a∈[-1,1]时,不等式f(x)>0恒成立,即g(a)>0在[-1,1]上恒成立.则即解得x<1或x>3.6.D解析圆x2+y2-6x=0的圆心(3,0),焦点F(3,0),抛物线y2=12x,设M(x1,y1),N(x2,y2).直线l的方程为y=2x-6,联立即x2-9x+9=0,∴x1+x2=9,∴|MN|=x1+x2+p=9+6=15,故选D.7.C解析设f(x)=e x-ln x(0<x<1),则f'(x)=e x-.令f'(x)=0,得x e x-1=0.根据函数y=e x与y=的图象(图略)可知两函数图象交点x0∈(0,1),因此函数f(x)在(0,1)内不是单调函数,故A选项不正确;同理可知B选项也不正确;设g(x)=(0<x<1),则g'(x)=.又0<x<1,∴g'(x)<0.∴函数g(x)在(0,1)上是减函数.又0<x1<x2<1,∴g(x1)>g(x2).∴x2>x1.故C选项正确,D项不正确.8.C解析设正四棱锥S-ABCD的底面边长为a(a>0),则高h=,所以体积V=a2h=.设y=12a4-a6(a>0),则y'=48a3-3a5.令y'>0,得0<a<4;令y'<0,得a>4.故函数y在(0,4]上单调递增,在[4,+∞)内单调递减.可知当a=4时,y取得最大值,即体积V取得最大值,此时h==2,故选C.9.B解析由k(x-1)<f(x)对任意的x>1恒成立,得k<(x>1).令h(x)=(x>1),则h'(x)=.令g(x)=x-ln x-2=0,得x-2=ln x,画出函数y=x-2,y=ln x的图象如图,g(x)存在唯一的零点,又g(3)=1-ln 3<0,g(4)=2-ln 4=2(1-ln 2)>0,∴零点属于(3,4),∴h(x)在(1,x0)内单调递减,在(x0,+∞)内单调递增.而3<h(3)=<4, <h(4)=<4,∴h(x0)<4,k∈Z,∴k的最大值是3.10.(-1,0)解析在同一平面直角坐标系中,分别作出y=log2(-x),y=x+1的图象,由图可知,x的取值范围是(-1,0).11.(1,2]解析由题意f(x)的图象如图,则∴1<a≤2.12.( -1,0)∪(0,1)解析作出符合条件的一个函数图象草图如图所示,由图可知x·f(x)<0的x的取值范围是(-1,0)∪(0,1).13.(x-2)2+(y-1)2=4或(x+2)2+(y+1)2=4解析设圆M的标准方程为(x-a)2+(y-b)2=r2,由题意可得解得∴圆M的标准方程为(x-2)2+(y-1)2=4或(x+2)2+(y+1)2=4.14.2解析如图,S Rt△PAC=|PA|·|AC|=|PA|,当CP⊥l时,|PC|==3,∴此时|PA|min==2.∴(S四边形PACB)min=2(S△PAC)min=2.15.(-3,3)解析依题意,作出函数y3的图象,如下图.∵函数y1=x2-3x+2(x>0)沿y轴翻折得到函数y2,∴y2=x2+3x+2(x<0).若要直线y=kx+2与函数y3的图象刚好有两个交点,则需直线y=kx+2与y1,y2均有交点.将直线y=kx+2分别代入y1,y2中得x2-(3+k)x=0,x2+(3-k)x=0.解得x1=3+k,x2=k-3,x3=0(舍去),∵y1=x2-3x+2(x>0),∴x1=3+k>0;∵y2=x2+3x+2(x<0),∴x2=k-3<0.联立得解得-3<k<3.16.(1)证明∵λ=1,∴D,E分别为AB和BB'的中点.又AA'=AB,且三棱柱ABC-A'B'C'为直三棱柱,∴平行四边形ABB'A'为正方形,∴DE⊥A'B.∵AC=BC,D为AB的中点,∴CD⊥AB.∵三棱柱ABC-A'B'C'为直三棱柱,∴平面ABB'A'⊥平面ABC.∴CD⊥平面ABB'A',∴CD⊥A'B.又CD∩DE=D,∴A'B⊥平面CDE.∵CE⊂平面CDE,∴A'B⊥CE.(2)解设BE=x,则AD=x,DB=6-x,B'E=6-x.由已知可得C到平面A'DE的距离即为△ABC的边AB所对应的高h==4, ∴V A'-CDE=V C-A'DE= (S四边形ABB'A'-S△AA'D-S△DBE-S△A'B'E)h=h= (x2-6x+36)= [(x-3)2+27](0<x<6),∴当x=3,即λ=1时,V A'-CDE有最小值18.。
新课标广西2019高考数学二轮复习专题对点练92.1~2.4组合练201812242120

专题对点练9 2.1~2.4组合练(限时90分钟,满分100分)一、选择题(共9小题,满分45分)1.设函数f (x )= x 2+1,x ≤1,ln x ,x >1,则f (f (e))=( )A .0B .1C .2D .ln(e 2+1)2.设a=60.4,b=log 0.40.5,c=log 80.4,则a ,b ,c 的大小关系是( ) A .a<b<c B .c<b<a C .c<a<b D .b<c<a3.已知函数y=log a (x+c )(a ,c 为常数,其中a>0,a ≠1)的图象如图所示,则下列结论成立的是 ( )A .a>1,c>1B .a>1,0<c<1C .0<a<1,c>1D .0<a<1,0<c<14.(2018全国Ⅲ,文9)函数y=-x 4+x 2+2的图象大致为( )5.函数y=1+log 0.5(x-1)的图象一定经过点( ) A .(1,1) B .(1,0) C .(2,1) D .(2,0)6.若函数f (x )= cos x ,x ≤a ,1x,x >a 的值域为[-1,1],则实数a 的取值范围是( )A .[1,+∞)B .(-∞,-1]C .(0,1]D .(-1,0)7.已知函数f (x )=x 12,则( ) A .∃x 0∈R ,使得f (x )<0 B .∀x ∈(0,+∞),f (x )≥0 C .∃x 1,x 2∈[0,+∞),使得f (x 1)-f (x 2)x 1-x 2<0 D .∀x 1∈[0,+∞),∃x 2∈[0,+∞),使得f (x 1)>f (x 2)8.已知函数f (x )为偶函数,当x ≤0时,f (x )为增函数,则“65<x<2”是“f [log 2(2x-2)]>f log 1223 ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件9.已知f (x )= a x 2+x ,x >0,-x ,x ≤0,若不等式f (x-1)≥f (x )对一切x ∈R 恒成立,则实数a 的最大值为( ) A .916B .-1C .-12D .1二、填空题(共3小题,满分15分)10.已知x ≥0,y ≥0,且x+y=1,则x 2+y 2的取值范围是 .11.已知二次函数f (x )=ax 2-2x+c 的值域为[0,+∞),则9a +1c的最小值为 .12.(2018天津,文14)已知a ∈R ,函数f (x )= x 2+2x +a -2,x ≤0,-x 2+2x -2a ,x >0.若对任意x ∈[-3,+∞),f (x )≤|x|恒成立,则a 的取值范围是 . 三、解答题(共3个题,满分分别为13分,13分,14分)13.(2018全国Ⅰ,文21)已知函数f (x )=a e x-ln x-1. (1)设x=2是f (x )的极值点,求a ,并求f (x )的单调区间;(2)证明:当a ≥1e时,f (x )≥0.14.已知函数f (x )=e x -ax 2-2x (a ∈R ). (1)当a=0时,求f (x )的最小值;(2)当a<e 2-1时,证明不等式f (x )>e2-1在(0,+∞)上恒成立.15.(2018浙江,22)已知函数f (x )= x -ln x.(1)若f (x )在x=x 1,x 2(x 1≠x 2)处导数相等,证明:f (x 1)+f (x 2)>8-8ln 2;(2)若a ≤3-4ln 2,证明:对于任意k>0,直线y=kx+a 与曲线y=f (x )有唯一公共点.专题对点练9答案1.C 解析 f (e)=ln e =1,所以f (f (e))=f (1)=12+1=2.故选C .2.B 解析 ∵a=60.4>1,b=log 0.40.5∈(0,1),c=log 80.4<0, ∴a>b>c.3.D 解析 ∵函数单调递减, ∴0<a<1,当x=1时,y=log a (1+c )<0,即1+c>1,即c>0,当x=0时,log a (x+c )=log a c>0,即c<1,即0<c<1,故选D .4.D 解析 当x=0时,y=2>0,排除A,B;当x=12时,y=- 12 4+ 12 2+2>2.排除C .故选D .5.C 解析 ∵函数y=log 0.5x 恒过定点(1,0),而y=1+log 0.5(x-1)的图象是由y=log 0.5x 的图象向右平移一个单位,向上平移一个单位得到,∴定点(1,0)平移以后即为定点(2,1),故选C .6.A 解析 函数f (x )= cos x ,x ≤a ,1x ,x >a 的值域为[-1,1],当x ≤a 时,f (x )=cos x ∈[-1,1],满足题意;当x>a 时,f (x )=1x∈[-1,1], 应满足0<1x≤1,解得x ≥1.∴a 的取值范围是[1,+∞).7.B 解析 由函数f (x )=x 12,知在A 中f (x )≥0恒成立,故A 错误,B 正确;又f (x )=x 12在[0,+∞)上是递增函数,故C 错误;在D 中,当x 1=0时,不存在x 2∈[0,+∞)使得f (x 1)>f (x 2),故D 不成立. 故选B .8.D 解析 由f (x )是偶函数且当x ≤0时,f (x )为增函数,则x>0时,f (x )是减函数, 故由f [log 2(2x-2)]>f log 1223 ,得|log 2(2x-2)|< log 1223 =log 232, 故0<2x-2<32,解得1<x<74,故“65<x<2”是“1<x<74”的既不充分也不必要条件,故选D .9.B 解析 作出函数f (x )和f (x-1)的图象,当a ≥0时,f (x-1)≥f (x )对一切x ∈R 不恒成立(如图1).图1图2当a<0时,f (x-1)过定点(1,0)(如图2),当x>0时,f (x )=ax 2+x 的两个零点为x=0和x=-1a , 要使不等式f (x-1)≥f (x )对一切x ∈R 恒成立,则只需要-1a ≤1,得a ≤-1,即a 的最大值为-1.10. 12,1 解析 x 2+y 2=x 2+(1-x )2=2x 2-2x+1,x ∈[0,1],所以当x=0或1时,x 2+y 2取最大值1;当x=12时,x 2+y 2取最小值12.因此x 2+y 2的取值范围为 12,1 .11.6 解析 二次函数f (x )=ax 2-2x+c 的值域为[0,+∞), 可得判别式Δ=4-4ac=0,即有ac=1,且a>0,c>0,可得9a +1c ≥2 9a c=2×3=6,当且仅当9a =1c ,即有c=13,a=3时,取得最小值6. 12. 18,2 解析 当x>0时,f (x )≤|x|可化为-x 2+2x-2a ≤x ,即 x -12 2+2a-14≥0,所以a ≥18; 当-3≤x ≤0时,f (x )≤|x|可化为x 2+2x+a-2≤-x ,即x 2+3x+a-2≤0.对于函数y=x 2+3x+a-2,其图象的对称轴方程为x=-32.因为当-3≤x ≤0时,y ≤0,所以当x=0时,y ≤0,即a-2≤0,所以a ≤2.综上所述,a 的取值范围为 18,2 .13.解 (1)f (x )的定义域为(0,+∞),f'(x )=a e x-1x . 由题设知,f'(2)=0,所以a=12e 2.从而f (x )=12e 2e x-ln x-1,f'(x )=12e 2e x-1x .当0<x<2时,f'(x )<0;当x>2时,f'(x )>0.所以f (x )在(0,2)单调递减,在(2,+∞)单调递增.(2)当a ≥1e 时,f (x )≥e xe -ln x-1. 设g (x )=e xe -ln x-1, 则g'(x )=e xe −1x.当0<x<1时,g'(x )<0;当x>1时,g'(x )>0.所以x=1是g (x )的最小值点. 故当x>0时,g (x )≥g (1)=0.因此,当a ≥1e时,f (x )≥0.14.(1)解 a=0时,f (x )=e x -2x ,f'(x )=e x-2, 令f'(x )>0,解得x>ln 2, 令f'(x )<0,解得x<ln 2,故f (x )在(-∞,ln 2)递减,在(ln 2,+∞)递增,故f (x )min =f (ln 2)=2-2ln 2.(2)证明 ∵f'(x )=e x-2ax-2,∴f'(1)=e -2-2a>e -2-2 e2-1 =0,f'(0)=-1<0,故存在x 0∈(0,1),使得f'(x 0)=0,令h (x )=e x -2ax-2,则x ∈(0,+∞)时,h'(x )=e x -2a>e x+2-e >0, 故h (x )在(0,+∞)递增且h (x 0)=0,故x=x 0是h (x )的唯一零点,且在x=x 0处f (x )取最小值f (x 0)=e x0-x 0(ax 0+2), 又h (x 0)=0,即e x 0-2ax 0-2=0, 得ax 0+1=e x 02,故f (x 0)=e x0 1-x 02 -x 0,构造函数g (t )=e t1-t2-t , 则g'(t )=e t12-t 2 -1,[g'(t )]'=e t-t2, 故t ∈(0,1)时,[g'(t )]'<0,g'(t )在(0,1)递减,故t ∈(0,1)时,g'(t )<g'(0)<0,故g (t )在(0,1)递减,故f (x 0)在(0,1)递减, 故f (x )min =f (x 0)>e 11-12 -1=e2-1,原结论成立.15.证明 (1)函数f (x )的导函数f'(x )=12x −1x , 由f'(x 1)=f'(x 2),得2x 1x 1=2x 1x 2, 因为x 1≠x 2,所以x x =12.由基本不等式,得12 x 1x 2= x 1+ x 2≥2 x 1x 24,因为x 1≠x 2,所以x 1x 2>256.由题意得f (x 1)+f (x 2)= x 1-ln x 1+ x 2-ln x 2=12 x 1x 2-ln(x 1x 2).设g (x )=12 x -ln x , 则g'(x )=14x ( x -4), 所以所以g (x )在[256,+∞)上单调递增,故g (x 1x 2)>g (256)=8-8ln 2, 即f (x 1)+f (x 2)>8-8ln 2. (2)令m=e-(|a|+k ),n=|a|+1k2+1,则f (m )-km-a>|a|+k-k-a ≥0,f (n )-kn-a<nn an -k ≤nn<0,所以,存在x 0∈(m ,n ),使f (x 0)=kx 0+a.所以,对于任意的a ∈R 及k ∈(0,+∞),直线y=kx+a 与曲线y=f (x )有公共点. 由f (x )=kx+a ,得k= x-ln x -a x.设h (x )=x-ln x -a x,则h'(x )=ln x - x2-1+ax2=-g (x )-1+ax2.其中g (x )= x 2-ln x.由(1)可知g (x )≥g (16).又a ≤3-4ln 2,故-g (x )-1+a ≤-g (16)-1+a=-3+4ln 2+a ≤0, 所以h'(x )≤0,即函数h (x )在(0,+∞)上单调递减. 因此方程f (x )-kx-a=0至多1个实根.综上,当a ≤3-4ln 2时,对于任意k>0,直线y=kx+a 与曲线y=f (x )有唯一公共点.。
2019年高考数学(文)二轮复习对点练:专题九 选做大题 专题对点练26 Word版含答案

专题对点练26坐标系与参数方程(选修4—4)1.(2018全国Ⅰ,文22)在直角坐标系xOy中,曲线C1的方程为y=k|x|+2.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2+2ρcos θ-3=0.(1)求C2的直角坐标方程;(2)若C1与C2有且仅有三个公共点,求C1的方程.2.(2018全国Ⅱ,文22)在直角坐标系xOy中,曲线C的参数方程为(θ为参数),直线l的参数方程为(t为参数).(1)求C和l的直角坐标方程;(2)若曲线C截直线l所得线段的中点坐标为(1,2),求l的斜率.3.在直角坐标系xOy中,曲线C1的参数方程为(其中φ为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ(tan α·cos θ-sin θ)=1α为常数,0<α<π,且α≠,点A,B(A在x轴下方)是曲线C1与C2的两个不同交点.(1)求曲线C1的普通方程和C2的直角坐标方程;(2)求|AB|的最大值及此时点B的坐标.4.已知曲线C的参数方程为(θ为参数),在同一平面直角坐标系中,将曲线C上的点按坐标变换得到曲线C',以原点为极点,x轴的正半轴为极轴,建立极坐标系.(1)求曲线C'的极坐标方程;(2)若过点A(极坐标)且倾斜角为的直线l与曲线C'交于M,N两点,弦MN的中点为P,求的值.专题对点练26答案1.解(1)由x=ρcos θ,y=ρsin θ得C2的直角坐标方程为(x+1)2+y2=4.(2)由(1)知C2是圆心为A(-1,0),半径为2的圆.由题设知,C1是过点B(0,2)且关于y轴对称的两条射线.记y轴右边的射线为l1,y轴左边的射线为l2,由于B在圆C2的外面,故C1与C2有且仅有三个公共点等价于l1与C2只有一个公共点且l2与C2有两个公共点,或l2与C2只有一个公共点且l1与C2有两个公共点.当l1与C2只有一个公共点时,A到l1所在直线的距离为2,所以=2,故k=-或k=0.经检验,当k=0时,l1与C2没有公共点;当k=-时,l1与C2只有一个公共点,l2与C2有两个公共点.当l2与C2只有一个公共点时,A到l2所在直线的距离为2,所以=2,故k=0或k=,经检验,当k=0时,l1与C2没有公共点;当k=时,l2与C2没有公共点.综上,所求C1的方程为y=-|x|+2.2.解(1)曲线C的直角坐标方程为=1.当cos α≠0时,l的直角坐标方程为y=tan α·x+2-tan α,当cos α=0时,l的直角坐标方程为x=1.(2)将l的参数方程代入C的直角坐标方程,整理得关于t的方程(1+3cos2α)t2+4(2cos α+sin α)t-8=0.①因为曲线C截直线l所得线段的中点(1,2)在C内,所以①有两个解,设为t1,t2,则t1+t2=0.又由①得t1+t2=-,故2cos α+sin α=0,于是直线l的斜率k=tan α=-2.3.解(1)曲线C1的参数方程为(其中φ为参数),普通方程为+y2=1;曲线C2的极坐标方程为ρ(tan α·cos θ-sin θ)=1,直角坐标方程为x tan α-y-1=0.(2)C2的参数方程为(t为参数),代入+y2=1,得t2-2t sin α=0,∴t1+t2=,t1t2=0,∴|AB|=.∵0<α<π,且α≠,∴sin α∈(0,1),∴|AB|max=,此时B的坐标为.4.解(1)C:=1,将代入C的普通方程可得x'2+y'2=1.因为ρ2=x2+y2,所以曲线C'的极坐标方程为C':ρ=1.(2)点A的直角坐标是A,将l的参数方程代入x2+y2=1,可得4t2-6t+5=0,∴t1+t2=,t1·t2=,∴.。
2019年高考数学(文)二轮复习对点练:第一部分方法、思想解读专题对点练2Word版含答案

专题对点练2函数与方程思想、数形结合思想一、选择题1.设a>1,若对于任意的x∈[a,2a],都有y∈[a,a2]满足方程log a x+log a y=3,这时a的取值的集合为()A.{a|1<a≤2}B.{a|a≥2}C.{a|2≤a≤3}D.{2,3}2.若椭圆+y2=1的两个焦点为F1,F2,过F1作垂直于x轴的直线与椭圆相交,其一交点为P,则|PF2|=()A. B. C. D.43.(2018甘肃兰州一模)若关于x的方程2sin=m在上有两个不等实根,则m的取值范围是()A.(1,)B.[0,2]C.[1,2)D.[1,]4.函数f(x)是定义在区间(0,+∞)上的可导函数,其导函数为f'(x),且满足xf'(x)+2f(x)>0,则不等式的解集为()A.{x|x>-2 011}B.{x|x<-2 011}C.{x|-2 016<x<-2 011}D.{x|-2 011<x<0}5.对任意a∈[-1,1],函数f(x)=x2+(a-4)x+4-2a的值总大于零,则x的取值范围是()A.{x|1<x<3}B.{x|x<1或x>3}C.{x|1<x<2}D.{x|x<1或x>2}6.抛物线y2=2px(p>0)的焦点为圆x2+y2-6x=0的圆心,过圆心且斜率为2的直线l与抛物线相交于M,N两点,则|MN|=()A.30B.25C.20D.157.若0<x1<x2<1,则()A.>ln x2-ln x1B.<ln x2-ln x1C.x2>x1D.x2<x18.已知在正四棱锥S-ABCD中,SA=2,则当该棱锥的体积最大时,它的高为()A.1B.C.2D.39.已知函数f(x)=x+x ln x,若k∈Z,且k(x-1)<f(x)对任意的x>1恒成立,则k的最大值为()A.2B.3C.4D.5二、填空题10.使log2(-x)<x+1成立的x的取值范围是.11.若函数f(x)=(a>0,且a≠1)的值域是[4,+∞),则实数a的取值范围是.12.已知奇函数f(x)的定义域是{x|x≠0,x∈R},且在(0,+∞)内单调递增,若f(1)=0,则满足x·f(x)<0的x的取值范围是.13.已知圆M与y轴相切,圆心在直线y=x上,并且在x轴上截得的弦长为2,则圆M的标准方程为.14.已知P是直线l:3x+4y+8=0上的动点,PA,PB是圆x2+y2-2x-2y+1=0的两条切线,A,B是切点,C是圆心,则四边形PACB面积的最小值为.15.我们把函数y1=x2-3x+2(x>0)沿y轴翻折得到函数y2,函数y1与函数y2的图象合起来组成函数y3的图象,若直线y=kx+2与函数y3的图象刚好有两个交点,则满足条件的k的值为.三、解答题16.如图,在直三棱柱ABC-A'B'C'中,AC=BC=5,AA'=AB=6,D,E分别为AB和BB'上的点,且=λ.(1)求证:当λ=1时,A'B⊥CE;(2)当λ为何值时,三棱锥A'-CDE的体积最小,并求出最小体积.专题对点练2答案1.B解析依题意得y=,当x∈[a,2a]时,y=.由题意可知⊆[a,a2],即有a2≥a,又a>1,所以a≥2.故选B.2.C解析如图,令|F1P|=r1,|F2P|=r2,则即故r2=.3.C解析方程2sin=m可化为sin,当x∈时,2x+,画出函数y=f(x)=sin在x∈上的图象如图所示:由题意,得<1,则m的取值范围是[1,2),故选C.4.C解析由xf'(x)+2f(x)>0,则当x∈(0,+∞)时,x2f'(x)+2xf(x)>0,即[x2f(x)] '=x2f'(x)+2xf(x),所以函数x2f(x)为单调递增函数,由,即(x+2 016)2f(x+2 016)<52f(5),所以0<x+2 016<5,所以不等式的解集为{x|-2 016<x<-2 011},故选C.5.B解析由f(x)=x2+(a-4)x+4-2a>0,得a(x-2)+x2-4x+4>0.令g(a)=a(x-2)+x2-4x+4,由a∈[-1,1]时,不等式f(x)>0恒成立,即g(a)>0在[-1,1]上恒成立.则即解得x<1或x>3.6.D解析圆x2+y2-6x=0的圆心(3,0),焦点F(3,0),抛物线y2=12x,设M(x1,y1),N(x2,y2).直线l的方程为y=2x-6,联立即x2-9x+9=0,∴x1+x2=9,∴|MN|=x1+x2+p=9+6=15,故选D.7.C解析设f(x)=e x-ln x(0<x<1),则f'(x)=e x-.令f'(x)=0,得x e x-1=0.根据函数y=e x与y=的图象(图略)可知两函数图象交点x0∈(0,1),因此函数f(x)在(0,1)内不是单调函数,故A选项不正确;同理可知B选项也不正确;设g(x)=(0<x<1),则g'(x)=.又0<x<1,∴g'(x)<0.∴函数g(x)在(0,1)上是减函数.又0<x1<x2<1,∴g(x1)>g(x2).∴x2>x1.故C选项正确,D项不正确.8.C解析设正四棱锥S-ABCD的底面边长为a(a>0),则高h=,所以体积V=a2h=.设y=12a4-a6(a>0),则y'=48a3-3a5.令y'>0,得0<a<4;令y'<0,得a>4.故函数y在(0,4]上单调递增,在[4,+∞)内单调递减.可知当a=4时,y取得最大值,即体积V取得最大值,此时h==2,故选C.9.B解析由k(x-1)<f(x)对任意的x>1恒成立,得k<(x>1).令h(x)=(x>1),则h'(x)=.令g(x)=x-ln x-2=0,得x-2=ln x,画出函数y=x-2,y=ln x的图象如图,g(x)存在唯一的零点,又g(3)=1-ln 3<0,g(4)=2-ln 4=2(1-ln 2)>0,∴零点属于(3,4),∴h(x)在(1,x0)内单调递减,在(x0,+∞)内单调递增.而3<h(3)=<4, <h(4)=<4,∴h(x0)<4,k∈Z,∴k的最大值是3.10.(-1,0)解析在同一平面直角坐标系中,分别作出y=log2(-x),y=x+1的图象,由图可知,x的取值范围是(-1,0).11.(1,2]解析由题意f(x)的图象如图,则∴1<a≤2.12.( -1,0)∪(0,1)解析作出符合条件的一个函数图象草图如图所示,由图可知x·f(x)<0的x的取值范围是(-1,0)∪(0,1).13.(x-2)2+(y-1)2=4或(x+2)2+(y+1)2=4解析设圆M的标准方程为(x-a)2+(y-b)2=r2,由题意可得解得∴圆M的标准方程为(x-2)2+(y-1)2=4或(x+2)2+(y+1)2=4.14.2解析如图,S Rt△PAC=|PA|·|AC|=|PA|,当CP⊥l时,|PC|==3,∴此时|PA|min==2.∴(S四边形PACB)min=2(S△PAC)min=2.15.(-3,3)解析依题意,作出函数y3的图象,如下图.∵函数y1=x2-3x+2(x>0)沿y轴翻折得到函数y2,∴y2=x2+3x+2(x<0).若要直线y=kx+2与函数y3的图象刚好有两个交点,则需直线y=kx+2与y1,y2均有交点.将直线y=kx+2分别代入y1,y2中得x2-(3+k)x=0,x2+(3-k)x=0.解得x1=3+k,x2=k-3,x3=0(舍去),∵y1=x2-3x+2(x>0),∴x1=3+k>0;∵y2=x2+3x+2(x<0),∴x2=k-3<0.联立得解得-3<k<3.16.(1)证明∵λ=1,∴D,E分别为AB和BB'的中点.又AA'=AB,且三棱柱ABC-A'B'C'为直三棱柱,∴平行四边形ABB'A'为正方形,∴DE⊥A'B.∵AC=BC,D为AB的中点,∴CD⊥AB.∵三棱柱ABC-A'B'C'为直三棱柱,∴平面ABB'A'⊥平面ABC.∴CD⊥平面ABB'A',∴CD⊥A'B.又CD∩DE=D,∴A'B⊥平面CDE.∵CE⊂平面CDE,∴A'B⊥CE.(2)解设BE=x,则AD=x,DB=6-x,B'E=6-x.由已知可得C到平面A'DE的距离即为△ABC的边AB所对应的高h==4, ∴V A'-CDE=V C-A'DE= (S四边形ABB'A'-S△AA'D-S△DBE-S△A'B'E)h=h= (x2-6x+36)= [(x-3)2+27](0<x<6),∴当x=3,即λ=1时,V A'-CDE有最小值18.。
2019年高考数学(文)二轮复习对点练:第一部分 方法、思想解读 专题对点练2 Word版含答案
专题对点练2函数与方程思想、数形结合思想一、选择题1.设a>1,若对于任意的x∈[a,2a],都有y∈[a,a2]满足方程log a x+log a y=3,这时a的取值的集合为()A.{a|1<a≤2}B.{a|a≥2}C.{a|2≤a≤3}D.{2,3}2.若椭圆+y2=1的两个焦点为F1,F2,过F1作垂直于x轴的直线与椭圆相交,其一交点为P,则|PF2|=()A. B. C. D.43.(2018甘肃兰州一模)若关于x的方程2sin=m在上有两个不等实根,则m的取值范围是()A.(1,)B.[0,2]C.[1,2)D.[1,]4.函数f(x)是定义在区间(0,+∞)上的可导函数,其导函数为f'(x),且满足xf'(x)+2f(x)>0,则不等式的解集为()A.{x|x>-2 011}B.{x|x<-2 011}C.{x|-2 016<x<-2 011}D.{x|-2 011<x<0}5.对任意a∈[-1,1],函数f(x)=x2+(a-4)x+4-2a的值总大于零,则x的取值范围是()A.{x|1<x<3}B.{x|x<1或x>3}C.{x|1<x<2}D.{x|x<1或x>2}6.抛物线y2=2px(p>0)的焦点为圆x2+y2-6x=0的圆心,过圆心且斜率为2的直线l与抛物线相交于M,N两点,则|MN|=()A.30B.25C.20D.157.若0<x1<x2<1,则()A.>ln x2-ln x1B.<ln x2-ln x1C.x2>x1D.x2<x18.已知在正四棱锥S-ABCD中,SA=2,则当该棱锥的体积最大时,它的高为()A.1B.C.2D.39.已知函数f(x)=x+x ln x,若k∈Z,且k(x-1)<f(x)对任意的x>1恒成立,则k的最大值为()A.2B.3C.4D.5二、填空题10.使log2(-x)<x+1成立的x的取值范围是.11.若函数f(x)=(a>0,且a≠1)的值域是[4,+∞),则实数a的取值范围是.12.已知奇函数f(x)的定义域是{x|x≠0,x∈R},且在(0,+∞)内单调递增,若f(1)=0,则满足x·f(x)<0的x的取值范围是.13.已知圆M与y轴相切,圆心在直线y=x上,并且在x轴上截得的弦长为2,则圆M的标准方程为.14.已知P是直线l:3x+4y+8=0上的动点,PA,PB是圆x2+y2-2x-2y+1=0的两条切线,A,B是切点,C是圆心,则四边形PACB面积的最小值为.15.我们把函数y1=x2-3x+2(x>0)沿y轴翻折得到函数y2,函数y1与函数y2的图象合起来组成函数y3的图象,若直线y=kx+2与函数y3的图象刚好有两个交点,则满足条件的k的值为.三、解答题16.如图,在直三棱柱ABC-A'B'C'中,AC=BC=5,AA'=AB=6,D,E分别为AB和BB'上的点,且=λ.(1)求证:当λ=1时,A'B⊥CE;(2)当λ为何值时,三棱锥A'-CDE的体积最小,并求出最小体积.专题对点练2答案1.B解析依题意得y=,当x∈[a,2a]时,y=.由题意可知⊆[a,a2],即有a2≥a,又a>1,所以a≥2.故选B.2.C解析如图,令|F1P|=r1,|F2P|=r2,则即故r2=.3.C解析方程2sin=m可化为sin,当x∈时,2x+,画出函数y=f(x)=sin在x∈上的图象如图所示:由题意,得<1,则m的取值范围是[1,2),故选C.4.C解析由xf'(x)+2f(x)>0,则当x∈(0,+∞)时,x2f'(x)+2xf(x)>0,即[x2f(x)] '=x2f'(x)+2xf(x),所以函数x2f(x)为单调递增函数,由,即(x+2 016)2f(x+2 016)<52f(5),所以0<x+2 016<5,所以不等式的解集为{x|-2 016<x<-2 011},故选C.5.B解析由f(x)=x2+(a-4)x+4-2a>0,得a(x-2)+x2-4x+4>0.令g(a)=a(x-2)+x2-4x+4,由a∈[-1,1]时,不等式f(x)>0恒成立,即g(a)>0在[-1,1]上恒成立.则即解得x<1或x>3.6.D解析圆x2+y2-6x=0的圆心(3,0),焦点F(3,0),抛物线y2=12x,设M(x1,y1),N(x2,y2).直线l的方程为y=2x-6,联立即x2-9x+9=0,∴x1+x2=9,∴|MN|=x1+x2+p=9+6=15,故选D.7.C解析设f(x)=e x-ln x(0<x<1),则f'(x)=e x-.令f'(x)=0,得x e x-1=0.根据函数y=e x与y=的图象(图略)可知两函数图象交点x0∈(0,1),因此函数f(x)在(0,1)内不是单调函数,故A选项不正确;同理可知B选项也不正确;设g(x)=(0<x<1),则g'(x)=.又0<x<1,∴g'(x)<0.∴函数g(x)在(0,1)上是减函数.又0<x1<x2<1,∴g(x1)>g(x2).∴x2>x1.故C选项正确,D项不正确.8.C解析设正四棱锥S-ABCD的底面边长为a(a>0),则高h=,所以体积V=a2h=.设y=12a4-a6(a>0),则y'=48a3-3a5.令y'>0,得0<a<4;令y'<0,得a>4.故函数y在(0,4]上单调递增,在[4,+∞)内单调递减.可知当a=4时,y取得最大值,即体积V取得最大值,此时h==2,故选C.9.B解析由k(x-1)<f(x)对任意的x>1恒成立,得k<(x>1).令h(x)=(x>1),则h'(x)=.令g(x)=x-ln x-2=0,得x-2=ln x,画出函数y=x-2,y=ln x的图象如图,g(x)存在唯一的零点,又g(3)=1-ln 3<0,g(4)=2-ln 4=2(1-ln 2)>0,∴零点属于(3,4),∴h(x)在(1,x0)内单调递减,在(x0,+∞)内单调递增.而3<h(3)=<4, <h(4)=<4,∴h(x0)<4,k∈Z,∴k的最大值是3.10.(-1,0)解析在同一平面直角坐标系中,分别作出y=log2(-x),y=x+1的图象,由图可知,x的取值范围是(-1,0).11.(1,2]解析由题意f(x)的图象如图,则∴1<a≤2.12.( -1,0)∪(0,1)解析作出符合条件的一个函数图象草图如图所示,由图可知x·f(x)<0的x的取值范围是(-1,0)∪(0,1).13.(x-2)2+(y-1)2=4或(x+2)2+(y+1)2=4解析设圆M的标准方程为(x-a)2+(y-b)2=r2,由题意可得解得∴圆M的标准方程为(x-2)2+(y-1)2=4或(x+2)2+(y+1)2=4.14.2解析如图,S Rt△PAC=|PA|·|AC|=|PA|,当CP⊥l时,|PC|==3,∴此时|PA|min==2.∴(S四边形PACB)min=2(S△PAC)min=2.15.(-3,3)解析依题意,作出函数y3的图象,如下图.∵函数y1=x2-3x+2(x>0)沿y轴翻折得到函数y2,∴y2=x2+3x+2(x<0).若要直线y=kx+2与函数y3的图象刚好有两个交点,则需直线y=kx+2与y1,y2均有交点.将直线y=kx+2分别代入y1,y2中得x2-(3+k)x=0,x2+(3-k)x=0.解得x1=3+k,x2=k-3,x3=0(舍去),∵y1=x2-3x+2(x>0),∴x1=3+k>0;∵y2=x2+3x+2(x<0),∴x2=k-3<0.联立得解得-3<k<3.16.(1)证明∵λ=1,∴D,E分别为AB和BB'的中点.又AA'=AB,且三棱柱ABC-A'B'C'为直三棱柱,∴平行四边形ABB'A'为正方形,∴DE⊥A'B.∵AC=BC,D为AB的中点,∴CD⊥AB.∵三棱柱ABC-A'B'C'为直三棱柱,∴平面ABB'A'⊥平面ABC.∴CD⊥平面ABB'A',∴CD⊥A'B.又CD∩DE=D,∴A'B⊥平面CDE.∵CE⊂平面CDE,∴A'B⊥CE.(2)解设BE=x,则AD=x,DB=6-x,B'E=6-x.由已知可得C到平面A'DE的距离即为△ABC的边AB所对应的高h==4, ∴V A'-CDE=V C-A'DE= (S四边形ABB'A'-S△AA'D-S△DBE-S△A'B'E)h=h= (x2-6x+36)= [(x-3)2+27](0<x<6),∴当x=3,即λ=1时,V A'-CDE有最小值18.。
2019版高考数学二轮复习专题九选做大题专题对点练27不等式选讲文.docx
专题对点练27不等式选讲(选修4—5)1.(2018 全国 /,文23)已知f(x) =jx+\ /-/ax-1 /.⑴当&=1时,求不等式f(x) >1的解集;⑵若XE (0, 1)时不等式f{x) >x成立,求日的取值范圉.2.(2018全国也文23)设函数f(x)=/2卅1 "-1/・(1)画出y=t\x)的图象;⑵当[0, +呵时,f{x) Wax+b,求a+b的最小值.3.设Q方,c均为正数,且n+b+c=\・求证:sb+bc+scW ;a2b2 c24.己知函数t\x)二[x+\ /-2/x-a/, Q0.(1)当a=\时,求不等式f\x) >1的解集;⑵若Kx)的图彖与;I轴围成的三角形面积人于6,求日的取值范围.专题对点练27答案甘 < -1,2x r l< x <1,1.解(1)当a=l时,f(x) =/x+\ /-/x-1 /,即f(0 42,% > 1-故不等式/U) >1的解集为卜卜> I).⑵当x^. (0, 1)时fx+\ l-jax-Y /A Y成立等价于当(0, 1)时jax~\. /<1 成立.若&W0,则当xE. (0, 1)吋/ax~i /$ 1;若臼为,/ax-\ /<1的解集为0<X所以Ml,故0«W2. 综上,日的取值范围为(0, 2].x+2r-< x<l,2.解(1)/U)^3x,x>l. y二代方的图象如图所示.(2) rfl (1)知,y=f(x)的图象与y轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当日23且bN2时,f3Jx+b在[0, +9成立,因此日"的最小值为5.3.证明(1)由$ +EM2ab、b~ +(^22bc, c +a >2ca,得a+1D +c^ab+bc+ca.由题设得(a+b+d'二即讣+E +c -^2ab-f^bc^2ca-1,所以3{ab^bc+ca) Wl,即ab+bc+caW.fl2 濮R«2 b2 -2 b2 -2⑵因+b22a,= +cM2b、二+a22c,板^ T =+(a+b+d 22(a+b+d,即"S" ~ 二 2 a+b+c.所以T+T + 7>1.4.解(1)当a=l时,f(x) >1 化为 /肝1 /-2/x-l /-IX).当xWT时,不等式化为xYX),无解;当-1 <x<\时,不等式化为3%-2A),解得<x<\ \当x^ \时,不等式化为-卅2;0,解得1所以t\x) >\的解集为{咔*光< 2 }(2)由题设可得f\x)=X-1-2O.X < -1,3x +l-2a,-l < x<a;•x +1 + 2 a,% > a.故的面积为(日W.由题设得(尹1)%, 故a >2.所以臼的取值范围为(2, +8).。
新课标广西2019高考数学二轮复习专题对点练257.1~7.3组合练2
专题对点练25 7.1~7.3组合练(限时90分钟,满分100分)一、选择题(共9小题,满分45分)1.直线x-3y+3=0与圆(x-1)2+(y-3)2=10相交所得弦长为( ) A .√30 B .5√32 C .4√2 D .3√32.圆x 2+y 2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=( ) A .-43B .-34C .√3D .23.圆x 2+y 2-4x-4y-10=0上的点到直线x+y-8=0的最大距离与最小距离的差是( ) A .18 B .6√2 C .5√2 D .4√24.已知直线l :mx+y-1=0(m ∈R )是圆C :x 2+y 2-4x+2y+1=0的对称轴,过点A (-2,m )作圆C 的一条切线,切点为B ,则|AB|为( ) A .4 B .2√5 C .4√2 D .35.若直线2x+y-4=0,x+ky-3=0与两坐标轴围成的四边形有外接圆,则此四边形的面积为( ) A .114 B .5√54 C .4120 D .56.已知点P (x ,y )是直线kx=y+4(k>0)上一动点,PA ,PB 是圆C :x 2+y 2-2y=0的两条切线,A ,B 为切点,若四边形PACB 面积的最小值是2,则k 的值是( ) A .√2B .√212C .2D .2√27.(2018全国Ⅲ,文10)已知双曲线C :x 2x 2−x 2x 2=1(a>0,b>0)的离心率为√2,则点(4,0)到C 的渐近线的距离为 ( ) A .√2 B .2 C .3√22D .2√2 8.已知双曲线x 2x 2−x 2x 2=1(a>0,b>0)的右焦点为F ,点A 在双曲线的渐近线上,△OAF 是边长为2的等边三角形(O 为原点),则双曲线的方程为( )A .x 24−x 212=1 B .x 212−x 24=1C .x 23-y 2=1 D .x 2-x 23=19.已知离心率为√52的双曲线C :x 2x 2−x 2x 2=1(a>0,b>0)的左、右焦点分别为F 1,F 2,M 是双曲线C 的一条渐近线上的点,且OM ⊥MF 2,O 为坐标原点,若x △xxx 2=16,则双曲线C 的实轴长是( ) A .32 B .16 C .8 D .4 二、填空题(共3小题,满分15分)10.设抛物线y 2=4x 的焦点为F ,准线为l ,已知点C 在l 上,以C 为圆心的圆与y 轴的正半轴相切于点A ,若∠FAC=120°,则圆的方程为 . 11.(2018江苏,8)在平面直角坐标系xOy中,若双曲线x 2x 2−x 2x 2=1(a>0,b>0)的右焦点F (c ,0)到一条渐近线的距离为√32c ,则其离心率的值为 . 12.(2018浙江,17)已知点P (0,1),椭圆x 24+y 2=m (m>1)上两点A ,B 满足xx ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =2xx ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,则当m=时,点B 横坐标的绝对值最大.三、解答题(共3个题,满分分别为13分,13分,14分) 13.已知在三角形ABC 中,B (-1,0),C (1,0),且|AB|+|AC|=4. (1)求动点A 的轨迹M 的方程;(2)P 为轨迹M 上动点,△PBC 的外接圆为☉O 1(O 1为圆心),当P 在M 上运动时,求点O 1到x 轴的距离的最小值.14.已知点A(0,-2),椭圆E:x2x2+x2x2=1(a>b>0)的离心率为√32,F是椭圆E的右焦点,直线AF的斜率为2√33,O为坐标原点.(1)求E的方程;(2)设过点A的动直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l的方程.15.已知椭圆x2x2+x2x2=1(a>b>0)的左焦点为F(-c,0),右顶点为A,点E的坐标为(0,c),△EFA的面积为x22.(1)求椭圆的离心率;(2)设点Q在线段AE上,|FQ|=32c,延长线段FQ与椭圆交于点P,点M,N在x轴上,PM∥QN,且直线PM 与直线QN间的距离为c,四边形PQNM的面积为3c.①求直线FP的斜率;②求椭圆的方程.专题对点练25答案1.A 解析 圆(x-1)2+(y-3)2=10的圆心坐标为(1,3),半径r=√10, 圆心到直线x-3y+3=0的距离d=√10=√10,故弦|AB|=2√10-2510=√30,故选A . 2.A 解析 由x 2+y 2-2x-8y+13=0,得(x-1)2+(y-4)2=4,所以圆心坐标为(1,4).因为圆x 2+y 2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1, 所以=1,解得a=-43,故选A . 3.B 解析 由x 2+y 2-4x-4y-10=0,得(x-2)2+(y-2)2=18,∴圆半径r=3√2.圆上的点到直线x+y-8=0的最大距离与最小距离分别是d+r ,d-r ,其两者之差即为圆的直径, 故圆的点到直线x+y-8=0的最大距离与最小距离的差是6√2,故选B .4.A 解析 由x 2+y 2-4x+2y+1=0,得(x-2)2+(y+1)2=4,∴圆心C (2,-1),r=2. 由题意可得,直线l :mx+y-1=0经过圆C 的圆心(2,-1), 则2m-1-1=0,∴m=1,故点A (-2,1). ∵|AC|=√20,|CB|=r=2, ∴切线的长|AB|=√20-4=4.5.C 解析 圆的内接四边形对角互补,因为x 轴与y 轴垂直,所以2x+y-4=0与x+ky-3=0垂直. 所以2×1+1×k=0,解得k=-2,直线2x+y-4=0与坐标轴的交点为(2,0),(0,4),x+ky-3=0与坐标轴的交点为(0,-32),(3,0),两直线的交点纵坐标为-25,所以四边形的面积为12×3×32−12×1×25=4120,故选C .6.C 解析 ∵圆的方程为x 2+(y-1)2=1,∴圆心C (0,1),半径r=1. 根据题意,若四边形面积最小,当圆心与点P 的距离最小时,即距离为圆心到直线l 的距离最小时,切线长PA ,PB 最小.切线长为2, ∴|PA|=|PB|=2,∴圆心到直线l 的距离为d=√5.直线方程为y+4=kx , 即kx-y-4=0,∴√5=√,解得k=±2,∵k>0,∴所求直线的斜率为2.故选C .7.D 解析 ∵双曲线C 的离心率为√2,∴e=xx =√2,即c=√2a ,∴a=b.∴其渐近线方程为y=±x ,故(4,0)到C 的渐近线的距离d=2=2√2.8.D 解析 ∵双曲线x 2x 2−x 2x 2=1(a>0,b>0)的右焦点为F (c ,0),点A 在双曲线的渐近线上,且△OAF 是边长为2的等边三角形,不妨设点A 在渐近线y=xxx 上,∴{x =2,x x =tan60°,x 2+x 2=x 2,解得{x =1,x =√3.∴双曲线的方程为x 2-x 23=1.故选D .9.B 解析 设F 2(c ,0),双曲线C 一条渐近线方程为y=x x x ,可得|F 2M|=√=b.∵OM ⊥MF 2,∴|OM|=√x 2-x 2=a ,由x △xxx 2=16,可得12ab=16,即ab=32,又a 2+b 2=c 2,且xx =√52, 解得a=8,即有双曲线的实轴长为16.故选B .10.(x+1)2+(y-√3)2=1 解析 ∵抛物线y 2=4x 的焦点F (1,0),准线l 的方程为x=-1,由题意可设圆C 的方程为(x+1)2+(y-b )2=1(b>0),则C (-1,b ),A (0,b ). ∵∠FAC=120°,∴k AF =tan 120°=-√3,直线AF 的方程为y=-√3x+√3. ∵点A 在直线AF 上,∴b=√3.则圆的方程为(x+1)2+(y-√3)2=1.11.2 解析 因为双曲线的右焦点F (c ,0)到渐近线y=±x x x 的距离为=xxx=b ,所以b=√32c.因为a 2=c 2-b 2=c 2-34c 2=14c 2, 所以a=12c ,e=2.12.5 解析 设A (x 1,y 1),B (x 2,y 2).∵P (0,1),∴xx ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-x 1,1-y 1),xx ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(x 2,y 2-1).∵xx ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =2xx ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,∴{-x 1=2x 2,1-x 1=2(x 2-1),即{x 1=-2x 2,x 1=3-2x 2.又x 124+x 12=m ,∴(-2x 2)24+(3-2y 2)2=m ,即4x 224+4x 22-12y 2+9=m.又x 224+x 22=m ,∴4m-12y 2+9=m ,即12y 2=3m+9,4y 2=m+3.∴x 224+(x +34)2=m ,即x 22+x 2+6x +94=4m ,即x 22=-x 24+52m-94.∴当m=5时,x 22的最大值为4,即点B 横坐标的绝对值最大.13.解 (1)根据题意知,动点A 满足椭圆的定义,设椭圆的方程x 2x 2+x 2x 2=1(a>b>0且y ≠0),所以,有|F 1F 2|=|BC|=2c=2,|AF 1|+|AF 2|=|AB|+|AC|=2a=4,且a 2=b 2+c 2,解得a=2,b=√3, 所以,动点A 的轨迹M 满足的方程为x 24+x 23=1(y ≠0).(2)设P (x 0,y 0),不妨设0<y 0≤√3, 线段PB 的垂直平分线方程为y-x 02=-x 0+1x 0(x -x 0-12), 线段BC 的垂直平分线方程为x=0,两条垂线方程联立求得y=(-x 0+1x 0)·(-x 0-12)+x 02=x 02-12x 0+x 02. 因为x 024+x 023=1,所以y=32x 0−x 06,所以☉O 1的圆心O 1到x 轴的距离d=|32x 0-x 06|.又知y=32x 0−x 06在(0,√3)内是单调递减函数,所以当y 0=√3时,y min =√33,所以d min =√33.14.解 (1)设F (c ,0),由条件知2x=2√33,得c=√3.又x x =√32,所以a=2,b 2=a 2-c 2=1. 故E 的方程为x 24+y 2=1.(2)当l ⊥x 轴时不合题意,故设l :y=kx-2,P (x 1,y 1),Q (x 2,y 2). 将y=kx-2代入x 24+y 2=1,得(1+4k 2)x 2-16kx+12=0.当Δ=16(4k 2-3)>0,即k 2>34时,x 1,2=8x ±2√4x 2-34x 2+1.从而|PQ|=√x 2+1|x 1-x 2|=4√x 2+1·√4x 2-34x 2+1.又点O 到直线PQ 的距离d=√,所以△OPQ 的面积S △OPQ =12d ·|PQ|=4√4x 2-34x 2+1.设√4x 2-3=t ,则t>0,S △OPQ =4xx 2+4=4x +4x .因为t+4x ≥4,当且仅当t=2,即k=±√72时,等号成立,且满足Δ>0, 所以,当△OPQ 的面积最大时,l 的方程为y=√72x-2或y=-√72x-2. 15.解 (1)设椭圆的离心率为e.由已知,可得12(c+a )c=x 22.又由b 2=a 2-c 2,可得2c 2+ac-a 2=0,即2e 2+e-1=0. 又因为0<e<1,解得e=12.所以,椭圆的离心率为12.(2)①依题意,设直线FP 的方程为x=my-c (m>0),则直线FP 的斜率为1x .由(1)知a=2c ,可得直线AE 的方程为x 2x +xx =1,即x+2y-2c=0, 与直线FP 的方程联立,可解得x=(2x -2)xx +2,y=3x x +2,即点Q 的坐标为((2x -2)xx +2,3xx +2).由已知|FQ|=32c ,有[(2x -2)xx +2+x ]2+(3xx +2)2=(3x 2)2,整理得3m 2-4m=0,所以m=43,即直线FP 的斜率为34.②由a=2c ,可得b=√3c ,故椭圆方程可以表示为x 24x 2+x 23x 2=1. 由①得直线FP 的方程为3x-4y+3c=0,与椭圆方程联立{3x -4x +3x =0,x 24x 2+x 23x 2=1,消去y ,整理得7x 2+6cx-13c 2=0, 解得x=-13x 7(舍去)或x=c.因此可得点P (x ,3x 2),进而可得|FP|=√(x +x )2+(3x 2)2=5x 2, 所以|PQ|=|FP|-|FQ|=5x 2−3x2=c.由已知,线段PQ 的长即为PM 与QN 这两条平行直线间的距离,故直线PM 和QN 都垂直于直线FP. 因为QN ⊥FP ,所以|QN|=|FQ|·tan ∠QFN=3x 2×34=9x8,所以△FQN 的面积为12|FQ||QN|=27x 232,同理△FPM 的面积等于75x 232,由四边形PQNM 的面积为3c ,得75x 232−27x 232=3c ,整理得c 2=2c ,又由c>0,得c=2.所以,椭圆的方程为x 216+x 212=1.。
新课标广西2019高考数学二轮复习专题对点练154.1~4.2组合练2
专题对点练15 4.1~4.2组合练(限时90分钟,满分100分)一、选择题(共9小题,满分45分)1.设S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5=()A.5B.7C.9D.112.《九章算术》是我国第一部数学专著,下有源自其中的一个问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤.问金箠重几何?”其意思为:今有金杖(粗细均匀变化)长5尺,截得本端1尺,重4斤,截得末端1尺,重2斤,则金杖重()A.18斤B.15斤C.13斤D.20斤3.已知等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=()A.n(n+1)B.n(n-1)C.D.-4.公差不为零的等差数列{a n}的前n项和为S n.若a4是a3与a7的等比中项,S8=16,则S10等于()A.18B.24C.30D.605.等比数列{a n}的前n项和为S n.已知S3=a2+10a1,a5=9,则a1=()A.B.-C.D.-6.(2018广东深圳耀华模拟)在数列{a n}中,a1=1,a n+1=2a n-2n,则a17=()A.-15×216B.15×217C.-16×216D.16×2177.设等差数列{a n}的前n项和为S n,若S m-1=-2,S m=0,S m+1=3,则m=()A.3B.4C.5D.68.在等比数列{a n}中,各项均为正数,S n是其前n项和,且满足2S3=8a1+3a2,a4=16,则S4=()A.9B.15C.18D.309.在递减等差数列{a n}中,a1a3=-4.若a1=13,则数列的前n项和的最大值为()A.B.C.D.二、填空题(共3小题,满分15分)10.已知等比数列{a n},a2a4=a5,a4=8,则{a n}的前4项和S4= .11.设等比数列{a n}的前n项和为S n,若S3,S9,S6成等差数列,且a2+a5=4,则a8的值为.12.(2018湖北重点高中协作体模拟)定义“等积数列”,在一个数列中,如果每一项与它的后一项的积都为同一个常数,那么这个数列叫做等积数列,这个常数叫做该数列的公积.已知数列{a n}是等积数列且a1=2,公积为10,则这个数列前21项和S21的值为.三、解答题(共3个题,满分分别为13分,13分,14分)13.已知数列{a n}的前n项和为S n,且对任意正整数n,都有3a n=2S n+3成立.(1)求数列{a n}的通项公式;(2)设b n=log3a n,求数列{b n}的前n项和T n.14.已知数列{a n}的前n项和为S n,且满足S n+n=2a n(n∈N*).(1)证明:数列{a n+1}为等比数列,并求数列{a n}的通项公式;>2 010的n的最小值.(2)若b n=(2n+1)a n+2n+1,数列{b n}的前n项和为T n,求满足不等式--15.已知数列{a n}的前n项和为S n,且满足a1=1,2S n=(n+1)a n.在数列{b n}中,b n=.(1)求数列{a n},{b n}的通项公式;(2)求数列的前n项和T n.专题对点练15答案1.A解析由a1+a3+a5=3,得3a3=3,解得a3=1.故S5==5a3=5.2.B解析由题意可知,在等差数列{a n}中,a1=4,a5=2,则S5==15,故金杖重15斤.3.A解析∵a2,a4,a8成等比数列,∴ =a2a8,即(a1+6)2=(a1+2)(a1+14),解得a1=2.∴S n=na1+-d=2n+n2-n=n2+n=n(n+1).故选A.4.C解析设等差数列{a n}的公差为d≠0.由题意,得(a1+3d)2=(a1+2d)(a1+6d),即2a1+3d=0.①∵S8=16,∴8a1+×d=16, ②联立①②解得a1=-,d=1.则S10=10×-×1=30.5.C解析设数列{a n}的公比为q,若q=1,则由a5=9,得a1=9,此时S3=27,而a2+10a1=99,不满足题意,因此q≠1.∵当q≠1时,S3=--=a1q+10a1,∴--=q+10,整理得q2=9.∵a5=a1q4=9,即81a1=9,∴a1=.6.A解析由题意可得,即=-,据此可得,数列是首项为,公差为-的等差数列,故+(17-1)×-=-,∴a17=-15×216.故选A.7.C解析∵S m-1=-2,S m=0,S m+1=3,∴a m=S m-S m-1=0-(-2)=2,a m+1=S m+1-S m=3-0=3.∴d=a m+1-a m=3-2=1.∵S m=ma1+-×1=0,∴a1=--.又=a1+m×1=3,∴--+m=3.∴m=5.故选C.8.D解析设等比数列{a n}的公比为q>0,∵2S3=8a1+3a2,∴2(a1+a2+a3)=8a1+3a2,即2a1q2=6a1+a1q,即2q2-q-6=0,解得q=2.又a4=16,可得a1×23=16,解得a1=2.则S4=--=30.9.D解析设公差为d,则d<0.由题意,得13(13+2d)=(13+d)2-4,解得d=-2或d=2(舍去),∴a n=a1+(n-1)d=15-2n.当a n=15-2n≥ 时,即n≤ .5;当a n+1=13-2n≤ 时,即n≥ .5.∴当n≤ 时,a n>0.∴--=---,∴数列的前n项和为----+…+------,∴当n=6时,数列的前n项和最大,最大值为-,故选D. 10.15解析设等比数列{a n}的公比为q,∵a2a4=a1q a4=a1a5=a5,∴a1=1.又a4=8,∴q3=8,∴q=2.故S4=--=15.11.2解析∵等比数列{a n}的前n项和为S n,S3,S9,S6成等差数列,且a2+a5=4,∴------解得a1q=8,q3=-,∴a8=a1q7=(a1q)(q3)2=8×=2.12.72解析由数列{a n}是等积数列,且a1=2,公积为10,根据等积数列的定义,得a2=5,a3=2,由此可以知道数列{a n}的所有奇数项为2,所有偶数项为5.故这个数列前21项和S21=7×10+2=72.13.解 (1)在3a n=2S n+3中,令n=1,得a1=3.当n≥ 时,3a n=2S n+3, ①3a n-1=2S n-1+3, ②①-②得a n=3a n-1,∴数列{a n}是以3为首项,3为公比的等比数列,∴a n=3n.(2)由(1)得b n=log3a n=n,数列{b n}的前n项和T n=1+2+3+…+n=.14.(1)证明当n=1时,2a1=a1+1,∴a1=1.∵2a n=S n+n,n∈N*,∴2a n-1=S n-1+n-1,n≥两式相减,得a n=2a n-1+1,n≥ 即a n+1=2(a n-1+1),n≥∴数列{a n+1}为以2为首项,2为公比的等比数列,∴a n+1=2n,∴a n=2n-1,n∈N*.(2)解b n=(2n+1)a n+2n+1=(2n+1)2n,∴T n=3×2+5×22+…+(2n+1)2n,∴2T n=3×22+5×23+…+(2n+1)2n+1,两式相减可得-T n=3×2+2×22+2×23+…+22n-(2n+1)2n+1,∴T n=(2n-1)2n+1+2,∴-->2 010 可化为2n+1>2 010.∵210=1 024,211=2 048,∴满足不等式-->2 010的n的最小值为10.15.解 (1)当n≥ 时,由2S n=(n+1)a n,得2S n-1=na n-1,两式相减得2a n=(n+1)a n-na n-1,整理得--.由a n=---…---…1=n(n≥ .又当n=1时,a1=1,∴a n=n(n∈N*).由b n==2n+1,∴{b n}的通项公式为b n=2n+1.(2)由(1)得.∴T n=--+…+-=1-+…+=1-.故数列的前n项和T n=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题对点练27不等式选讲(选修4—5) 1.(2018全国Ⅰ,文23)已知f(x)=|x+1|-|ax-1|.
(1)当a=1时,求不等式f(x)>1的解集;
(2)若x∈(0,1)时不等式f(x)>x成立,求a的取值范围.
2.(2018全国Ⅲ,文23)设函数f(x)=|2x+1|+|x-1|.
(1)画出y=f(x)的图象;
(2)当x∈[0,+∞)时,f(x)≤ax+b,求a+b的最小值.
3.设a,b,c均为正数,且a+b+c=1.
求证:(1)ab+bc+ac≤;
(2)≥1.
4.已知函数f(x)=|x+1|-2|x-a|,a>0.
(1)当a=1时,求不等式f(x)>1的解集;
(2)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.
专题对点练27答案
1.解(1)当a=1时,f(x)=|x+1|-|x-1|,即f(x)=--
-
故不等式f(x)>1的解集为.
(2)当x∈(0,1)时|x+1|-|ax-1|>x成立等价于当x∈(0,1)时|ax-1|<1成立.若a≤0,则当x∈(0,1)时|ax-1|≥1;
若a>0,|ax-1|<1的解集为0<x<,所以≥1,故0<a≤2.
综上,a的取值范围为(0,2].
2.解(1)f(x)=--
-
y=f(x)的图象如图所示.
(2)由(1)知,y=f(x)的图象与y轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当a≥3且b≥2时,f(x)≤ax+b在[0,+∞)成立,因此a+b的最小值为5.
3.证明(1)由a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca,得a2+b2+c2≥ab+bc+ca.
由题设得(a+b+c)2=1,即a2+b2+c2+2ab+2bc+2ca=1,所以3(ab+bc+ca)≤1,即ab+bc+ca≤.
(2)因为+b≥2a,+c≥2b,+a≥2c,故+(a+b+c)≥2(a+b+c),即≥a+b+c.
所以≥1.
4.解(1)当a=1时,f(x)>1化为|x+1|-2|x-1|-1>0.
当x≤-1时,不等式化为x-4>0,无解;
当-1<x<1时,不等式化为3x-2>0,解得<x<1;
当x≥1时,不等式化为-x+2>0,解得1≤x<2.
所以f(x)>1的解集为.
(2)由题设可得f(x)=
所以函数f(x)的图象与x轴围成的三角形的三个顶点分别为A-,B(2a+1,0),C(a,a+1),
故△ABC的面积为(a+1)2.
由题设得(a+1)2>6,
故a>2.
所以a的取值范围为(2,+∞).。