2020中考数学模拟试卷解析版(20200404135907)
2020中考数学模拟试卷电子版带答案详解

2020中考数学模拟试题(经典版)可下载打印-K选择题(每小题3分,共30分•下列各小题均有四个答案,其中只有一个是正确的)1. G分)下列各数中,最大的数是()A—丄 B.l CO D—2242・(3分)据统计,今年“五一M长假期间,我市约有26用万人次游览了植物园和动物园,则数据26.8万用科学记数法表示正确的是()A.268x 103B.26.8X 104C268x 105DO268* 1063. (3分)如图是将正方体切去一个角后形成的几何体’则该几何体的左视图为()/面A」B.LJ C4. (3分)下列计算正确的是()A&+O3二 B. (x - 3)2-x2 - 95. (3分)下表是某校合唱团成员的年龄分布对于不同的x,下列关于年龄的统计量不会发生改变的是()A.平均数、屮位数B.众数、中位数C.平均数、方差D.中位数、方差6.(3分)若关于x的方程肚2+2丫-1=0有两个不相等的实数根,则&的取值范围是()A.A> - IB.^< - 1C.k> - 1 且AHOD.A>・1 且 &工07.(3分)在菱形A BCD中,对角线/IC与3D相交于点O,再添加一个条件,仍不能判定四边形ABCD是矩形的是()\.AB = AD B.O4 = OB C.AC = BDD.DC丄BC& (3分)阿信、小怡两人打算搭乘同一班次电车上学,若此班次电车共有5节车厢,且阿信从任意一节车厢上车的机会相等,小怡从任意一节车厢上车的机会相等,则两人从同一节车厢上车的概率为何()A4 % D・寺9.(3分)如图,在已知的中,按以下步骤作图:①分别以B、C为圆心,以大于寺3C的长为半径作弧,两弧相交于点M、N;②作直线MN交AB于点D,连接CD,若CD = AD y ZB二20。
,则下列结论中错误的是()A.Z CAD = 40°B. ZACD = 70°C.点D为ZUBC 的外心D.ZJCB = 90°10.(3分)在Rt^ABC中,Q为斜边/JB的中点,ZB = 60°, BC = 2cm,动点£从点/出发沿加?向点B运动,动点F从点D出发,沿折线D-C-B运动,两点的速度均为lc加心,到达终点均停止运动,设/E的长为t 心£尸的面积为y,则y与x的图象大致为()二、填空题(每小题3分,共15分)11.(3 分)若®,则*+2x+1 二_________ ・12.(3分)已知反比例函数y =乎,当兀>0时,y随x增大而减小,则刃的取值范围是_______ •13.(3分)不等式组住其:有2个整数解,则实数a的取值范围是______ ・14.(3 分)如图,在RtZVIBC 中,Z/JCB = 90°, ZJ = 30o,AC = 43.分别以点3为圆心,AC, BC的长为半径画弧,交MB于点D, E,则图中阴影部分的面积是_________ ・15. (3分)如图,在菱形ABCD中,ZA = 60°t初二3,点M 为力〃边上一点,AM = 2t点N为RD边上的一动点,沿将ZUMN翻折,点/落在点P处,当点P在菱形的对角线上时,的长度为_____________ ・c三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:令斗(击・兀+1),其中"sin30°+2_,+V4.17.(9分)如图,△/J3C内接于圆。
2020年初中数学中考模拟试题及答案

2020年初中数学中考模拟试题及答案2020年九年级数学中考模拟试题第Ⅰ卷(选择题)一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列实数中,无理数是()。
A。
$\sqrt{2}$。
B。
$-2$。
C。
$\dfrac{1}{2}$。
D。
$0.5$2.(3分)下列图形中,既是轴对称又是中心对称图形的是()。
A。
菱形。
B。
等边三角形。
C。
平行四边形。
D。
等腰梯形3.(3分)图中立体图形的主视图是()。
A。
B。
C。
D。
4.(3分)一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程()。
A。
$10\%x=330$。
B。
$(1-10\%)x=330$。
C。
$(1-10\%)2x=330$。
D。
$(1+10\%)x=330$5.(3分)某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数()。
A。
平均数。
B。
中位数。
C。
众数。
D。
方差6.(3分)用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于()之间。
A。
B与C。
B。
C与D。
C。
E与F。
D。
7.(3分)若代数式 $A=\dfrac{x+1}{x-1}$,$B=\dfrac{2x-1}{x-2}$ 有意义,则实数x的取值范围是()。
A。
$x\geq1$。
B。
$x\geq2$。
C。
$x>1$。
D。
$x>2$8.(3分)下列曲线中不能表示y是x的函数的是()。
A。
B。
C。
D。
9.(3分)某校美术社团为练素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本。
求第一次买了多少本资料?若设第一次买了x本资料,列方程正确的是()。
A。
$120=\dfrac{(x+20)\times(4x-480)}{4x-480-20}$。
B。
$120=\dfrac{(x+20)\times(4x-480)}{4x-480}$C。
2020年中考数学模拟试卷04含解析

2020年中考数学模拟试卷一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知点M(1﹣m,2﹣m)在第三象限,则m的取值范围是()A.m>3 B.2<m<3 C.m<2 D.m>2【答案】D【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.根据题意知,解得m>2,故选:D.2.已知x=2是方程2x﹣3a+2=0的根,那么a的值是()A.﹣2 B.C.2 D.【答案】C【解析】根据一元一次方程的解定义,将x=2代入已知方程列出关于a的新方程,通过解新方程即可求得a的值.∵x=2是方程2x﹣3a+2=0的根,∴x=2满足方程2x﹣3a+2=0,∴2×2﹣3a+2=0,即6﹣3a=0,解得,a=2;故选:C.3.如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中△ABC相似的是()A.B.C.D.【答案】B【解析】本题主要应用两三角形相似判定定理,三边对应成比例,分别对各选项进行分析即可得出答案.已知给出的三角形的各边AB、CB、AC分别为、2、、只有选项B的各边为1、、与它的各边对应成比例.故选:B.4.某高速公路概算总投资为79.67亿元,请将79.67亿用科学记数法表示为()A.7.967×101B.7.967×1010C.7.967×109D.79.67×108【答案】C【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于79.67亿有10位,所以可以确定n=10﹣1=9.79.67亿=7 967 000 000=7.967×109.故选:C.5.已知圆锥的底面半径为6cm,高为8cm,则圆锥的侧面积为()A.36πcm2B.48πcm2C.60πcm2D.80πcm2【答案】C【解析】根据圆锥的底面半径和高求出圆锥的母线长,再根据圆锥的底面周长等于圆锥的侧面展开扇形的弧长,最后利用扇形的面积计算方法求得侧面积.由勾股定理得:圆锥的母线长==10,∵圆锥的底面周长为2πr=2π×6=12π,∴圆锥的侧面展开扇形的弧长为12π,∴圆锥的侧面积为:×12π×10=60π.故选:C.6.已知,且﹣1<x﹣y<0,则k的取值范围为()A.﹣1<k<﹣B.0<k<C.0<k<1 D.<k<1【答案】D【解析】利用第二个方程减去第一个方程,得到一个不等式,根据﹣1<x﹣y<0得到一个不等式,组成不等式组解这个不等式即可.第二个方程减去第一个方程得到x﹣y=1﹣2k,根据﹣1<x﹣y<0得到:﹣1<1﹣2k<0即解得<k<1,k的取值范围为<k<1.故选:D.7.如图所示实数a,b在数轴上的位置,以下四个命题中是假命题的是()A.a3﹣ab2<0 B.C.D.a2<b2【答案】B【解析】由数轴可知a>0,b<0,且|a|<|b|,由此可判断a+b<0,a﹣b>0,再逐一检验.依题意,得a>0,b<0,且|a|<|b|,∴a+b<0,a﹣b>0,A、a3﹣ab2=a(a+b)(a﹣b)<0,正确;B、∵a+b<0,∴=﹣(a+b),错误;C、∵0<a<a﹣b,∴<,正确;D、∵(a+b)(a﹣b)<0,∴a2﹣b2<0,即a2<b2,正确.故选:B.8.如图,⊙P内含于⊙O,⊙O的弦AB切⊙P于点C,且AB∥OP,若阴影部分的面积为9π,则弦AB的长为()A.3 B.4 C.6 D.9【答案】C【解析】本题可先由题意OD=PC=r,再根据阴影部分的面积为9π,得出R2﹣r2=9,即AD==3,进而可知AB=2×3=6.设PC=r,AO=R,连接PC,⊙O的弦AB切⊙P于点C,故AB⊥PC,作OD⊥AB,则OD∥PC.又∵AB∥OP,∴OD=PC=r,∵阴影部分的面积为9π,∴πR2﹣πr2=9π,即R2﹣r2=9,于是AD==3.∵OD⊥AB,∴AB=3×2=6.故选:C.9.因为sin30°=,sin210°=,所以sin210°=sin(180°+30°)=﹣sin30°;因为sin45°=,sin225°=,所以sin225°=sin(180°+45°)=﹣sin45°,由此猜想,推理知:一般地当α为锐角时有sin(180°+α)=﹣sinα,由此可知:sin240°=()A.B.C.D.【答案】C【解析】阅读理解:240°=180°+60°,因而sin240°就可以转化为60°的角的三角函数值.根据特殊角的三角函数值,就可以求解.∵当α为锐角时有sin(180°+α)=﹣sinα,∴sin240°=sin(180°+60°)=﹣sin60°=﹣.故选:C.10.如图,两个反比例函数和(其中k1>k2>0)在第一象限内的图象依次是C1和C2,设点P在C1上,PC⊥x轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,下列说法正确的是()①△ODB与△OCA的面积相等;②四边形PAOB的面积等于k2﹣k1;③PA与PB始终相等;④当点A是PC的中点时,点B一定是PD的中点.A.①②B.①②④C.①④D.①③④【答案】C【解析】根据反比例函数系数k所表示的意义,对①②③④分别进行判断.①A、B为上的两点,则S△ODB=S△OCA=k2,正确;②由于k1>k2>0,则四边形PAOB的面积应等于k1﹣k2,错误;③只有当P的横纵坐标相等时,PA=PB,错误;④当点A是PC的中点时,点B一定是PD的中点,正确.故选:C.第二部分非选择题(共110分)二.填空题(本大题共6小题,每小题4分,共24分.)11.分解因式:ax2﹣2ax+a=.【答案】a(x﹣1)2【解析】本题考查了用提公因式法和公式法进行因式分解,先提公因式a,再利用完全平方公式继续分解因式.ax2﹣2ax+a=a(x2﹣2x+1)=a(x﹣1)2.12.暑假中,小明,小华将从甲、乙、丙三个社区中随机选取一个参加综合实践活动,若两人不在同一社区,则小明选择到甲社区、小华选择到乙社区的可能性为.【答案】【解析】画树状图得:,∵共有9种等可能的结果,小明选择到甲社区、小华选择到乙社区的有1种情况,∴小明选择到甲社区、小华选择到乙社区的可能性为:.故答案为:.13.如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E =度.【答案】80【解析】设∠EPC=2x,∠EBA=2y,∵∠EBA、∠EPC的角平分线交于点F∴∠CPF=∠EPF=x,∠EBF=∠FBA=y,∵∠1=∠F+∠ABF=40°+y,∠2=∠EBA+∠E=2y+∠E,∵AB∥CD,∴∠1=∠CPF=x,∠2=∠EPC=2x,∴∠2=2∠1,∴2y+∠E=2(40°+y),∴∠E=80°.故答案为:80.14.一个多边形的每一个外角为30°,那么这个多边形的边数为.【答案】12【解析】一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360°,利用360°除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.多边形的边数:360°÷30°=12,则这个多边形的边数为12.故答案为:12.15.如图,点A,B,是⊙O上三点,经过点C的切线与AB的延长线交于D,OB与AC交于E.若∠A =45°,∠D=75°,OB=,则CE的长为.【答案】2【解析】连接OC,如图,∵∠A=45°,∠D=75°,∴∠ACD=60°,∵CD为切线,∴OC⊥CD,∴∠OCD=90°,∵∠BOC=2∠A=90°,∴OB∥CD,∴∠CEO=∠ACD=60°,在Rt△COE中,sin∠CEO=,∴CE===2.故答案为2.16.如图,点A是反比例函数y=图象上的任意一点,过点A做AB∥x轴,AC∥y轴,分别交反比例函数y=的图象于点B,C,连接BC,E是BC上一点,连接并延长AE交y轴于点D,连接CD,则S△DEC﹣S△BEA=.【答案】【解析】点A是反比例函数y=图象上的任意一点,可设A(a,),∵AB∥x轴,AC∥y轴,点B,C,在反比例函数y=的图象上,∴B(,),C(a,),∴AB=a,AC=,∴S△DEC﹣S△BEA=S△DAC﹣S△BCA=××(a﹣a)=××a=.故答案为:.三、解答题(本大题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分8分)计算:﹣12019+|﹣2|+2cos30°+(2﹣tan60°)0.【解析】直接利用零指数幂的性质以及特殊角的三角函数值和绝对值的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.解:原式=﹣1+2﹣++1=2.18.(本小题满分8分)先化简,,然后从﹣1≤x≤2的范围内选取一个合适的整数作为x的值代入求值.【解析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x的值代入计算可得.解:原式=[﹣]÷=•=﹣,∵x≠±1且x≠0,∴在﹣1≤x≤2中符合条件的x的值为x=2,则原式=﹣=﹣2.19.(本小题满分8分)如图,已知点E、C在线段BF上,且BE=CF,CM∥DF,(1)作图:在BC上方作射线BN,使∠CBN=∠1,交CM的延长线于点A(用尺规作图法,保留作图痕迹,不写作法);(2)在(1)的条件下,求证:AC=DF.【解析】(1)①以E为圆心,以EM为半径画弧,交EF于H,②以B为圆心,以EM为半径画弧,交EF于P,③以P为圆心,以HM为半径画弧,交前弧于G,④作射线BG,则∠CBN就是所求作的角.(2)证明△ABC≌△DEF可得结论.解:(1)如图所示,即为所求;(2)∵CM∥DF,∴∠MCE=∠F,∵BE=CF,∴BE+CE=CF+CE,即BC=EF,在△ABC和△DEF中,∵,∴△ABC≌△DEF,∴AC=DF.20.(本小题满分8分)在读书月活动中,学校准备购买一批课外读物,为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了名同学;(2)条形统计图中,m=,n=;(3)扇形统计图中,艺术类读物所在扇形的圆心角是度;(4)学校计划购买课外读物5000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?【解析】解:(1)根据条形图得出文学类人数为:70,利用扇形图得出文学类所占百分比为:35%,故本次调查中,一共调查了:70÷35%=200人,故答案为:200;(2)根据科普类所占百分比为:30%,则科普类人数为:n=200×30%=60人,m=200﹣70﹣30﹣60=40人,故m=40,n=60;故答案为:40,60;(3)艺术类读物所在扇形的圆心角是:×360°=72°,故答案为:72;(4)由题意,得5000×=750(册).答:学校购买其他类读物750册比较合理.21.(本小题满分8分)某大型超市投入15000元资金购进A、B两种品牌的矿泉水共600箱,矿泉水的成本价和销售价如下表所示:(1)该大型超市购进A、B品牌矿泉水各多少箱?(2)全部销售完600箱矿泉水,该超市共获得多少利润?销售价(元/箱)类别/单价成本价(元/箱A品牌20 32B品牌35 50【解析】解:(1)设该超市进A品牌矿泉水x箱,B品牌矿泉水y箱,依题意,得:,解得:.答:该超市进A品牌矿泉水400箱,B品牌矿泉水200箱.(2)400×(32﹣20)+200×(50﹣35)=7800(元).答:该超市共获利润7800元.22.(本小题满分10分)如图,在Rt△ABC中,∠BAC=90°,AD平分∠BAC,过AC的中点E作FG ∥AD,交BA的延长线于点F,交BC于点G,(1)求证:AE=AF;(2)若BC=AB,AF=3,求BC的长.【解析】解:(1)∵∠BAC=90°,AD平分∠BAC,∴∠DAB=∠CAB=×90°=45°,∵FG∥AD,∴∠F=∠DAB=45°,∠AEF=45°,∴∠F=∠AEF,∴AE=AF;(2)∵AF=3,∴AE=3,∵点E是AC的中点,∴AC=2AE=6,在Rt△ABC中,AB2+AC2=BC2,AB2+32=()2,AB=,BC=.23.(本小题满分10分)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(n≠0)的图象交于第二、四象限内的A、B两点与x轴交于点C,点B坐标为(m,﹣1),AD⊥x轴,且AD=3,tan∠AOD=(1)求该反比例函数和一次函数的解析式;(2)连接OB,求S△AOC﹣S△BOC的值;(3)点E是x轴上一点,且△AOE是等腰三角形请直接写出满足条件的E点的个数(写出个数即可,不必求出E点坐标).【解析】解:(1)∵AD⊥x轴,∴∠ADO=90°,在Rt△ADO中,AD=3,tan∠AOD==,∴OD=2,∴A(﹣2,3),∵点A在反比例函数y=的图象上,∴n=﹣2×3=﹣6,∴反比例函数的解析式为y=﹣,∵点B(m,﹣1)在反比例函数y=﹣的图象上,∴﹣m=﹣6,∴m=6,∴B(6,﹣1),将点A(﹣2,3),B(6,﹣1)代入直线y=kx+b中,得,∴,∴一次函数的解析式为y=﹣x+2;(2)由(1)知,A(﹣2,3),直线AB的解析式为y=﹣x+2,令y=0,∴﹣x+2=0,∴x=4,∴C(4,0),∴S△AOC﹣S△BOC=OC•|y A|﹣OC•|y B|=×4(3﹣1)=4;(3)设E(m,0),由(1)知,A(﹣2,3),∴OA2=13,OE2=m2,AE2=(m+2)2+9,∵△AOE是等腰三角形,∴①当OA=OE时,∴13=m2,∴m=±,∴E(﹣,0)或(,0),②当OA=AE时,13=(m+2)2+9,∴m=0(舍)或m=4,∴E(4,0),③当OE=AE时,m2=(m+2)2+9,∴m=﹣,∴E(﹣,0),即:满足条件的点P有四个.24.(本小题满分12分)如图,在⊙O中,半径OD⊥直径AB,CD与⊙O相切于点D,连接AC交⊙O 于点E,交OD于点G,连接CB并延长交⊙于点F,连接AD,EF.(1)求证:∠ACD=∠F;(2)若tan∠F=①求证:四边形ABCD是平行四边形;②连接DE,当⊙O的半径为3时,求DE的长.【解析】(1)证明:∵CD与⊙O相切于点D,∴OD⊥CD,∵半径OD⊥直径AB,∴AB∥CD,∴∠ACD=∠CAB,∵∠EAB=∠F,∴∠ACD=∠F;(2)①证明:∵∠ACD=∠CAB=∠F,∴tan∠GCD=tan∠GAO=tan∠F=,设⊙O的半径为r,在Rt△AOG中,tan∠GAO==,∴OG=r,∴DG=r﹣r=r,在Rt△DGC中,tan∠DCG==,∴CD=3DG=2r,∴DC=AB,而DC∥AB,∴四边形ABCD是平行四边形;②作直径DH,连接HE,如图,OG=1,AG==,CD=6,DG=2,CG==2,∵DH为直径,∴∠HED=90°,∴∠H+∠HDE=90°,∵DH⊥DC,∴∠CDE+∠HDE=90°,∴∠H=∠CDE,∵∠H=∠DAE,∴∠CDE=∠DAC,而∠DCE=∠ACD,∴△CDE∽△CAD,∴=,即=,∴DE=.25.(本小题满分14分)如图,在平面直角坐标系xOy第一象限中有正方形OABC,A(4,0),点P(m,0)是x轴上一动点(0<m<4),将△ABP沿直线BP翻折后,点A落在点E处,在OC上有一点M(0,t),使得将△OMP沿直线MP翻折后,点O落在直线PE上的点F处,直线PE交OC 于点N,连接BN.(I)求证:BP⊥PM;(II)求t与m的函数关系式,并求出t的最大值;(III)当△ABP≌△CBN时,直接写出m的值.【解析】解:(Ⅰ)由折叠知,∠APB=∠NPB,∠OPM=∠NPM,∵∠APN+∠OPN=180°,∴2∠NPB+2∠NPM=180°,∴∠NPB+∠NPM=90°,∴∠BPM=90°,∴BP⊥PM;(Ⅱ)∵四边形OABC是正方形,∴∠OAB=90°,AB=OA,∵A(4,0),∴AB=OA=4,∵点P(m,0),∴OP=m,∵0<m<4,∴AP=OA﹣OP=4﹣m,∵M(0,t),∴OM=t,由(1)知,∠BPM=90°,∴∠APB+∠OPM=90°,∵∠OMP+∠OPM=90°,∴∠OMP=∠APB,∵∠MOP=∠PAB=90°,∴△MOP∽△PAB,∴,∴,∴t=﹣m(m﹣4)=﹣(m﹣2)2+1∵0<m<4,∴当m=2时,t的最大值为1;(Ⅲ)∵△ABP≌△CBN,∴∠CBN=∠ABP,BP=BN,由折叠知,∠ABP=∠EBP,∠BEP=∠BAP=90°,∴NE=PE,∠NBE=∠PBE,∴∠CBN=∠NBE=∠EBP=∠PBA,∴∠CBE=∠ABE=45°,连接OB,∵四边形OABC是正方形,∴∠OBC=∠OBA=45°,∴点E在OB上,∴OP=ON=m,∴PN=m,∵OM=t,∴MN=ON=OM=m﹣t,如图,过点N作OP的平行线交PM的延长线于G,∴∠OPM=∠G,由折叠知,∠OPM=∠NPM,∴∠NPM=∠G,∴NG=PN=m,∵GN∥OP,∴△OMP∽△NMG,∴,∴=①,由(2)知,t=﹣m(m﹣4)②,联立①②解得,m=0(舍)或m=8﹣.。
2020年中考数学模拟试卷(含答案)

2020年中考数学模拟试卷一、选择题(本大题有16个小题,共42分.1〜10小题各3分,11〜16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列各数中,小于﹣3的数是()A.0B.1C.﹣2D.﹣42.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()3.(3分)下列计算正确的是()A.(﹣a3)2=﹣a6B.3x+2y=6xy C.3﹣2=D.=±34.若k≠0,b<0,则y=kx+b的图象可能是()5. 图1是数学家皮亚特•海恩(Piet Hein)发明的索玛立方块,它由四个及四个以内大小相同的立方体以面相连接构成的不规则形状组件组成.图2不可能是下面哪个组件的视图()A.B.C.D.6.3分)四个小朋友玩跷跷板,他们的体重分别为P、Q、R、S,如图所示,则他们的体重大小关系是()A.P>R>S>Q B.Q>S>P>R C.S>P>Q>R D.S>P>R>Q 7.(3分)已知方程组的解为,则〇、□分别为()A.1,2B.1,5C.5,I D.2,48.(3分)证明:平行四边形对角线互相平分.已知:四边形ABCD是平行四边形,如图所示.求证:AO=CO,BO=DO.以下是排乱的证明过程,正确的顺序应是①∵∠ABO=∠CDO,∠BAC=∠DCA.②∵四边形ABCD是平行四边形.③∴AB∥CD,AB=DC.④△AOB≌△COD.⑤∴OA=OC,OB=OD()A.②①③④⑤B.②③⑤①④C.②③①④⑤D.③②①④⑤9.((3分)如图,△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,△OAB与△OCD 的面积分别是S1和S2,△OAB与△OCD的周长分别是C1和C2,则下列等式一定成立的是()A.B.C.D.10.(3分)如图,在△ABC中,CA=CB=4,∠ACB=90°,以AB中点D为圆心,作圆心角为90°的扇形DEF,点C恰好在弧EF上,则图中阴影部分的面积是()A.π﹣2B.π﹣1C.2π﹣4D.不确定11.(2分)在东西方向的海岸线上有A,B两个港口,甲货船从A港沿东北方向以5海里/时的速度出发,同时乙货船从B港口沿北偏西60°的方向出发,2h后相遇在点P处,如图所示.问A港与B港相距____海里.()A.10B.5+5C.10+5D.2012.(2分)下表是某校合唱团成员的年龄分布,对于不同的x,下列关于年龄的统计量不会发生改变的是()年龄/岁13141516频数515x10﹣x A.平均数、中位数B.众数、方差C.平均数、方差D.众数、中位数13.(2分)某市对城区内某一段道路的一侧全部栽上梧桐树,要求路的两端各栽一棵,并且每两棵树的间隔相等,如果每隔4米栽1棵,则树苗缺21棵:如果每隔5米栽1棵,则树苗正好用完.设原有树苗x棵,根据题意列方程,正确的是()A.4(x+21﹣1)=5(x﹣1)B.4(x+21)=5(x﹣1)C.4(x+21﹣1)=5x D.4(x+21)=5x14.(2分)已知,在△ABC中,AB=AC,求作△ABC的外心O,以下是甲、乙两同学的作法:对于两人的作法:甲:如图1,(1)作AB的垂直平分线DE;(2)作BC的垂直平分线FG;(3)DE,FG交于点O,则点O即为所求.乙:如图2,(1)作∠ABCC的平分线BD;(2)作BC的垂直平分线EF;(3)BD,EF交于点O,则点O即为所求.对于两人的作法,正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对15.(2分)如图,在△ABC中,点I为△ABCC的内心,点D在BC上,且ID⊥BC,若∠ABC=44°,∠C=56°,则∠AID的度数为()A.174°B.176°C.178°D.180°16.(2分)如图,已知点A(0,2),B(2,2),C(﹣1,0),抛物线y=a(x﹣h)2+k过点C,顶点M位于第一象限且在线段AB的垂直平分线上.若抛物线与线段AB无公共点,则k的取值范围是()A .0<k <2B .0<k <2或k >C .k >D .0<k <2或k >二、填空题(本大题有3个小题,共12分,17~18小题各3分;19小题有2个空,每空3分,把答案写在题中横线上) 17.(3分)8×21= 。
2020年中考模拟试卷数学试卷及答案共5套精品版

中考模拟试卷 数学卷考生须知:1、本试卷分试题卷和答题卷两部分,满分120分,考试时间100分钟.2、答题前,必须在答题卷的密封区内填写校名、姓名和准考证号.3 、所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应.4 、考试结束后,上交试题卷和答题卷.试 题 卷一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内。
注意可以用多种不同的方法来选取正确答案。
1.北京时间3月11日,日本发生了9.0级大地震,地震发生后, 中国红十字会一直与日本红十字会保持沟通,密切关注灾情发展。
截至目前,中国红十字会已经累计向日本红十字会提供600万元人民币的人道援助。
这里的数据“600万元”用科学计数法表示为( ▲ )(第1题) A . 4610⨯元 B . 5610⨯元 C .6610⨯元 D .7610⨯元 2. 若15a =,55b =,则a b 、两数的关系是( ▲ )A 、a b =B 、5ab =C 、a b 、互为相反数D 、a b 、互为倒数 3. 公务员行政能力测试中有一类图形规律题,可以运用我们初中数学中的图形变换再结合变化规律来解决,下面一题问号格内的图形应该是( ▲ )(第3题)4. 某市2008年4月的一周中每天最低气温如下:13,11,7,12,13,13,12, 则在这一周中,最低气温的众数和中位数分别是( ▲ ) A. 13和11 B. 12和13 C. 11和12 D. 13和125.若有甲、乙两支水平相当的NBA 球队需进行总决赛,一共需要打7场,前4场2比2,最后三场比赛,规定三局两胜者为胜方,如果在第一次比赛中甲获胜,这时乙最终取胜的可能性有多大?(不考虑主场优势)( ▲ ) A .21 B .31C .41D . 156. 如图,△ABC 内接于⊙O ,∠C=45°,AB=2,则⊙O 的半径为( ▲ )A .1B .22C .2D .2(第6题)(第7题)7. 如图,小亮同学在晚上由路灯A 走向路灯B ,当他走到点P 时,发现他的身影顶部正好接触路灯B 的底部,这时他离路灯A 25米,离路灯B 5米,如果小亮的身高为1.6米,那么路灯高度为 ( ▲ )A .6.4米B . 8米C .9.6米D . 11.2米8. 如图,圆内接四边形ABCD 是由四个全等的等腰梯形组成,AD 是⊙O 的直径,则∠BEC 的度数为( ▲ )A .15°B .30°C .45°D .60°(第9题)9.如图,直线l 和双曲线ky x=(0k >)交于A 、B 两点,P 是线段AB 上的点(不与A 、B 重合),过点A 、B 、P 分别向x 轴作垂线,垂足分别为C 、D 、E ,连接OA 、OB 、OP ,设△AOC 的面积为1S 、△BOD 的面积为2S 、△POE 的面积为3S ,则 ( ▲ ) A .123S S S << B .123S S S >> C . 123S S S => D . 123S S S =<10.如图,点C 、D 是以线段AB 为公共弦的两条圆弧的中点,AB =4,点E 、F 分别是线段CD ,AB 上的动点,设AF =x ,AE 2-FE 2=y ,则能表示y 与x 的函数关系的图象是( ▲ )Oxy 4 4A . Ox y4 4 B .Ox y4 4 C .Ox y4 4 D .(第10题)C DE FAB (第8题)二. 认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案. 11.分解因式:x x 43-= ▲12.已知函数y 1=2x-5,y 2= -2x +15,如果y 1<y 2 ,则x 的取值范围是 ▲13.如图,相离的两个圆⊙O 1和⊙O 2在直线l 的同侧。
2020年中考数学模拟试卷【答案+解析】

2020年中考数学模拟试卷一.选择题(满分30分,每小题3分)1.如果股票指数上涨30点记作+30,那么股票指数下跌20点记作()A.﹣20B.+20C.﹣10D.+102.下列计算正确的是()A.a2•a3=a6B.3a2﹣a2=2C.a6÷a2=a3D.(﹣2a)2=4a23.将不等式组的解集在数轴上表示出来,应是()A.B.C.D.4.有若干个完全相同的小正方体堆成一个如图所示几何体,若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加小正方体的个数为()A.2B.3C.4D.55.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°6.若干名工人某天生产同一种玩具,生产的玩具数整理成条形图(如图所示).则他们生产的玩具数的平均数、中位数、众数分别为()A.5,5,4B.5,5,5C.5,4,5D.5,4,47.在四边形ABCD中,O是对角线AC、BD的交点,能判定这个四边形为正方形的是()A.AD∥BC,∠B=∠D B.AC=BD,AB=CD,AD=BCC.OA=OC,OB=OD,AB=BC D.OA=OB=OC=OD,AC⊥BD8.如图,P A、PB是⊙O的切线,A、B为切点,若∠P=50°,则∠P AB的度数为()A.50°B.60°C.65°D.70°9.如图,在Rt△ABC中,∠C=90°,AD=BD,CE=2BE.过B作BF∥CD交AE的延长线为F.当BF=1时,AB的长为()A.4B.5C.6D.710.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如表:下列结论错误的是()A.ac<0B.当x>1时,y的值随x的增大而减小C.3是方程ax2+(b﹣1)x+c=0的一个根D.当﹣1<x<3时,ax2+(b﹣1)x+c>0二.填空题(满分24分,每小题3分)11.若使代数式有意义,则x的取值范围是.12.某招聘考试分笔试和面试两种.其中笔试按60%、面试按40%计算加权平均数作为总成绩.小明笔试成绩为90分.面试成绩为85分,那么小明的总成绩为分.。
2020中考数学模拟试卷及答案解析

D C BOA 图31B D A C 图1 AB D EC 图4C. D. 2020一、选择题1.下列判断中,你认为正确的是……………………………………………………【 】A .0的绝对值是0B .31是无理数 C .4的平方根是2 D .1的倒数是1-2.方程230x -=的根是………………………………………………………………【 】 A.3x = B.123,3x x ==- C.x =3.下列说法中正确的是……………………………………………【 】 A .“打开电视,正在播放《今日说法》”是必然事件B .要调查人们对“低碳生活”的了解程度,宜采用抽查方式C .数据1,1,1,2,2,3的众数是3D .一组数据的波动越小,方差越大4.如图1,AB ∥CD ,∠A = 40°,∠D = 45°,则∠1的度数为【 】 A .5° B . 40° C .45° D . 85° 5.如图2所示几何体的俯视图是…………………………………【 】6.已知a -b =1,则代数式2b -2a -3的值是…………………………………………【 】A .-1 B .1 C .-5 D .47. 关于x 的方程32mx x -=的解为正实数,则m 的取值范围是……………………【 】 A .m ≥2 B .m >2 C .m ≤2 D .m <2 8. 如图3,AB 是⊙O 的直径,C 是⊙O 上的一点,若BC =6,12x x ==AB =10,OD ⊥BC 于点D ,则OD 的长为…………【 】A .3B .4C .5D .69. 点A (x 1,y 1)、B (x 2,y 2) 在函数12y x=的图象上,若y 1>y 2 ,则 x 1、x 2的大小关系为……………………【 】 A .大于 B .等于 C .小于 D .不确定10.河北省的黄骅冬枣是我省的特产,冬季加工后出售,单价可提高20%,但重量会减少10%.现有未加工的冬枣30千克,加工后可以比不加工多卖12元,设冬枣加工前每千克卖x 元,加工后每千克卖y 元,根据题意,x 和y 满足的方程组是…………【 】A .(120)30(110)3012y xy x =+⎧⎨--=⎩%%B .(120)30(110)3012y xy x =+⎧⎨+-=⎩%%C .(120)30(110)3012y x y x =-⎧⎨--=⎩%%D .(120)30(110)3012y x y x =-⎧⎨+-=⎩%%11.如图4,在△ABC 中,AB =AC ,BC =10,AD 是底边上的高,AD =12,E 为AC 中点,则DE的长为………………………………………………………………【 】 A .6.5 B .6 C .5 D .412.如图5,点P 是菱形ABCD 的对角线AC 上的一个动点,过 N 图2正面 ↗图6点P 作垂直于AC 的直线交菱形ABCD 的边于M 、N 两点. 设 AC =2,BD =1,AP =x ,△AMN 的面积为y ,则y 关于x 的 函数图象大致形状是…………………………………【 】 卷Ⅱ(非选择题,共90分)二、填空题(本大题共6个小题;每小题3分,共18分.把答案写在题中横线上) 13.分解因式:21a -= .14.已知三角形的两边长为2,5,则第三边的长度可以是 (写出一个即可). 15.将半径为10cm ,弧长为12π的扇形围成圆锥(接缝忽略不计),那么圆锥的母线与圆锥高的夹角的余弦值是 . 16.如图6,已知AB 是⊙O 的一条直径,延长AB 至C 点, 使得AC =3BC ,CD 与⊙O 相切,切点为D .若CD =3,则线段BC 的长度等于 .17.飞机着陆后滑行的距离s (单位:米)与滑行的时间t (单位:秒)之间的函数关系式是s =60t -1.5t 2.测得飞机着陆后滑行的距 离为600米,则飞机着陆后滑行______秒才能停下来.三、解答题(本大题8个小题,共72分.解答应写出文字说明、证明过程或演算步骤)19.(本题满分8分)求值:2112x x x x x ⎛⎫++÷- ⎪⎝⎭,其中1x =.20.(本小题满分8分)如图8,已知反比例函数y = mx(m 是常数,m ≠0),一次函数y =ax +b (a 、b 为常数,a ≠0),其中一次函数与x 轴,y 轴的交点分别是A (-4,0),B (0,2).(1)求一次函数的关系式;零花钱用途学习资料零食文具它七年级同学最喜欢喝的饮料种类情况统计图八年级同学零花钱最主要用途情况统计图 图10-1 图10-2(2)反比例函数图象上有一点P 满足:①PA ⊥x 轴;②PO = 17(O 为坐标原点),求反比例函数的关系式;(3)求点P 关于原点的对称点Q 的坐标,判断点Q 是否在该反比例函数的图象上.21.(本小题满分8分)小亮同学去石家庄展览馆看展览,如图9,该展览馆有2个验票口A 、B (可进出),另外还有2个出口C 、D (不许进).(1)小亮从进入到离开共有多少种可能的进出方式?(要求用列表或树状图) (2)小亮不从同一个验票口进出的概率是多少?22.(本小题满分8分)石家庄28中七(8)班同学分三组进行数学活动,对七年级400名同学最喜欢喝的饮料情况、八年级300名同学零花钱的最主要用途情况、九年级300名同学完成家庭作业时间情况进行了全面调查,并分别用扇形图10-1、频数分布直方图10-2、表格来描述整理得到的数据.九年级同学完成家庭作业时间情况统计表展览大厅 出口C 出口D验票口A 验票口B 图9(1)七年级400名同学中最喜欢喝“冰红茶”的人数是多少?求出扇形统计图中“冰红茶”所在扇形圆心角的度数;(2)补全八年级300名同学中零花钱的最主要用途情况频数分布直方图;(3)九年级300名同学中完成家庭作业的平均时间大约是多少小时(结果保留一位小数)? 23.(本小题满分9分)如图11,△ABC 是等腰三角形,AB =AC ,以AC 为直径的⊙O 与BC 交于点D ,DE ⊥AB ,垂足为E ,ED 的延长线与AC 的延长线交于点F .(1)求证:DE 是⊙O 的切线;(2)若⊙O 的半径为3,BE =1,求cos A 的值.24.(本小题满分9分)如图12-1,点C 是线段AB 上一动点,分别以线段AC 、CB 为边,在线段AB 的同侧作正方形ACDE 和等腰直角三角形BCF ,∠BCF =90°,连接AF 、BD . (1)猜想线段AF 与线段BD 的数量关系和位置关系(不用证明). (2)当点C 在线段AB上方时,其它条件不变,如图12-2,(1)中的结论是否成立?说明你的理由.(3)在图12-1的条件下,探究:当点C 在线段AB 上运动到什么位置时,直线AF 垂直平分线段BD ?A B C DF E 图12-1 DE图14-1 25.(本小题满分10分)如图13,已知抛物线y =x 2-2mx +4m -8的顶点为A .(1)当x ≤2时,函数值y 随x 的增大而减小,求m 的取值范围;(2)以抛物线y =x 2-2mx +4m -8的顶点A 为一个顶点作该抛物线的内接正三角形AMN (M ,N 两点在抛物线上),请问:△AMN 的面积是与m 无关的定值吗?若是,请求出这个定值;若不是,请说明理由;(3)若抛物线y =x 2-2mx +4m -8与x 轴交点的横坐标均为整数,求整数..m 的值.26.(本小题满分12分)如图14-1,梯形ABCD 中,∠C =90°.动点E 、F 同时从点B 出发,点E 沿折线BA -AD -DC 运动到点C 时停止运动,点F 沿BC 运动到点C 时停止运动,它们运动时的速度都是1cm/s .设E 、F 出发t s 时,△EBF 的面积为y cm 2.已知y 与t 的函数图象如图14-2所示,其中曲线OM 为抛物线的一部分,MN 、NP 为线段.请根据图中的信息,解答下列问题:(1)梯形上底的长AD =__________cm ,梯形ABCD 的面积=__________cm 2;(2)当点E 在BA 、DC 上运动时,分别求出y 与t 的函数关系式(注明自变量的取值范围); (3)当t 为何值时,△EBF 与梯形ABCD 的面积之比为1 : 3.图13开始进出 B AC DABB C D A13.(1)(1)a a-+; 14.大于3小于7的任意一个数均可; 15.45; 16 17.20;18.左起第45列,上起第14行.三、解答题(本大题共8个小题;共72分)19.解:原式=221212x x xx x+--÷------------------------------2分=12(1)(1)x xx x x++------------------------------------------4分=21x-. ----------------------------------------------6分将1x=代入上式得原式2==.-----------8分20.解:(1)∵一次函数y=ax+b的图象经过A(-4,0)和B(0,2)∴⎩⎪⎨⎪⎧-4a+b=0b=2∴⎩⎪⎨⎪⎧a=12b=2,∴一次函数的关系式为:y=12x+2 .--------------------------2分(2)∵PO=17,AO=4,∴PA=1,∴点P的坐标为(-4,-1),---------------------------------4分把(-4,-1)代入y=mx,解得m=4,∴反比例函数的关系式为y=4x. ------------------------------5分(3)∵PO=17,AO=4,∴PA=1,点P(-4,-1)关于原点的对称点为Q(4,1),-----------------7分满足y=4x,∴点Q在该反比例函数的图象上. ------------------8分21.解法一:用树状图分析如下:-------------------4分∴小张不从同一个验票口进出的概率是:P (小张不从同一个验票口进出)= 6 8 = 34.-------8分22.(1)400(125%25%10%)160⨯---=,360(125%25%10%)144︒︒⨯---=,∴七年级400名同学中最喜欢喝“冰红茶”的人数是160人,冰红茶”所在扇形圆心角的度数为144°.------------------------------4分 (2)买学习资料的频数为:300-75-100-25=100,补图略.----------------6分 (3)1535(150 1.5802120 2.550) 1.8300300x =⨯⨯+⨯+⨯+⨯=≈. ∴九年级300名同学中完成家庭作业的平均时间大约是1.8小时.------------8分23.(1)证明:连结AD 、OD .∵AC 是⊙O 的直径,∴AD ⊥BC .-------------------1分 ∵AB =AC ∴D 是BC 的中点, 又∵O 是AC 的中点 ∴OD ∥AB .-------------------2分∵DE ⊥AB ∴OD ⊥DE ,∴DE 是⊙O 的切线.------------------------------4分 (2)解:由(1)知OD ∥AE ,∠FAE =∠FOD , ∠F =∠F , ∴△FOD ∽△FAE,∴FA FO =AEOD, ---------------------5分 ∴AC FC OC FC ++=BE AB OD -, ∴36FC FC ++=361-, 解得FC =32,∴AF =6+31522=,------------------------7分∴在Rt △AEF 中,cos A =AF AE =AF BEAB -=61152-=23--------9分24.解:(1)AF =BD ,AF ⊥BD .----------------------------------------------2分 (2)答:(1)中的结论仍成立,即AF =BD ,AF ⊥BD .------3分 理由:如图2-1∵四边形ACDE 为正方形,∴∠DCA =90°,AC =CD .∵∠BCF =90°,CF =BC , ∴∠DCA =∠BCF =90°, ∴∠DCA +∠DCF =∠BCF +∠DCF , 即∠ACF =∠DCB ,∴△ACF ≌△DCB , ---------------------5分 ∴AF =BD ,∠CAF =∠CDB . 又∵∠1=∠2,∠CAF +∠1=90°,∴∠CDB +∠2=90°, ∴AF ⊥BD .------------------------6分图2-1(3)探究:当AC =22AB 时,直线AF 垂直平分线段BD .--7分 如图2-2,连接AD ,则AD =2AC .--------------------8分∵直线AF 垂直平分线段BD ,∴AB =AD =2AC ,∴AC =22AB . ---------------------------------10分 25.解:(1)∵y =x 2-2mx +4m -8=( x -m )2+4m -8-m 2, ∴抛物线的对称轴为x =m ,∵当x ≤2时,函数值y 随x 的增大而减小,∴m ≥2 .---------------------------------------2分 (2)根据抛物线和正三角形的对称性,可知MN ⊥y 轴, 设抛物线的对称轴与MN 交于点B ,则AB =3BM , 设M (a ,b ),(m <a ), 则BM =a -m ,又AB =y B -y A =b -(4m -8-m 2)=a 2-2ma +4m -8-(4m -8-m 2=a 2-2ma +m 2=( a -m )2, ∴( a -m )2=3( a -m ),∴a -m =3,--------------5分 ∴BM =3,AB =3,∴S △AMN = 1 2 AB ·2BM = 12×3×2×3=3 3,∴△AMN 的面积是与m 无关的定值.---------------7分(3)令y =0,即x 2-2mx +4m -8=0,解得x =m ± ( m -2)2+4,由题意,( m -2)2+4为完全平方数,令( m -2)2+4=n 2, 即( n +m -2)( n -m +2)=4.∵m ,n 为整数,∴n +m -2,n -m +2的奇偶性相同, ∴⎩⎪⎨⎪⎧n +m -2=2n -m +2=2 或 ⎩⎪⎨⎪⎧n +m -2=-2n -m +2=-2,解得 ⎩⎪⎨⎪⎧m =2n =2 或 ⎩⎪⎨⎪⎧m =2n =-2, 综合得m =2. ----------------------------10分 26.解:(1)2 14;-----------------------2分 (2)当0<t ≤5时,点E 在BA 上运动,如图4-1, 过E 作EG ⊥BC 于G ,过A 作AH ⊥BC 于H .由△EBG ∽△ABH 得EB EG =ABAH, 即t EG =54,∴EG =54t , ∴y =21BF ·EG =21t ·54t =52t 2, 即y =52t 2(0≤t ≤5).---------------6分当7≤t <11时,点E 在DC 上运动,如图4-2,y =21BC ·EC =21×5×(11-t )=-25t +255即y =-25t +255(7≤t <11).------------8分(3)若△EBF 与梯形ABCD 的面积之比为1 : 3,则y =72.-----9分 B CEA DF 图4-1G HB CEA D图4-2 H 图3当0<t ≤5时,得52t 2=72,解得t =2.----------------10分 当7≤t <11时,得-25t +255=72,解得t =485.-----------11分故当t 或485时,△EBF 与梯形ABCD 的面积之比为1 : 3. -------12分。
2020年中考数学模拟试题(含解析)

一、选择题(本大题共12小题,每小题3分,满分36分,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均记零分)
1.(3分)(2020预测•德州)下列计算正确的是()
=3
2.(3分)(2020预测•德州)下列银行标志中,既不是中心对称图形也不是轴对称图形的是()
D
3.(3分)(2020预测•德州)图甲是某零件的直观图,则它的主视图为()
D
4.(3分)(2020预测•德州)第六次全国人口普查数据显示,德州市常驻人口约为556.82万人,此数用科学记数法表示
)
正确的是(
5.(3分)(2020预测•德州)如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为()
6.
(3分)(2020预测•德州)不等式组
的解集在数
轴上可表示为( )
.
. C . D .
解不等式组得:
,
7.(3分)(2020预测•德州)如图是拦水坝的横断面,斜坡AB的水平宽度为12米,斜面坡度为1:2,则斜坡AB的长为()
米米2
中,∵=,
=6米,
8.(3分)(2020预测•德州)图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是()
=(千米
9.(3分)(2020预测•德州)雷霆队的杜兰特当选为2013﹣2020预测赛季NBA常规赛MVP,下表是他8场比赛的得分,则这8场比赛得分的众数与中位数分别为()
=29
10.(3分)(2020预测•德州)下列命题中,真命题是()
=4=9。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题(共10小题)1、(2020最新预测)7的相反数是()A、﹣7B、7C、D、﹣考点:相反数。
专题:计算题。
分析:根据相反数的意义,只有符号不同的两个数为相反数,只要改变7前面的符号可得7的相反数.解答:解:根据相反数的意义,7的相反数为﹣7.故选A.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2、(2020最新预测)下列调査中,适合采用全面调査(普査)方式的是()A、对綦江河水质情况的调査B、对端午节期间市场上粽子质量情况的调査C、对某班50名同学体重情况的调査D、对某类烟花爆竹燃放安全情况的调査考点:全面调查与抽样调查。
分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解:A,对綦江河水质情况的调査的调查应用抽样调查,大概知道水质情况就可以了,故此选项错误,B,对端午节期间市场粽子质量的调查适用抽样调查,利用全面调查,就不能买了,故此选项错误;C,对某班50名同学体重情况的调査适用全面调查,人数不多,全面调查准确,故此选项正确;D,对某类烟花爆竹燃放安全情况的调査适用抽样调查,利用全面调查,破坏性极大,就不能买了,故此选项错误.故选C.点评:此题主要考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3、(2020最新预测)如图,是由两个相同的小正方体和一个圆锥体组成的立体图形,其俯视图是()A B CD考点:简单组合体的三视图。
分析:俯视图是从上面看,注意所有的看到的棱都应表现在主视图中.解答:解:从上面看,圆锥看见的是:圆和点,两个正方体看见的是两个正方形.故答案为:C.点评:此题主要考查了三视图的知识,关键是掌握三视图的几种看法.4、(2020最新预测)若相似△ABC与△DEF的相似比为1:3,则△ABC与△DEF的面积比为()A、1:3B、1:9C、3:1D、1:考点:相似三角形的性质。
专题:计算题。
分析:由相似△ABC与△DEF的相似比为1:3,根据相似三角形面积的比等于相似比的平方,即可求得△ABC与△DEF的面积比.解答:解:∵相似△ABC与△DEF的相似比为1:3,∴△ABC与△DEF的面积比为1:9.故选B.点评:本题考查对相似三角形性质.注意相似三角形面积的比等于相似比的平方.5、(2020最新预测)如图,直线a∥b,AC丄AB,AC交直线b于点C,∠1=65°,则∠2的度数是()A、65°B、50°C、35°D、25°考点:平行线的性质。
分析:首先由AC丄AB与∠1=65°,求得∠B的度数,然后由a∥b,根据两直线平行,同位角相等,即可求得∠2的度数.解答:解:∵AC丄AB,∴∠BAC=90°,∴∠1+∠B=90°,∵∠1=65°,∴∠B=25°,∵a∥b,∴∠2=∠B=25°.故选D.点评:此题考查了平行线的性质与垂直的定义.题目比较简单,解题时要注意数形结合思想的应用.6、(2020最新预测)在“庆祝建党90周年的红歌传唱活动”比寒中,七位评委给某参赛队打的分数为:92、86、88、87、92、94、86,则去掉一个最高分和一个最低分后,所剩五个分数的平均数和中位数是()A、89,92B、87,88C、89,88D、88,92考点:中位数;算术平均数。
专题:计算题。
分析:要求平均数只要求出数据之和再除以总个数即可;求中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.解答:解:根据去掉一个最高分和一个最低分后,所剩五个分数的平均数为:平均数:(92+86+88+87+92)÷5=89,故平均数是89;将数据按从小到大的顺序排列得:86、87、88、92、92.最中间的年龄是88,故中位数是88.故选:C.点评:此题主要考查了中位数的概念以及平均数的求法,根据中位数定义给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数,熟练记忆定义是解决问题的关键.7、(2020最新预测)如图,PA、PB是⊙O的切线,切点是A、B,已知∠P=60°,0A=3,那么∠AOB所对弧的长度为()A、6πB、5πC、3πD、2π考点:弧长的计算;切线的性质。
专题:计算题。
分析:由于PA、PB是⊙O的切线,由此得到∠OAP=∠OBP=90°,而∠P=60°,然后利用四边形的内角和即可求出∠AOB然后利用已知条件和弧长公式即可求出∠AOB所对弧的长度.解答:解:∵PA、PB是⊙O的切线,∴∠OAP=∠OBP=90°,而∠P=60°,∴∠AOB=120°,∠AOB所对弧的长度==2π.故选D.点评:此题主要考查了弧长的计算问题,也利用了切线的性质和四边形的内角和,题目简单.8、(2020最新预测)在实施“中小学生蛋奶工程”中,某配送公司按上级要求,每周向学校配送鸡蛋10000 个,鸡蛋用甲、乙两种不同规格的包装箱进行包装,若单独使用甲型包装箱比单独使用乙型包装箱可少用10个,每个甲型包装箱比每个乙型包装箱可多装50个鸡蛋,设每个甲型包装箱可装x个鸡蛋,根据题意下列方程正确的是()A、B、C、D、考点:由实际问题抽象出分式方程。
分析:设每个甲型包装箱可装x个鸡蛋,根据若单独使用甲型包装箱比单独使用乙型包装箱可少用10个,每个甲型包装箱比每个乙型包装箱可多装50个鸡蛋,可列出分式方程.解答:解:设每个甲型包装箱可装x个鸡蛋,﹣=10.故选B.点评:本题考查理解题意能力,以包装箱个数做为等量关系,根据若单独使用甲型包装箱比单独使用乙型包装箱可少用10个,每个甲型包装箱比每个乙型包装箱可多装50个鸡蛋,可列方程求解.9、(2020最新预测)小明从家中出发,到离家 1.2千米的早餐店吃早餐,用了一刻钟吃完早餐后,按原路返回到离家1千米的学校上课,在下列图象中,能反映这一过程的大致图象是()A、B、C、D、考点:函数的图象。
分析:首先分析题干条件,小明从家中出发,到离家 1.2千米的早餐店吃早餐,用了一刻钟吃完早餐后,据此可以判断A和D错误,然后小明原路返回到离家1千米的学校上课,即学校在家和早餐店之间,依次可以可到答案.解答:解:小明从家中出发,到离家 1.2千米的早餐店吃早餐,距离逐渐增大,当吃早餐时,距离不变,当返回学校时,距离变大,到达学校距离不再变化.故选C.点评:本题主要考查函数的图象的知识点,解答本题的关键是理解原路返回到离家1千米的学校上课这句话得意思,也就是说学校在家和早餐店之间.10、(2020最新预测)如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2011个格子中的数为()3 a b c ﹣2 …1A、3B、2C、0D、﹣1考点:规律型:数字的变化类。
专题:规律型。
分析:首先由已知和表求出a、b、c,再观察找出规律求出第2011个格子中的数.解答:解:已知其中任意三个相邻格子中所填整数之和都相等,则,3+a+b=a+b+c,a+b+c=b+c﹣1,所以a=﹣1,c=3,按要求排列顺序为,3,﹣1,b,3,﹣1,b,…,再结合已知表得:b=2,所以每个小格子中都填入一个整数后排列是:3,﹣1,2,3,﹣1,2,…,得到:每3个数一个循环,则:2011÷3=670余1,因此第2011个格子中的数为3.故选A.点评:此题考查的是数字的变化类问题,解题的关键是先由已知求出a、b、c,再找出规律求出答案.二、填空题(共6小题)11、(2020最新预测)经过倾力打造,綦江旅游业得到一定发展,到綦江旅游的人数逐年增加.据旅游部门统计今年上半年到我县古剑山、丁山湖、东溪古镇,永新梨花山等景点旅游的人数已达63700人,这个数用科学记数法表示为 6.37×104.考点:科学记数法—表示较大的数。
分析:先根据科学记数法的概念求出n的值,再用科学记数法表示即可.解答:解:∵63700共有5位数,∴n=5﹣1=4,∴63700用科学记数法表示为:6.37×104.故答案为:6.37×104.点评:本题考查的是科学记数法的概念,即把一个大于10的数记成a ×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法.12、(2020最新预测)若有意义,则x的取值范围是x≥.考点:二次根式有意义的条件。
分析:根据二次根式的定义可知被开方数必须为非负数,列不等式求解.解答:解:要是有意义,则2x﹣1≥0,解得x≥.故答案为:x≥.点评:本题主要考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.13、(2020最新预测)如图,已知AB为⊙O的直径,∠CAB=30°,则∠D= 60°.考点:圆周角定理。
专题:计算题。
分析:首先利用直径所对的圆周角是直角得到直角三角形,然后求得另一锐角的度数,从而求得所求的角.解答:解:∵AB为⊙O的直径,∴∠ACB=90°,∵∠CAB=30°,∴∠B=60°,∴∠D=60°,故答案为:60°.点评:本题考查了圆周角定理,解决本题的关键是利用直径所对的圆周角是直角得到直角三角形.14、(2020最新预测)如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AB的距离OH=.考点:菱形的性质;点到直线的距离;勾股定理。
分析:因为菱形的对角线互相垂直平分,菱形的四边相等,根据面积相等,可求出OH的长.解答:解:∵AC=8,BD=6,∴BO=3,AO=4,∴AB=5.AO?BO=AB?OH,OH=.故答案为:.点评:本题考查菱形的基本性质,菱形的对角线互相垂直平分,菱形的四边相等,根据面积相等,可求出AB边上的高OH.15、(2020最新预测)在不透明的口袋中,有四个形状、大小、质地完全相同的小球,四个小球上分别标有数字,2,4,﹣,现从口袋中任取一个小球,并将该小球上的数字作为平面直角坐标系中点P的横坐标,且点P在反比例函数y=图象上,则点P落在正比例函数y=x 图象上方的概率是.考点:概率公式;正比例函数的图象;反比例函数图象上点的坐标特征。