必修 不等式单元测试题及答案
《不等式》单元测试卷(含详解答案)

试卷第1页,总4页 不等式测试卷(各位同学,请自己安排2个小时考试,自己批阅统计好分数,在班级小程序拍照发给老师检查。
)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若0a b <<,则下列不等式不能成立的是( )A .11a b >B .11a b a >-C .|a|>|b|D .22a b >2.已知实数x ,y 满足41x y -≤-≤-,145x y -≤-≤,则9x y -的取值范围是( )A .[7,26]-B .[1,20]-C .[4,15]D .[1,15]3.关于x 的不等式22280x ax a --<(0a >)的解集为()12,x x ,且2115x x -=,则a = A .154 B .72 C .52 D .1524.设集合{}220A x x x =-->,{}2log 2B x x =≤,则集合()R C A B =I A .{}12x x -≤≤ B .{}02x x <≤ C .{}04x x <≤ D .{}14x x -≤≤ 5.若关于x 的不等式ax b 0->的解集是(),2∞--,则关于x 的不等式2ax bx 0+>的解集为( )A .()2,0-B .()(),02,∞∞-⋃+C .()0,2D .()(),20,∞∞--⋃+ 6.已知关于x 的不等式101ax x -<+的解集是11,2骣琪-琪桫,则a 的值为( ) A .2 B .2- C .12 D .12- 7.不等式20ax x c -+>的解集为}{|21x x -<<,函数2y ax x c =-+的图象大致为( ) A . B .。
峡山中学高中数学不等式单元测试题(含有详细答案)

峡山中学高中数学不等式(理科)测试题13.{|02}x x << 14.)2,1(- 15. 20 16. ]3,(-∞ 三、解答题(共74分)17. 解不等式122log 1815x x x ⎛⎫≤- ⎪-+⎝⎭解:原不等式等价于:21582≥+-x x x0158301720158301720215822222≤+-+-⇔≥+--+-⇔≥-+-x x x x x x x x x x x 3250)5)(3()52)(6(<≤⇔≤----⇔x x x x x 或65≤<x∴原不等式的解集为]6,5()3,25[18.(本小题满分12分) (理)已知a R ∈,解关于x 的不等式12>-x ax.解:不等式12>-x ax 可化为022)1(>-+-x x a . (1)当1<a 时,01<-a ,则原不等式可化为0212<---x a x , ①若10<<a 时,原不等式的解集为}122|{ax x -<<; ②若0=a 时,原不等式的解集为φ;③若0<a 时,原不等式的解集为}212|{<<-x ax . (2)当a =1时,022>-x ,原不等式的解集为}2|{>x x ; (3)当a >1时,0212>---x a x ,由于a -12<0<2, 原不等式的解集为}212|{>-<x a x x 或 19.(本小题满分12分)设a 、b 、c 为△ABC 得三条边,求证:ab+bc+ac 222a b c ≤++<2(ab+bc+ac ).证明:法一(综合法)0=++c b a , 0)(2=++∴c b a展开并移项得:02222≤++-=++c b a ca bc ab 0≤++∴ca bc ab法二(分析法)要证0≤++ca bc ab ,0=++c b a ,故只要证2)(c b a ca bc ab ++≤++ 即证0222≥+++++ca bc ab c b a ,也就是证0])()()[(21222≥+++++a c c b b a ,而此式显然成立,由于以上相应各步均可逆,∴原不等式成立。
高中数学必修一第二章 一元二次函数、方程和不等式 单元测试(含答案)

高中数学必修一第二章一、单选题1.已知a>b>0,c>d,下列不等式中必成立的一个是( )A.a c>bdB.ad<bc C.a+c>b+d D.a―c>b―d2.已知x,y均为正实数,且1x+2+4y+3=12,则x+y的最小值为( )A.10B.11C.12D.133.若两个正实数x,y满足2x+1y=1,且x+2y>m2+2m恒成立,则实数m的取值范围是( )A.(―∞,―2)∪[4,+∞)B.(―∞,―4)∪[2,+∞)C.(―2,4)D.(―4,2)4.若x,y∈R+,且x+3y=5xy,则3x+4y的最小值是( )A.5B.245C.235D.1955.小明从甲地到乙地往返的时速分别为a和b(a<b),其全程的平均时速为v,则( )A.a<v<ab B.v=ab C.ab<v<a+b2D.v=a+b26.已知a>0,b>0,若不等式m3a+b ―3a―1b≤0恒成立,则m的最大值为( )A.4B.16C.9D.37.已知x,y∈(―2,2),且xy=1,则22―x2+44―y2的最小值是( )A.207B.127C.16+427D.16―4278.已知函数f(x)=2x|2x―a|,若0≤x≤1时f(x)≤1,则实数a的取值范围为( )A.[74,2]B.[53,2]C.[32,2]D.[32,53]二、多选题9.已知a>b>c>0,则( )A.a+c>b+c B.ac>bc C.aa+c>bb+cD.a x<b c10.已知a>0,b>0,且a+b=ab,则( )A.(a―1)(b―1)=1B.ab的最大值为4C.a+4b的最小值为9D.1a2+2b2的最小值为2311.已知a,b∈R∗,a+2b=1,则b2a +12b+12ab的值可能为( )A.6B.315C.132D.5212. 现有图形如图所示,C 为线段AB 上的点,且AC =a ,BC =b ,O 为AB 的中点,以AB 为直径作半圆.过点.C 作AB 的垂线交半圆于点D ,连结OD ,AD ,BD ,过点C 作OD 的垂线,垂足为E.则该图形可以完成的无字证明有( )A .a +b 2≥ab (a >0,b >0)B .a 2+b 2≥2ab (a >0,b >0)C .a 2+b 22≥a +b2(a ≥0,b >0)D .ab ≥21a+1b(a >0,b >0)三、填空题13.已知不等式|x ―1|+|x +2|≥5的解集为 .14. 已知实数x ,y 满足―1≤x +y ≤4且2≤x ―y ≤3,则x +3y 的取值范围是 .15.若关于x 的不等式x 2+mx ―2<0在区间[1,2]上有解,则实数m 的取值范围为 .16.设正实数x ,y ,z 满足x 2―3xy +4y 2―z =0,则当xyZ 取得最大值时,2x+1y ―2z的最大值为 .四、解答题17.U =R ,非空集合 A ={x |x 2―5x +6<0} ,集合 B ={x |(x ―a )(x ―a 2―2)<0} .(1)a =12时,求 (∁ U B )∩A ;(2)若 x ∈B 是 x ∈A 的必要条件,求实数 a 的取值范围.18.已知 p :|1―x ―13|≤2 , q :x 2―2x +1―m 2≤0(m >0) ,若 ¬p 是 ¬q 的充分而不必要条件,求实数m 的取值范围.19.求解不等式x 2―a ≥|x ―1|―120.已知a ,b ,c 都为正实数,满足abc (a +b +c )=1(1)求S =(a +c )(b +c )的最小值(2)当S 取最小值时,求c 的最大值.21.某项研究表明;在考虑行车安全的情况下,某路段车流量F (单位时间内经过测量点的车辆数,单位;辆∕时)与车流速度v (假设车辆以相同速度v 行驶,单位米∕秒)、平均车长l (单位:米)的值有关,其公式为F =76000νv 2+18v +20l(1)如果不限定车型,l =6.05,则最大车流量为多少.(2)如果限定车型,l =5,则最大车流量比(1)中的最大车流量增加多少.22.已知a ,b ,c 为实数且a +2b +5c =10.(1)若a ,b ,c 均为正数,当2ab +5ac +10bc =10时,求a +b +c 的值;(2)证明:(2b +5c )2+(a +b +5c )2+(a +2b +4c )2≥4903.答案解析部分1.C已知a>b>0,c>d,由不等式的同向相加的性质得到a+c>b+d正确;当a=2,b=1,c=-1,d=-2时,a c<bd, ,a―c=b―d A,D不正确;c=2,d=1时,ad=bc,B不正确. 2.D解:因为x,y>0,且1x+2+4y+3=12,则x+y=(x+2)+(y+3)―5=2(1x+2+4y+3)[(x+2)+(y+3)]―5=2(5+y+3x+2+4(x+2)y+3)―5≥2(5+2y+3x+2⋅4(x+2)y+3―5=13,当且仅当y+3x+2=4(x+2)y+3,即x=4,y=9时等号成立,则x+y的最小值为13.3.D由基本不等式得x+2y=(x+2y)(2x +1y)=4yx+xy+4≥24yx⋅xy+4=8,当且仅当4yx=xy,由于x>0,y>0,即当x=2y时,等号成立,所以,x+2y的最小值为8,由题意可得m2+2m<8,即m2+2m―8<0,解得―4<m<2,因此,实数m的取值范围是(―4,2),4.A从题设可得15y+35x=1,则3x+4y=15(3x+4y)(1y+3x)=15(3x y+12yx+13)≥15(12+13)=5,5.A6.B7.C8.C不等式f(x)≤1可化为|2x―a|≤2―x,有―2―x≤a―2x≤2―x,有2x―2―x≤a≤2x+2―x,当0≤x≤1时,2x+2―x≥22x×2―x=2(当且仅当x=0时取等号),2x―2―x≤2―12=32,故有32≤a≤2。
高一数学不等式部分经典习题及答案

ab ;⑥若a<b<0,贝贝—>—;cdab3.不等式一.不等式的性质:1■同向不等式可以相加;异向不等式可以相减:若a>b,c>d,则a+c>b+d(若a>b,c<d,则a-c>b-d),但异向不等式不可以相加;同向不等式不可以相减;2.左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若a>b>0,c>d>0,则ac>bd(若a>b>0,0<c<d,则a>—);3•左右同正不等式:两边可以同时乘方或开方:若a>b>0,则a n>—或%疮>n b;4.若ab>0,a>b,则1<1;若ab<0,a>b,则1>1。
如abab(1) 对于实数a,b,c中,给岀下列命题:①若a>b,则ac2>bc2;②若ac2>bc2,则a>b;③若a<b<0,贝Ua2>ab>b2;④若a<b<0,贝』<—;⑦若c>a>b>0,贝卩a>b;⑧若a>b丄>,则a>0,b<0oc一ac一bab其中正确的命题是(答:②③⑥⑦⑧);(2) __________________________________________________ 已知-1<x+y<1,1<x一y<3,则3x一y的取值围是(答:1<3x-y<7);c(3) 已知a>b>c,且a+b+c=0,则_的取值围是二.不等式大小比较的常用方法:1.作差:作差后通过分解因式、配方等手段判断差的符号得岀结果2•作商(常用于分数指数幂的代数式);3•分析法;4. 平方法;答:5. 分子(或分母)有理化;6. 利用函数的单调性;7.寻找中间量或放缩法;8.图象法。
高中数学必修第一册,第2章 一元二次函数、方程和不等式单元测试题1

第二章一元二次函数、方程和不等式一、选择题1.(2019·全国高一课时练)集合2}{0|A x x x =-<(),{|11}B x x =-<<,则A B = ()A .{|12}x x -<<B .{|1x x <-或2x >}C .{|01}x x <<D .{|0x x <或}2.(2019·全国高一课时练)已知c b a <<,且0ac <,下列不等式中,不一定成立的是()A .ab ac >B .()0c b a ->C .22cb ab <D .()0ac a c -<3.(2019·全国高一课时练)不等式20ax x c -+>的解集为{}21,x x -<<则函数2y ax x c =++的图像大致为()A. B.D.4.(2019·河南高一期末)设0a >,0b >,若21a b +=,则21a b+的最小值为A .B .8C .9D .10(2019·全国高一课时练)若01t <<,则关于x 的不等式()10t x x t ⎛⎫--> ⎪⎝⎭的解集为()A.1{|}x x t t<< B.1{}x xx t t<或 C.1{|}x xx t t或 D.1 {|}x t x t<<6.(2019·全国高一课时练)函数2228(0)y x ax a a =-->,记0y ≤的解集为A ,若()1,1A -⊆,则a 的取值范围()A.1,2⎡⎫+∞⎪⎢⎣⎭B.1,4⎡⎫+∞⎪⎢⎣⎭C.11,42⎛⎫⎪⎝⎭D.11,42⎡⎤⎢⎣⎦7.(2019·辽河油田高级中学高一课时练)若关于x 的不等式2−4≥对任意x ∈[0,1]恒成立,则实数m 的取值范围是()A .m≤-3B .m≥-3C .-3≤m≤0D .m≤-3或m≥08.(2019江西高一联考)某市原来居民用电价为0.52元/kw h ⋅,换装分时电表后,峰时段(早上八点到晚上九点)的电价0.55元/kw h ⋅,谷时段(晚上九点到次日早上八点)的电价为0.35元/kw h ⋅.对于一个平均每月用电量为200kw h ⋅的家庭,换装分时电表后,每月节省的电费不少于原来电费的10%,则这个家庭每月在峰时段的平均用电量至多为()A .110kw h⋅B .114kw h⋅C .118kw h⋅D .120kw h⋅9.(2019广东揭阳三中高一课时练)在R 上定义运算:a b c d ⎛⎫ ⎪⎝⎭ =ad-bc,若不等式-1-21x a a x ⎛⎫⎪+⎝⎭ ≥1对任意实数x 恒成立,则实数a 的最大值为()A .-12B .-32C .12D .3210.(2019·新疆乌鲁木齐市第70中高一期末)正数,a b 满足191a b+=,若不等式2418a b x x m +≥-++-对任意实数x 恒成立,则实数m 的取值范围是()A .[3,)+∞B .(,3]-∞C .(,6]-∞D .[6,)+∞二、填空题11.不等式2450x x --+≤的解集为________________.(用区间表示)12.(2019·全国高一课时练习)某公司一年需要购买某种原材料400吨,计划每次购买x 吨,已知每次的运费为4万元/次,一年总的库存费用为4x 万元,为了使总的费用最低,每次购买的数量x 为_____________;13.(2019·全国高一课时练)已知集合A ={t |t 2–4≤0},对于满足集合A 的所有实数t ,则使不等式x 2+tx-t >2x -1恒成立的x 的取值范围是14.(2019·河北高一期末)已知关于x 的不等式()224300x ax a a -+<>的解集为()12,x x ,则1212ax x x x ++的最小值是______.三、解答题15.(2019·黑龙江双鸭山一中高一期末)若不等式()21460a x x --+>的解集是{}31x x -<<.(1)求a 的值;(2)当b 为何值时,230ax bx ++≥的解集为R .16.(2019·山西省永济中学高一期末)如果用akg 糖制出bkg 糖溶液,则糖的质量分数为ab.若在上述溶液中再添加mkg 糖.(Ⅰ)此时糖的质量分数增加到多少?(请用分式表示)(Ⅱ)请将这个事实抽象为数学问题,并给出证明.17.(2019·安徽高一期末)已知关于x 的函数()()221f x x ax a R =-+∈.(Ⅰ)当3a =时,求不等式()0f x ≥的解集;(Ⅱ)若()0f x ≥对任意的()0,x ∈+∞恒成立,求实数a 的最大值.18.(2019·黑龙江高一期末)设函数()()()2230f x ax b x a =+-+≠.(1)若不等式()0f x >的解集(1,1)-,求,a b 的值;(2)若()12f =,①0,0a b >>,求14a b+的最小值;②若()1f x >在R 上恒成立,求实数a 的取值范围.第二章一元二次函数、方程和不等式(答案与解析)二、选择题1.(2019·全国高一课时练)集合2}{0|A x x x =-<(),{|11}B x x =-<<,则A B = ()A .{|12}x x -<<B .{|1x x <-或2x >}C .{|01}x x <<D .{|0x x <或}【答案】C【解析】由题意可得{|02}A x x =<<,{|11}B x x =-<<,所以{|01}A B x x =<< .故选C.2.(2019·全国高一课时练)已知c b a <<,且0ac <,下列不等式中,不一定成立的是()A .ab ac >B .()0c b a ->C .22cb ab <D .()0ac a c -<【答案】C【解析】因为c b a <<且0ac <,所以0a >,0c <,b R ∈.对于A ,因为0a >,c b <,所以ac ab <,即ab ac >一定成立.对于B ,因为b a <,所以0b a -<,所以()0cb a ->一定成立.对于C ,因为b R ∈,所以当0b =时,22cb ab <不成,故22cb ab <不一定成立.对于D ,因为c b a <<,0a >,0c <,所以0a c ->,()0aca c -<一定成立.故选C .3.(2019·全国高一课时练)不等式20ax x c -+>的解集为{}21,x x -<<则函数2y ax x c =++的图像大致为()A. B.D.【答案】C【解析】由题知-2和1是ax 2-x+c=0的两根,由根与系数的关系知-2+1=1a ,,−2×1=c a,∴a=-1,c=2,∴2y ax x c =++=-x 2+x+2=-(x-12)2+94,故选C 4.(2019·河南高一期末)设0a >,0b >,若21a b +=,则21a b+的最小值为A .B .8C .9D .10【答案】C【解析】由题意知,0a >,0b >,且21a b +=,则()212122()5925b a a b a b a b b a ++=+=++≥+=当且仅当22b a a b =时,等号成立,21a b+的最小值为9,故答案选C 。
高中数学必修5基本不等式精选题目(附答案)

高中数学必修5基本不等式精选题目(附答案)1.重要不等式当a ,b 是任意实数时,有a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 2.基本不等式(1)有关概念:当a ,b 均为正数时,把a +b2叫做正数a ,b 的算术平均数,把ab 叫做正数a ,b 的几何平均数.(2)不等式:当a ,b 是任意正实数时,a ,b 的几何平均数不大于它们的算术平均数,即ab ≤a +b2,当且仅当a =b 时,等号成立.(3)变形:ab ≤⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22,a +b ≥2ab (其中a >0,b >0,当且仅当a=b 时等号成立).题型一:利用基本不等式比较大小1.已知m =a +1a -2(a >2),n =22-b 2(b ≠0),则m ,n 之间的大小关系是( ) A .m >n B .m <n C .m =nD .不确定2.若a >b >1,P =lg a ·lg b ,Q =12(lg a +lg b ),R =lg a +b 2,则P ,Q ,R 的大小关系是________.题型二:利用基本不等式证明不等式3.已知a ,b ,c 均为正实数, 求证:2b +3c -a a +a +3c -2b 2b +a +2b -3c3c ≥3.4.已知a ,b ,c 为正实数, 且a +b +c =1,求证:⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1≥8.题型三:利用基本不等式求最值5.已知lg a +lg b =2,求a +b 的最小值.6.已知x >0,y >0,且2x +3y =6,求xy 的最大值.7.已知x >0,y >0,1x +9y =1,求x +y 的最小值.8.已知a >0,b >0,2a +1b =16,若不等式2a +b ≥9m 恒成立,则m 的最大值为( )A .8B .7C .6D .5题型四:利用基本不等式解应用题9.某单位决定投资3 200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元,求:(1)仓库面积S 的最大允许值是多少?(2)为使S 达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?巩固练习:1.下列结论正确的是( ) A .当x >0且x ≠1时,lg x +1lg x ≥2 B .当x >0时,x +1x≥2 C .当x ≥2时,x +1x 的最小值为2 D .当0<x ≤2时,x -1x 无最大值2.下列各式中,对任何实数x 都成立的一个式子是( ) A .lg(x 2+1)≥lg(2x ) B .x 2+1>2x C.1x 2+1≤1 D .x +1x ≥23.设a ,b 为正数,且a +b ≤4,则下列各式中正确的一个是( ) A.1a +1b <1 B.1a +1b ≥1 C.1a +1b <2D.1a +1b ≥24.四个不相等的正数a ,b ,c ,d 成等差数列,则( ) A.a +d2>bcB.a +d2<bcC.a+d2=bc D.a+d2≤bc5.若x>0,y>0,且2x+8y=1,则xy有()A.最大值64B.最小值1 64C.最小值12D.最小值646.若a>0,b>0,且1a+1b=ab,则a3+b3的最小值为________.7.(2017·江苏高考)某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是________.8.若对任意x>0,xx2+3x+1≤a恒成立,则a的取值范围是________.9.(1)已知x<3,求f(x)=4x-3+x的最大值;参考答案:1.解:因为a>2,所以a-2>0,又因为m=a+1a-2=(a-2)+1a-2+2,所以m≥2(a-2)·1a-2+2=4,由b≠0,得b2≠0,所以2-b2<2,n=22-b2<4,综上可知m>n.2.解:因为a>b>1,所以lg a>lg b>0,所以Q=12(lg a+lg b)>lg a·lg b=P;Q=12(lg a+lg b)=lg a+lg b=lg ab<lga+b2=R.所以P<Q<R.3.[证明]∵a,b,c均为正实数,∴2ba+a2b≥2(当且仅当a=2b时等号成立),3c a+a3c≥2(当且仅当a=3c时等号成立),3c 2b +2b3c ≥2(当且仅当2b =3c 时等号成立),将上述三式相加得⎝ ⎛⎭⎪⎫2b a +a 2b +⎝ ⎛⎭⎪⎫3c a +a 3c +⎝ ⎛⎭⎪⎫3c 2b +2b 3c ≥6(当且仅当a =2b =3c时等号成立),∴⎝ ⎛⎭⎪⎫2b a +a 2b -1+⎝ ⎛⎭⎪⎫3c a +a 3c -1+⎝ ⎛⎭⎪⎫3c 2b +2b 3c -1≥3(当且仅当a =2b =3c 时等号成立),即2b +3c -a a +a +3c -2b 2b +a +2b -3c 3c ≥3(当且仅当a =2b =3c 时等号成立).4.证明:因为a ,b ,c 为正实数,且a +b +c =1, 所以1a -1=1-a a =b +c a ≥2bc a . 同理,1b -1≥2ac b ,1c -1≥2abc . 上述三个不等式两边均为正,相乘得⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1≥2bc a ·2ac b ·2abc =8,当且仅当a =b =c =13时,取等号.5.解:由lg a +lg b =2可得lg ab =2, 即ab =100,且a >0,b >0,因此由基本不等式可得a +b ≥2ab =2100 =20, 当且仅当a =b =10时,a +b 取到最小值20. 6.解:∵x >0,y >0,2x +3y =6, ∴xy =16(2x ·3y )≤16·⎝⎛⎭⎪⎫2x +3y 22=16·⎝ ⎛⎭⎪⎫622=32,当且仅当2x =3y ,即x =32,y =1时,xy 取到最大值32. 7.解:∵1x +9y =1, ∴x +y =(x +y )·⎝ ⎛⎭⎪⎫1x +9y=1+9x y +y x +9=y x +9xy +10, 又∵x >0,y >0, ∴y x +9xy +10≥2y x ·9xy +10=16,当且仅当y x =9xy ,即y =3x 时,等号成立. 由⎩⎪⎨⎪⎧y =3x ,1x +9y=1,得⎩⎨⎧x =4,y =12,即当x =4,y =12时,x +y 取得最小值16.8.解析:选C 由已知,可得6⎝ ⎛⎭⎪⎫2a +1b =1,∴2a +b =6⎝ ⎛⎭⎪⎫2a +1b ·(2a +b )=6⎝ ⎛⎭⎪⎫5+2a b +2b a ≥6×(5+4)=54,当且仅当2a b =2b a 时等号成立,∴9m ≤54,即m ≤6,故选C.9.[解] (1)设铁栅长为x 米,一堵砖墙长为y 米,而顶部面积为S =xy ,依题意得,40x +2×45y +20xy =3 200,由基本不等式得3 200≥240x ×90y +20xy =120xy +20xy , =120S +20S .所以S +6S -160≤0,即(S -10)(S +16)≤0, 故S ≤10,从而S ≤100,所以S 的最大允许值是100平方米,(2)取得最大值的条件是40x =90y 且xy =100, 求得x =15,即铁栅的长是15米. 练习:1.解析:选B A 中,当0<x <1时,lg x <0,lg x +1lg x ≥2不成立;由基本不等式知B 正确;C 中,由对勾函数的单调性,知x +1x 的最小值为52;D 中,由函数f (x )=x -1x 在区间(0,2]上单调递增,知x -1x 的最大值为32,故选B.2.解析:选C 对于A ,当x ≤0时,无意义,故A 不恒成立;对于B ,当x =1时,x 2+1=2x ,故B 不成立;对于D ,当x <0时,不成立.对于C ,x 2+1≥1,∴1x 2+1≤1成立.故选C. 3.解析:选B 因为ab ≤⎝⎛⎭⎪⎫a +b 22≤⎝ ⎛⎭⎪⎫422=4,所以1a +1b ≥21ab ≥214=1.4.解析:选A 因为a ,b ,c ,d 成等差数列,则a +d =b +c ,又因为a ,b ,c ,d 均大于0且不相等,所以b +c >2bc ,故a +d2>bc .5.解析:选D 由题意xy =⎝ ⎛⎭⎪⎫2x +8y xy =2y +8x ≥22y ·8x =8xy ,∴xy ≥8,即xy 有最小值64,等号成立的条件是x =4,y =16.6.解析:∵a >0,b >0,∴ab =1a +1b ≥21ab ,即ab ≥2,当且仅当a =b =2时取等号,∴a 3+b 3≥2(ab )3≥223=42,当且仅当a =b =2时取等号,则a 3+b 3的最小值为4 2.7.解析:由题意,一年购买600x 次,则总运费与总存储费用之和为600x ×6+4x =4⎝ ⎛⎭⎪⎫900x +x ≥8900x ·x =240,当且仅当x =30时取等号,故总运费与总存储费用之和最小时x 的值是30.8.解析:因为x >0,所以x +1x ≥2.当且仅当x =1时取等号, 所以有xx 2+3x +1=1x +1x +3≤12+3=15, 即x x 2+3x +1的最大值为15,故a ≥15. 答案:⎣⎢⎡⎭⎪⎫15,+∞(2)已知x ,y 是正实数,且x +y =4,求1x +3y 的最小值. 9.解:(1)∵x <3, ∴x -3<0,∴f (x )=4x -3+x =4x -3+(x -3)+3 =-⎣⎢⎡⎦⎥⎤43-x +(3-x )+3≤-243-x·(3-x )+3=-1, 当且仅当43-x=3-x , 即x =1时取等号, ∴f (x )的最大值为-1. (2)∵x ,y 是正实数,∴(x +y )⎝ ⎛⎭⎪⎫1x +3y =4+⎝ ⎛⎭⎪⎫y x +3x y ≥4+2 3.当且仅当y x =3xy ,即x =2(3-1),y =2(3-3)时取“=”号. 又x +y =4, ∴1x +3y ≥1+32, 故1x +3y 的最小值为1+32.。
人教版高中数学必修第一册第二单元《一元一次函数,方程和不等式》测试题(有答案解析)(1)

一、选择题1.已知函数22(0)y ax bx c a =+->的图象与x 轴交于()2,0A 、()6,0B 两点,则不等式220cx bx a +-< 的解集为( ) A .(6,2)-- B .11,,62⎛⎫⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭C .11,26--⎛⎫⎪⎝⎭D .11,,26⎛⎫⎛⎫-∞--+∞ ⎪ ⎪⎝⎭⎝⎭2.已知0a >,0b >,且1a b +=,则14a b+的最小值为( ) A .9B .8C .7D .63.已知2x >,那么函数42y x x =+-的最小值是( ) A .5B .6C .4D .84.已知关于x 的不等式(1)(3)10(0)a x x a +-+>≠的解集是()()1212,x x x x <,则错误的是( ) A .122x x +=B .123x x <-C .214x x ->D .1213x x -<<<5.对于实数x ,规定[]x 表示不大于x 的最大整数,那么不等式[][]2463450x x -+<成立的x 的取值范围是( ) A .[)1,15B .[]2,8C .[)2,8D .[)2,15 6.若集合{}2|10A x ax ax =-+<=∅,则实数a 的取值范围是 ( ) A .{}|04a a << B .{|04}a a ≤< C .{|04}a a <≤D .{|04}a a ≤≤ 7.若实数,x y 满足0xy >,则的最大值为( ) A .22-B .22+C .422+D .422-8.已知正实数,x y 满足3x y +=,则41x y+的最小值( ) A .2B .3C .4D .1039.已知a≥0,b≥0,且a+b=2,则 ( ) A .ab≤ B .ab≥ C .a 2+b 2≥2D .a 2+b 2≤310.已知正实数a ,b 满足21a b +=,则12a b+的最小值为( ) A .8B .9C .10D .1111.已知01a <<,1b >,则下列不等式中成立的是( )A .4aba b a b+<+ B 2aba b<+C <D .a b +12.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,90ACB ∠=︒,D 为AB 边上的一点,30ACD ∠=︒,且2CD =,则a 的最小值为( )A .4B .4+C .8D .8+二、填空题13.为了调查盘龙江的水流量情况,需要在江边平整出一块斜边长为13m 的直角三角形空地建水文观测站,该空地的最大面积是______2m . 14.已知a 、b 、c 为正实数,则代数式938432a b cb c c a a b+++++的最小值是_________. 15.已知函数2()34(0)f x ax x a =-+>,若存在32m n a<≤,使得()f x 在区间[,]m n 上的值域为[,]m n ,则a 的取值范围________.16.设0b >,21a b -=,则242a a b+的最小值为_________.17.已知0,0a b >>,1a b +=,则14y a b=+的最小值是__________. 18.设A .B 分别为双曲线22221x y a b-=(a >0,b >0)的左.右顶点,P 是双曲线上不同于A .B的一点,直线AP .BP 的斜率分别为m .n ,则当3b a 取最小值时,双曲线的离心率为__________.19.已知x ,0y >,且194x y+=,则x y +的最小值________.20.已知实数0a >,0b >是8a 与2b 的等比中项,则62a b+的最小值是_________. 三、解答题21.已知不等式()()2330,ax a x b a b R +--<∈的解集为{}31A x x =-<<.(1)求实数a ,b 的值;(2)设()22()2ax bx f x x A x +-=∈-,当x 为何值时()f x 取得最大值,并求出其最大值.22.已知函数()()221f x ax a x b =-++-.(1)若2a =-,9b =,求函数()()0f x y x x=<的最小值; (2)若1b =-,解关于x 的不等式()0f x ≥.23.已知关于x 的不等式()22600kx x k k -+<≠.(1)若不等式的解集是{3x x <-或}2x >-,求k 的值; (2)若不等式的解集是R ,求k 的取值范围; (3)若不等式的解集为∅,求k 的取值范围.24.已知函数()|21||2|f x x x =---,M 为不等式()1f x <-的解集. (1)求M ;(2)当,a b M ∈且1a b +=时,4a b tab +≥恒成立,求t 的最大值.25.解关于x 的不等式ax 2-(a +1)x +1<0.26.已知ABC 内接于O ,AB c =,BC a =,=CA b ,O 的半径为r .(1)若230OA OB OC ++=,试求BOC ∠的大小;(2)若A 为动点,60BAC ∠=︒,AO OC OB λμ=+,试求λμ+的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】利用函数图象与x 的交点,可知()2200ax bx c a +-=>的两个根分别为12x =或26x =,再利用根与系数的关系,转化为4b a =-,12c a =-,最后代入不等式220cx bx a +-<,求解集.【详解】由条件可知()2200ax bx c a +-=>的两个根分别为12x =或26x =,则226b a +=-,26ca⨯=-,得4b a =-,12c a =-, 22201280cx bx a ax ax a ∴+-<⇔---<,整理为:()()21281021610x x x x ++>⇔++>, 解得:16x >-或12x <-, 所以不等式的解集是11,,26⎛⎫⎛⎫-∞--+∞ ⎪ ⎪⎝⎭⎝⎭. 故选:D 【点睛】思路点睛:本题的关键是利用根与系数的关系表示4b a =-,12c a =-,再代入不等式220cx bx a +-<化简后就容易求解.2.A解析:A 【分析】利用“1”的代换,转化()1414a b a b a b ⎛⎫+=++ ⎪⎝⎭,结合基本不等式即可得解. 【详解】1a b +=,0a >,0b >()1414455549b a a b a b a b a b ⎛⎫+++=++≥+=+= ⎪⎝⎭∴=, 当且仅当4b a a b =,即13a =,23b =时,等号成立. 14a b ∴+的最小值为9 故选:A. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.3.B解析:B 【分析】根据基本不等式可求得最小值. 【详解】∵2x >,∴442+24+2622y x x x x =+=+-≥==--,当且仅当422x x =--,即4x =时等号成立.∴y 的最小值是6. 故选:B . 【点睛】本题考查用基本不等式求最值,利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.4.D解析:D 【分析】根据关于x 的不等式(1)(3)10(0)a x x a +-+>≠的解集是()()1212,x x x x <,可得120,,a x x <是方程22310ax ax a --+=,然后利用根与系数的关系判断.【详解】因为关于x 的不等式(1)(3)10(0)a x x a +-+>≠的解集是()()1212,x x x x <, 所以120,,a x x <是方程22310ax ax a --+=的两根, 所以12121312,33a x ax x x a -===-⋅<-+,214x x ===->,故ABC 正确; 设()(1)(3)f x a x x =+-,()(1)(3)1g x a x x =+-+其图象如图所示:由图象知:121,3x x <->,故D 错误; 故选:D 【点睛】关键点点睛:本题考查一元二次不等式的解集的应用,关键是三个“二次”的转化,还有根与系数的关系与函数零点,注意二次项系数的正负.5.A解析:A 【分析】先由不等式[][]2463450x x -+<得出[]x 的取值范围,再由[]x 的定义得出x 的取值范围. 【详解】不等式[][]2463450x x -+<即为[]()[]()43150x x --<,解得[]3154x <<, 则[]{}1,2,3,,14x ∈,因此,115x ≤<,故选A.【点睛】本题考查一元二次不等式的解法,同时也考查了取整函数的定义,解题的关键要结合不等式得出[]x 的取值,考查计算能力,属于中等题.6.D解析:D 【分析】本题需要考虑两种情况,00a a =≠,,通过二次函数性质以及即集合性质来确定实数a 的取值范围. 【详解】设()21f x ax ax =-+当0a =时,()10f x =>,满足题意 当0a ≠时,()f x 时二次函数 因为{}2|10A x ax ax =-+<=∅ 所以()21f x ax ax =-+恒大于0,即0≤所以240a a -≤,解得04a ≤≤. 【点睛】本题考察的是集合和带有未知数的函数的综合题,需要对未知数进行分类讨论.7.D解析:D 【解析】试题分析:由实数,x y 满足0xy >,,设{2m x y n x y=+=+,解得2{x m ny n m =-=-,则2222224()424222x y m n n m n m n mx y x y m n m n m n--+=+=-+≤-⋅=-++,当且仅当2n mm n=,及2n m =时等号成立,所以的最大值为422-,故选D.考点:基本不等式的应用.8.B解析:B 【详解】()41141144133y x x y x y x y x y ⎛⎫⎛⎫+=++=+++ ⎪ ⎪⎝⎭⎝⎭ 145233y x x y ⎛≥+⨯= ⎝, 当且仅当4y x x y =,即21x y ==,,时41x y+的最小值为3. 故选B.点睛:本题主要考查基本不等式.在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.9.C解析:C 【解析】选C.由≥得ab≤=1,当且仅当a=b=1时,等号成立.又a 2+b 2≥2ab ⇒2(a 2+b 2)≥(a+b)2⇒a 2+b 2≥2,当且仅当a=b=1时,等号成立.10.B解析:B 【分析】 由题意,得到121222()(2)5b aa b a b a b a b+=++=++,结合基本不等式,即可求解,得到答案. 【详解】由题意,正实数a ,b 满足21a b +=, 则12122222()(2)55549b a b aa b a b a b a b a b+=++=++≥+⋅=+=, 当且仅当22b a a b =,即13a b ==等号成立, 所以12a b +的最小值为9. 故选:B. 【点睛】本题主要考查了利用基本不等式求解最值问题,其中解答中熟记基本不等式的使用条件,合理构造是解答的关键,着重考查了构造思想,以及推理与运算能,属于据此话题.11.D解析:D 【分析】本题先根据完全平方公式与基本不等式得到()22224a b a ab b ab +=++>,所以排除选项A 2211abab a b a b>=++,所以排除选项B ;接着根据基本()222222a b ab ab +>⨯=,所以排除选项C ;最后根据基本不等式得到选项D 正确. 【详解】解:对于选项A :因为01a <<,1b >,所以()22224a b a ab b ab +=++>,故选项A 错误; 对于选项B 2211abab a b a b>=++,故选项B 错误;对于选项C ()222222a b ab ab +>⨯=C 错误;对于选项D :()22222222a b a ab b a b +>++=+,所以a b +<,故选项D 正确. 故选:D . 【点评】本题考查基本不等式的应用、学生的运算能力和转换能力,是基础题.12.B解析:B 【分析】设,0,2A παα⎛⎫∠=∈ ⎪⎝⎭,在ACD △中,利用正弦定理得()2sin 150sin b αα=︒-,化简得到1tan b α=ABC 中,有tan a b α=⋅,然后将a +转化为4ta n a αα=++利用基本不等式求解. 【详解】设,0,2A παα⎛⎫∠=∈ ⎪⎝⎭,在ACD △中,由正弦定理得:()2sin 150sin b αα=︒-,所以()2sin 1501sin tan b ααα︒-==+,在直角ABC 中,tan a b α=⋅,所以(1tan tan 4tan tan a b ααααα⎛⋅==+⎝+=44≥+=+an α=,即4πα=时取等号, 故选:B【点睛】本题主要考查正弦定理和基本不等式的解三角形中的应用,还考查了运算求解的能力,属于中档题.二、填空题13.【分析】设直角三角形的两条直角边分别为则进而根据基本不等式得【详解】解:设直角三角形的两条直角边分别为则所以当且仅当等号成立故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条 解析:1694【分析】设直角三角形的两条直角边分别为,a b ,则22169a b +=,进而根据基本不等式得22111692224a b S ab +=≤⨯=. 【详解】解:设直角三角形的两条直角边分别为,a b ,则22169a b +=所以22111692224a b S ab +=≤⨯=,当且仅当a b ==. 故答案为:1694【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方14.【分析】先由题意令得到代入所求式子化简整理根据基本不等式即可求出结果【详解】因为abc 为正实数不妨令则所以当且仅当即即时等号成立故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三 解析:4748【分析】先由题意,令38432b c x c a y a b z +=⎧⎪+=⎨⎪+=⎩,得到111386131216411161612a x y z b x y z c x y z ⎧=-++⎪⎪⎪=-+⎨⎪⎪=+-⎪⎩,代入所求式子,化简整理,根据基本不等式,即可求出结果. 【详解】因为a 、b 、c 为正实数,不妨令38432b c x c a y a b z +=⎧⎪+=⎨⎪+=⎩,则111386131216411161612a x y z b x y z c x y z ⎧=-++⎪⎪⎪=-+⎨⎪⎪=+-⎪⎩,所以11113139393862164216438432x y z x y z x y z a b c b c c a a b x y z-++-++-++=+++++ 1339338621642164y z x z x y x x y y z z =-+++-+++- 6139488262164y x z x y z x y x z z y ⎛⎫⎛⎫⎛⎫=-++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭61474848≥-+=, 当且仅当823629164y x x y z x x z y z z y ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩,即::1:2:3x y z =,即::10:21:1a b c =时,等号成立. 故答案为:4748. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方. 15.【分析】由二次函数的性质可得化简得进而可得是方程两个不相等的实数根即可得解【详解】因为函数的图象开口朝上且对称轴为所以函数在区间上单调递减所以两式相减化简得将代入可得同理所以是方程两个不相等的实数根 解析:113164a ≤< 【分析】由二次函数的性质可得()()223434f m am m n f n an n m⎧=-+=⎪⎨=-+=⎪⎩,化简得2m n a +=,进而可得,m n 是方程22240ax x a-+-=两个不相等的实数根,即可得解. 【详解】 因为函数2()34(0)f x ax x a =-+>的图象开口朝上且对称轴为32x a =,32m n a <≤,所以函数2()34(0)f x ax x a =-+>在区间[,]m n 上单调递减,所以()()223434f m am m n f n an n m ⎧=-+=⎪⎨=-+=⎪⎩,两式相减化简得2m n a +=, 将2m n a =-代入234an n m -+=可得22240an n a-+-=, 同理22240am m a -+-=, 所以,m n 是方程22240ax x a -+-=两个不相等的实数根, 又函数2224y ax x a =-+-的图象开口朝上,对称轴为132x a a=<, 所以24440a a ⎛⎫∆=--> ⎪⎝⎭且当32x a =时,22240ax x a -+-≥, 所以22444033224022a a a a a a ⎧⎛⎫--> ⎪⎪⎝⎭⎪⎨⎛⎫⎛⎫⎪⋅-⋅+-≥ ⎪ ⎪⎪⎝⎭⎝⎭⎩,解得113164a ≤<, 所以a 的取值范围为113164a ≤<. 故答案为:113164a ≤<. 【点睛】 关键点点睛:解决本题的关键是利用二次函数的性质转化条件为2m n a+=,再结合一元二次方程根的分布即可得解. 16.4【分析】两次应用基本不等式验证等号能同时成立即得【详解】由题意当且仅当即时上述不等式中等号同时成立故答案为:4【点睛】本题考查了基本不等式求最值考查了运算求解能力逻辑推理能力在连续运用基本不等式求 解析:4【分析】两次应用基本不等式,242a a b +≥12b b +≥,验证等号能同时成立即得. 【详解】由题意211a b =+≥,2442a a b +≥===≥,当且仅当2142b b a a b⎧=⎪⎪⎨⎪=⎪⎩,即21a b =⎧⎨=⎩时上述不等式中等号同时成立. 故答案为:4.【点睛】本题考查了基本不等式求最值,考查了运算求解能力,逻辑推理能力,在连续运用基本不等式求最值时,要注意等号能否同时成立.17.9【分析】把看成的形式把1换成整理后积为定值然后用基本不等式求最小值【详解】∵等号成立的条件为所以的最小值为9即答案为9【点睛】本题考查了基本不等式在求最值中的应用解决本题的关键是1的代换解析:9【分析】 把14a b +看成141a b+⨯() 的形式,把“1”换成a b +,整理后积为定值,然后用基本不等式求最小值.【详解】∵14144 1?459b a y a b a b a b a b =+=+⨯+=+++≥+=()() 等号成立的条件为4b a a b =. 所以14a b+的最小值为9. 即答案为9.【点睛】本题考查了基本不等式在求最值中的应用,解决本题的关键是“1”的代换.18.【分析】先根据点的关系确定mn 再根据基本不等式确定最小值最后根据最小值取法确定双曲线的离心率【详解】设则因此当且仅当时取等号所以离心率是故答案为:【点睛】本题考查双曲线离心率和基本不等式求最值的简单解析:3【分析】先根据点的关系确定mn ,再根据基本不等式确定最小值,最后根据最小值取法确定双曲线的离心率.【详解】设11(,)P x y ,则 22111222111y y y b mn x a x a x a a=⋅==+--,因此3b a+3b a a b =+≥= 当且仅当3a b 时取等号,所以离心率是3c e a ===.【点睛】本题考查双曲线离心率和基本不等式求最值的简单综合问题,属于基础题型,一般求双曲线离心率的方法是1.直接法:直接求出,a c ,然后利用公式c e a=求解;2.公式法:c e a === 3.构造法:根据条件,可构造出,a c 的齐次方程,通过等式两边同时除以2a ,进而得到关于e 的方程.19.4【分析】根据x 且将利用1的代换转化为利用基本不等式求解【详解】因为x 且所以当且仅当即时取等号所以的最小值为4故答案为:4【点睛】本题主要考查基本不等式的应用还考查了运算求解的能力属于中档题解析:4【分析】根据x ,0y >,且194x y+=,将x y +利用“1”的代换,转化为x y +()119191044⎛⎫⎛⎫=++=++ ⎪ ⎪⎝⎭⎝⎭y x x y x y x y ,利用基本不等式求解. 【详解】因为x ,0y >,且194x y +=, 所以x y +()11919110104444⎛⎛⎫⎛⎫=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝y x x y x y x y 当且仅当9y x x y=,,即1,3x y ==时,取等号, 所以x y +的最小值为4,故答案为:4【点睛】本题主要考查基本不等式的应用,还考查了运算求解的能力,属于中档题.20.32【分析】由是与的等比中项求得化简结合基本不等式即可求解【详解】由题意实数是与的等比中项可得解得所以当且仅当时即时等号成立所以的最小值是故答案为:【点睛】本题主要考查了利用基本不等式求最值以及等比 解析:32【分析】8a 与2b 的等比中项,求得31a b +=,化简626266()(3)20b a a b a b a b a b+=++=++,结合基本不等式,即可求解. 【详解】由题意,实数0a >,0b >8a 与2b 的等比中项,可得23228a b a b +=⨯=,解得31a b +=,所以626266()(3)202032b a a b a b a b a b +=++=++≥+=, 当且仅当66b a a b +时,即14a b ==时,等号成立, 所以62a b+的最小值是32. 故答案为:32.【点睛】本题主要考查了利用基本不等式求最值,以及等比中项公式的应用,其中解答中熟记等比中项公式,合理利用“1”的代换,结合基本不等式求解是解答的关键,着重考查推理与运算能力.三、解答题21.无22.无23.无24.无25.无26.无。
高中数学不等式证明题目训练卷及答案

高中数学不等式证明题目训练卷及答案一、选择题1、若\(a > b > 0\),则下列不等式中一定成立的是()A \(a +\frac{1}{b} > b +\frac{1}{a}\)B \(\frac{b + 1}{a + 1} >\frac{b}{a}\)C \(a \frac{1}{b} > b \frac{1}{a}\)D \(\frac{2a + b}{a + 2b} >\frac{a}{b}\)答案:A解析:因为\(a > b > 0\),所以\(a b > 0\)。
A 选项:\((a +\frac{1}{b})(b +\frac{1}{a})=(a b) +(\frac{1}{b} \frac{1}{a})=(a b) +\frac{a b}{ab}> 0\),所以\(a +\frac{1}{b} > b +\frac{1}{a}\),A 选项正确。
B 选项:\(\frac{b + 1}{a + 1} \frac{b}{a} =\frac{a(b+ 1) b(a + 1)}{a(a + 1)}=\frac{a b}{a(a + 1)}\),因为\(a(a + 1) > 0\),但\(a b\)的正负不确定,所以\(\frac{b + 1}{a + 1}\)与\(\frac{b}{a}\)大小不确定,B 选项错误。
C 选项:\((a \frac{1}{b})(b \frac{1}{a})=(a b) (\frac{1}{b} \frac{1}{a})=(a b) \frac{a b}{ab}\),当\(ab > 1\)时,\((a b) \frac{a b}{ab} < 0\),C 选项错误。
D 选项:\(\frac{2a + b}{a + 2b} \frac{a}{b} =\frac{b(2a + b) a(a + 2b)}{b(a + 2b)}=\frac{b^2 a^2}{b(a +2b)}\),因为\(b^2 a^2 < 0\),\(b(a + 2b) > 0\),所以\(\frac{2a + b}{a + 2b} \frac{a}{b} < 0\),D 选项错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学必修5第三章同步测试
班别__________ 姓名__________ 学号__________ 成绩__________
一、选择题。
(10×4分=40分)
1.若R c b a ∈,,,且b a >,则下列不等式一定成立的是 ( )
A .c b c a -≥+
B .bc ac >
C .
02
>-b
a c D .0)(2
≥-c b a
2.若0<<b a ,则下列不等关系中,不能成立的是
( )
A .b a 1
1>
B .a
b a 11>-
C .3
3b a > D .3
232b a >
3.若实数a 、b 满足a+b=2,是b
33+a
的最小值是 ( )
A .18
B .6
C .23
D .243
4.如果不等式ax 2+bx+c<0 (a≠0)的解集是φ,那么 ( )
A .a<0,且b 2-4ac>0
B .a<0且b 2-4ac≤0
C .a>0且b 2-4ac≤0
D .a>0且b 2-4ac>0
5.若角α,β满足-2π<α<2π,-2π<β<2π则2α+β的取值范围是 ( )
A .(-π,0)
B .(-π,π)
C .(-2
3
π,2π) D .(-π23,2
3
π) 6.有以下四个命题,其中真命题为 ( )
A .原点与点(2,3)在直线2x +y+3=0异侧
B .点(2,3)与点(3,2)在直线x -y=0的同侧
C .原点与点(2,1)在直线y -3x +2 =0的异侧
D .原点与点(2,1)在直线y -3x +2 =0的同侧 7.不等式3x -2y -6>0表示的区域在直线3x -2y -6=0 的 ( ) A .右上方 B .右下方 C .左上方 D .左下方
8.由⎪⎩
⎪
⎨⎧>>≤-+0004x y y x 所确定的平面区域内整点的个数是 ( )
A .3个
B .4个
C .5个
D .6个
9.已知x 、y 满足约束条件⎪⎩
⎪
⎨⎧-≥≤≤+11y x y y x ,Z=2x+y 的最大值是 ( )
A .-5
B .23
C .3
D .5
10.下列选项正确的是
A .函数y=sin 2a+ 4/sin 2a 的最小值是 4
B .函数y=sina+ 1/sina 的最小值是 2
C .6+11>3+14
D .58 > 312
二、填空题。
(4×4分=16分)
11、用三条直线x+2y=2,2x+y=2,x-y=3围成一个三角形,则三角形内部区域(不包括边界)
可用不等式表示为___________ 12、已知:0<x <1,则函数y=x (3-2x )的最大值是___________ 13、若x >5/4 ,则y=4x -1+-54x 1
的最小值是___________
14、某校伙食长期以面粉和大米为主食,而面食每100克含蛋白质6个单位,含淀粉4个单
位,米食每100克含蛋白质3个单位,含淀粉7个单位,学校要求给学生配制盒饭,每盒饭至少有8个单位的蛋白质和10个单位的淀粉,设每盒盒饭需要面食x (百克),米
食y (百克).用数学关系式表示上述要求的x,y: __________ 三、解答题。
(共44分)
15、比较下列各组中两个代数式的大小:
⑴x 2+3与3x ;
⑵已知a,b 为正数,且a ≠b ,比较a 3
+b 3
与a 2
b+ab
2
16、已知A={xㄧx2-3x-4<0 },B={xㄧx2-4x+3>0 },
求A∩B
17、不等式mx2-m x+1>0,对任意实数x都成立,求m的取值范围。
18、某养鸡厂想筑一个面积为144平方米的长方形围栏。
围栏一边靠墙,筑成这样的围栏最少要用多少米铁丝网?此时利用墙多长?
19、某汽车公司有两家装配厂,生产甲、乙两种不同型的汽车,若A厂每小时可完成1辆甲型车和2辆乙型车;B厂每小时可完成3辆甲型车和1辆乙型车。
今欲制造40辆甲型车和乙型车,问这两家工厂各工作几小时,才能使所费的总工作时数最小
高二数学必修5第三章同步测试答案 一、选择题
二、填空题。
11、⎪⎩⎪⎨⎧<>+<+3y -x 2y 2x 22y x 12、89
13、6 14、⎪⎪⎩⎪⎪⎨⎧≥≥≥+≥+0
y 0x 10y 74x 8
3y 6x
三、解答题。
15、解:(1)x 2+3-3x (2)a 3 +b 3-(a 2b+ab 2)
= x 2-3x+
4
9
-49
+3 =(a 3-a 2b )+(b 3-ab 2)
=(x -23
)2 +43
>0 = a 2(a -b )+ b 2 (b -a ) ∴ x 2+3>3x =( a 2-b 2)( a -b ) =( a -b)2( a +b )
∵ a,b 为正数,且a ≠b ∴ ( a -b)2>0, a +b >0 ∴ ( a -b)2( a +b ) >0 ∴ a 3 +b 3>a 2b+ab 2 16、解:A={x ㄧx 2-3x-4<0 }={x ㄧ-1< x <4 }
B={x ㄧx 2-4x+3>0 }={x ㄧx >3或x <1} A ∩B={x ㄧ-1< x <4 }∩{x ㄧx >3或x <1} ={x ㄧ-1< x <1 或3< x <4}
17、解:当m=0时,1>0,不等式成立,∴ m=0
当m ≠0时,则有
⎩⎨⎧<∆>00m 即⎩⎨⎧<-=∆>0
40
2
m m m ⇒0<m<4 ∴m 的取值范围{m ㄧ0≤m<4 }
18、解:设长方形围栏的长为x 米,宽为y 米,要用铁丝网s 米,则xy=144 S=x+2y ≥2xy 2=21442⨯=242(米)
当x=2y,即x=122, y=62时,等号成立,S min =242
∴筑成这样的围栏最少要用242米铁丝网,此时利用墙122米。
19、解:设A 厂工作x 小时,B 厂生产y 小时,总工作时数为T 小时,则它的目标函数为
T=x +y 且x +3y≥40 ,2x+y≥40 ,x≥0 ,y≥0 可行解区域如图,
由图知当直线l :y =-x +T 过Q 点时,纵截距T 最小,
解方程组⎩
⎨⎧=+=+40y 2x 40
y 3x 得Q (16,8)
故A 厂工作16小时,B 厂工作8小时,可使所费的总工作时数最少。