飞机空气动力性能
飞行原理及空气动力学知识

飞行原理及空气动力学知识飞行原理及空气动力学知识飞机的空气动力性能是决定飞机飞行性能的一个重要因素。
飞行员既要熟悉飞机空气动力的产生和变化,同时也要清楚飞机空气动力性能的基本数据。
下面是店铺为大家带来的飞行原理及空气动力学知识,欢迎大家阅读浏览。
一. 滑行飞机不超过规定的速度,在地面所作的直线或曲线运动叫滑行。
对滑行的基本要求是:飞机平稳地开始滑行,滑行中保持好速度和方向,并使飞机能停止在预定的位置。
飞机从静止开始移动,拉力或推力必须大于最大静摩擦力,故飞机开始滑行时应适当加大油门。
飞机开始移动后,摩擦力减小,则应酌量减小油门,以防加速太快,保持起滑平稳。
滑行中,如果要增大滑行速度,应柔和加大油门,使拉力或推力大于摩擦力,产生加速度,使速度增大,要减小滑行速度,则应收小油门,必要时,可使用刹车。
二. 起飞飞机从开始滑跑到离开地面,并升到一定高度的运动过程,叫做起飞。
飞机起飞的操纵原理飞机从地面滑跑到离地升空,是由于升力不断增大,直到大于飞机重力的结果。
而只有当飞机速度增大到一定时,才可能产生足以支持飞机重力的升力。
可见飞机的起飞是一个速度不断增加的加速过程。
;剩余拉力较小的活塞式螺旋桨飞机的起飞过程,一般可分为起飞滑跑、离地、小角度上升(或一段平飞)、上升四个阶段。
对有足够剩余拉力的螺旋桨飞机,或有足够剩余推力的喷气式飞机,因可使飞机加速并上升,故起飞一般只分三个阶段,即起滑跑、离地和上升。
(一)起飞滑跑的目的是为了增大飞机的速度,直到获得离地速度。
拉力或推力愈大,剩余拉力或剩余推力也愈大,飞机增速就愈快。
起飞中,为尽快地增速,应把油门推到最大位置。
1.抬前轮或抬尾轮前三点飞机为什么要抬前轮?前三点飞机的停机角比较小,如果在整个起飞滑跑阶段都保持三点姿态滑跑,则迎角和升力系数较小,必然要将速度增大到很大才能产生足够的升力使飞机离地,这样,滑咆距离势必很长。
因此,为了减小离地速度,缩短滑跑距离,当速度增大到一定程度时就需要抬起前轮作两点姿态滑跑,以增大迎角和升力系数。
飞机空气动力学原理

飞机空气动力学原理飞机空气动力学原理是指飞机在飞行过程中受到空气力学的影响,从而产生升力和阻力的原理。
空气动力学是航空工程中的重要基础学科,它研究飞机在空气中运动时所受到的各种力和力的作用规律,是飞机设计、飞行控制和飞行性能计算的理论基础。
了解飞机空气动力学原理对于飞机设计、飞行控制和飞行性能的提高具有重要意义。
首先,飞机的升力是通过翼面和机身等部件与空气的相互作用产生的。
当飞机在空气中飞行时,翼面上方的气压比下方小,产生了升力。
这种空气动力学原理被称为卡门涡街原理,是飞机能够在空中飞行的基础。
同时,飞机的阻力也是由空气动力学原理产生的。
飞机在飞行过程中,受到空气的阻力,这种阻力是飞机飞行中需要克服的,也是影响飞机速度和燃油消耗的重要因素。
其次,飞机的机动性能与空气动力学原理密切相关。
在飞机设计中,需要考虑飞机在不同速度和高度下的机动性能,这就需要对飞机的空气动力学原理进行深入研究。
通过对飞机的升力、阻力和稳定性等参数的分析,可以优化飞机的设计,提高飞机的机动性能,使其更加适应不同的飞行环境。
此外,飞机的飞行控制也是基于空气动力学原理进行设计和实现的。
飞机在飞行过程中需要通过操纵飞行控制面来改变飞机的姿态和飞行状态,从而实现飞机的飞行控制。
这就需要深入理解飞机在空气中的运动规律,根据空气动力学原理设计飞机的飞行控制系统,保证飞机的飞行安全和稳定性。
总的来说,飞机空气动力学原理是飞机设计和飞行控制的重要理论基础,对于提高飞机的性能和安全具有重要意义。
通过深入研究和理解飞机在空气中的运动规律,可以不断优化飞机的设计和飞行控制系统,提高飞机的机动性能和飞行安全性。
因此,对于飞机设计师和飞行员来说,深入理解飞机空气动力学原理是至关重要的,也是他们不断提高自身技术水平和飞机性能的关键。
飞行器的气动力学特性与稳定性研究

飞行器的气动力学特性与稳定性研究在飞行器的设计与开发中,气动力学特性和稳定性是极为重要的研究方向。
本文将探讨飞行器的气动力学特性和稳定性的相关内容,并分析其对飞行器性能和飞行安全的影响。
1. 引言飞行器的气动力学特性和稳定性是指在飞行过程中,飞机受到空气流动作用力的描述和研究。
它涉及到飞行器的气动力、阻力、升力和配平等关键参数,对飞行器的操纵性、机动性和飞行安全性起到决定性的作用。
2. 气动力学特性2.1 升力与阻力飞行器在空气中产生升力和阻力,升力使得飞行器能够克服重力并保持在空中平衡,而阻力则是抵消飞行器前进方向上的动力。
研究升力和阻力的大小和变化规律,有助于优化飞行器的设计和提高其性能。
2.2 气动力气动力是指空气对飞行器产生的作用力,包括升力、阻力和横向力等。
这些力的大小和方向对飞行器的飞行表现和控制至关重要。
通过研究气动力的特性,可以优化飞行器的结构和外形,提高其机动性和稳定性。
3. 稳定性稳定性是指飞行器在不同飞行状态下保持平衡和可控性的能力。
飞行器的稳定性可以分为静态稳定性和动态稳定性。
静态稳定性是指在静止或稳定飞行状态下,飞行器能够自动恢复平衡位置的能力。
动态稳定性是指在飞行状态变化时,飞行器在一定时间内恢复到稳定状态的能力。
3.1 静态稳定性飞行器的静态稳定性取决于其几何形状、重心位置和机翼等设计参数。
通过合理调整这些参数,可以使飞行器在平衡位置附近具有稳定性,并能够自动回复到平衡状态。
静态稳定性的研究对于飞行器的安全性和操纵性至关重要。
3.2 动态稳定性飞行器的动态稳定性研究主要涉及到飞行器的振动和响应特性。
在飞行过程中,飞机受到外界扰动时,其能否迅速恢复到稳定状态,直接关系到飞行器的飞行安全性。
因此,了解和分析飞行器动态稳定性的特性,有助于预测和避免可能出现的不稳定情况。
4. 影响因素飞行器的气动力学特性和稳定性受多种因素影响,如飞行速度、空气密度、飞行高度、机翼形状和尺寸等。
空气动力学在飞机中的应用

空气动力学在飞机中的应用一、飞机气动力性能研究飞机气动力性能是指飞机运动中的空气动力学问题,包括阻力、升力、稳定性和控制等方面。
在设计飞机时,需要通过气动力测试获得飞机的气动特性,如飞行速度、升力系数、阻力系数和滚转、俯仰和偏航的阻力、升力和动力系数等。
通过这些数据,可以进一步推导出飞机的稳定性和控制性能,从而精确地设计出符合需求的飞机。
二、飞机空气动力设计优化飞机的翼型、机身和尾翼等部件都需要经过空气动力设计优化,以满足对飞机某些特定要求,如高升力系数、低阻力系数等。
设计优化需要采用计算机辅助设计软件,模拟不同设计方案的气动力性能,并通过优化算法得出最优方案。
三、飞机气动噪声控制气动噪声是指飞机在飞行过程中由于空气流动引起的噪声,对周围环境和航空器本身都会产生影响。
控制气动噪声是飞机设计中一个重要的目标。
控制气动噪声需要从翼型、机身、发动机进气、襟翼等方面入手,采用减噪技术来减少气动噪声的产生。
四、飞机稳定性和控制性能研究飞机的稳定性和控制性能直接影响到飞行安全和操纵性,是飞机设计中的重要问题。
稳定性研究包括静态稳定、动态稳定和自稳性分析,控制性能研究包括操纵质量、慌张性、阶跃响应等方面。
通过空气动力学模拟和试验,可以获得精确的稳定性和控制性能参数,指导飞机设计和飞行测试。
五、飞机结构强度分析飞机的结构强度和气动性能紧密相关,因为飞机结构设计需要满足飞机在飞行过程中所受的各种气动载荷。
空气动力学模拟和试验可以为飞机结构强度分析提供载荷数据,指导各个部件的强度设计和选型。
空气动力学在飞机设计中的应用非常广泛,涉及到飞机气动力性能、设计优化、气动噪声控制、稳定性和控制性能研究以及结构强度分析等方面。
随着计算机技术和试验技术的不断发展,空气动力学在飞机设计中的应用将会越来越重要。
飞机飞行时,受到空气流动的影响,包括阻力、升力、推力和重力等,而这些力量的平衡和协调是保证飞机在空中稳定飞行和安全运作的重要因素。
翼型的高速空气动力特性

超音速气流晚,M 临界小产生局部超音速气流早。M 临界是衡量机翼
空气动力性能的一个很重要的参数。
• 临界M数的大小与最低压强点处的压力系数有关。最低压强
点处的压力系数(p不可压)min 越小,表示该点的局部气流速度较远
前 方来流速度大得越多,温度下降越多,即局部音速减小越多, 产生局部超音速气流越早,所以临界M数也越小。
• (三)阻力特性
• 飞行M数增大,一方面前缘压强由于空气压缩性的影响 而有额外增加,压差阻力系数增大。但增大很有限。另一 方面飞行M数增大(或者飞行速度增大,或者音速减小一气 温降低,粘性系数μ减小),雷诺数Re增大,导致摩擦阻力 系数减小。但减小也很有限。于是,随着飞行M数的增大, 压差阻力系数的增大和摩擦阻力系数的减小相抵,机翼型 阻系数(压差阻力系数与摩擦阻力系数之和)基本不随飞行M 数而变化。
而大于飞行速度。局部速度的加快,必然引起局
部温度降低,从而局部音速也减小。这样,随着 飞行速度逐渐增大,在上表面最低压强点(即局 部气流速度最大的那一点)处的气流也不断加快, 而该点的局部音速则不断减小。于是,局部气流 速度与局部气流音速逐渐接近,以致相等。
•
当飞行速度增大到一定程度时,机翼表面
最低压强点的气流速度刚好等于该点的气流音速,
• (三)翼型的跨音速升力特性
• 1、升力系数随飞行M效的变化
•
图3—2—4为机翼的升力系数C y 随飞行M数变化的曲线。可
以看出,在跨音速阶段,随着飞行M数的增大,升力系数先增大,
随后减小,接着又增大,而后又减小。升力系数之所以有如此起
伏变化,是机翼上下表面出现了局部超音速区和局部激波的结果。
• 飞行M数小于临界M效时,机翼上下表面全部是亚音速气流, 升力系数按亚音速规律变化;M效增大,空气压缩性影响明显, 使升力系数增大。图3—2—4中A点以前的一段曲线,反映了亚 音速阶段升力系数随飞行M数的变化规律。
5.空气动力学与飞行性能

3.1飞机的自由度 有六个自由度:三个平移和三个转动
y立轴
My Mz
Mx
z横轴
3.2飞机的运动
绕横轴的转动 称为俯仰运动
绕纵轴的转动 称为横滚运动
绕立轴的转动称为偏航运动
3.3飞机的稳定性
欲使物体具有稳定性
① 物体在受到扰动后能够产生稳定力矩,使物体具有 自身恢复到平衡状态的趋势
② 在恢复过程中同时产生阻力力矩,保证物体最终恢 复到平衡状态
大气环境
飞 行 环 境
空间环境
是航空器的唯一飞行环境,飞行原理:借助 空气 产生的升力来平衡地球引力,借助发 动机推力平衡空气阻力
是航天器的主要飞 行环境,飞行原理: 借助惯性离心力, 前行阻力减小,借 助惯性向前
目的: 为了准确描述飞行器的飞行性能,就 必须 建立一个统一的标准,即标准大气
国际标准大气规定 大气被看成完全气体,服从气体状态方程 以海平面的高度为零。且在海平面上,大气的 标准状态为 气温T=15摄氏度 压强P=1个标准大气压(10330kg/m ² ) 密度ƥ= 1.225kg/m3 音速a=341m/s
航程 飞机在无风和不加油 的条件下,连续飞行 耗尽可用燃油时飞行 的水平距离
着陆滑跑距离 飞机从接地点开始,经滑跑 减速直至完全停止下来所经 过的距离叫着陆滑跑距离
在起飞降落时增加机翼的升 力,从而降低飞机离地和接 地速度,缩短起飞和降落滑 跑距离,目前使用的增升装 置原理主要有三类:
1..增大翼型弯度 2.增大机翼面积 3.延缓机翼上的附面层分离
阻力是与飞机运动轨迹平行,与飞行速度方向相反 的力。阻力阻碍飞机的飞行,但没有阻力飞机又无法 稳定飞行。
X
Cx
飞机各部件之间 的平滑过渡和整流 包皮,可以有效地 减小干扰阻力的大 小。
空气动力学中的空气动力学性能分析

空气动力学中的空气动力学性能分析空气动力学是研究物体在空气中运动时产生的各种力和现象的学科。
在航空、航天、汽车、火箭等工程领域,空气动力学的研究建模和分析是非常重要的。
空气动力学性能分析是空气动力学领域中非常重要的一个研究方向,它通过数学建模和计算模拟,来分析空气对物体的影响,从而评估其在不同条件下的性能和优化设计。
空气动力学性能分析中的主要参数空气动力学性能分析中涉及的主要参数包括气动力系数、升阻比、马赫数等。
气动力系数是气动力学研究中最常用的参数之一,它是指物体受到气体力作用时,物体受到的力和气体密度、速度、物体的尺寸和几何形状等基本参数的关系。
在航空、航天领域,研究飞行器的气动力系数,可以用以确定飞行器飞行状态和飞行器的稳定性和操纵性等问题。
升阻比是描述飞机性能的另一个主要参数,它是指飞机所受到的升力与阻力的比值。
升阻比越大,说明飞机的飞行性能越好。
马赫数是指物体运动速度与声速的比值。
在空气动力学研究中,贡献因素重要的是超音速情况下的马赫数。
当物体的速度超过了声速时,气体流的性质会发生变化,这个变化在空气动力学中是具有非常重要的意义的。
空气动力学性能分析中的方法在空气动力学性能分析中,有很多方法和技术可供选择。
根据不同的问题和应用领域,选择不同的方法可以取得更好的效果。
计算流体力学(CFD)方法是一种非常有效的空气动力学性能分析方法。
CFD利用计算机模拟流体运动,是物体气流细节描述的一种常用方法,能够实现更为精细和准确的流体分析。
实验测量是另一种常用的空气动力学性能分析方法。
通过实验测量,可以得到比较准确的气动力系数、升阻比等参数,但是需要进行相应的实验创制,准备设备、样品,完成实验操作。
实验测量是非常复杂和耗费时间和费用的。
分析建模则是基于数理统计方法,通过对实验测量和CFD数据的分析,建立数学模型,来分析影响飞行器性能的各种因素。
空气动力学性能分析在实际工程中的应用空气动力学性能分析可以在航空、航天、汽车、火箭等领域得到应用。
飞机空气动力学原理

飞机空气动力学原理
飞机空气动力学原理是研究飞机在空中飞行时受到的空气力学力的学科。
飞机在飞行过程中,必须克服引起阻力的空气阻力,同时利用空气动力学力来产生升力和推进力。
首先,了解空气动力学原理的基础是空气的流体特性。
空气是一种气体,在空间中可以自由流动。
当飞机运动时,空气会被迫与其接触,并对其产生作用力。
这些作用力可以分为阻力、升力和推力。
阻力是飞机在空气中运动时受到的阻碍力量。
主要有两种形式,即废气阻力和气动阻力。
废气阻力是由于飞机的发动机排放废气产生的。
气动阻力是由于空气与飞机表面摩擦产生的。
为了减小阻力,飞机的外形设计通常会采用流线型,以减少气流的阻碍。
升力是使飞机脱离地面、保持在空中飞行的力量。
它是通过飞机机翼上的气动力学原理产生的。
机翼的设计使得上表面的气压比下表面低,从而产生一个向上的升力。
此外,机翼上的襟翼也能够改变机翼形状,进一步调节升力的大小。
推力是飞机在空中前进的力量。
通常是由发动机产生的,通过喷射燃烧产物来产生反作用力推动飞机。
推力的大小取决于发动机的性能以及喷气速度。
除了上述三种主要的空气动力学力以外,还有其他一些影响飞机飞行的因素。
例如重力会使飞机朝下落,需要通过升力来抵
消。
风也会对飞机产生侧向的力量,需要通过控制飞机的舵面来调整方向。
总的来说,飞机空气动力学原理是飞机在空中飞行时受到的各种空气力学力的研究。
了解这些原理可以帮助我们更好地设计和改进飞机,提高飞行性能和安全性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
飞机的空气动力性能
飞机的空气动力性能是决定飞机飞行性能的一个重要因素。
飞行员既要熟悉飞
机空气动力的产生和变化,同时也要清楚飞机空气动力性能的基本数据。
这对
于更好地认识飞机的飞行性能,正确处理飞行中遇到的有关问题,非常重要。
所谓飞机的空气动力性能,其中包括飞机的最大升力系数、最小阻力系数
和最大升阻比等。
应该注意:升力系数或阻力系数仅仅是影响升力或阻力的因素之一,系数
本身并不就是升力或阻力。
确定升、阻力的大小,不仅要看升力系数、阻力系
数的大小,而且还要看影响升、阻力大小的其它因素,空气密度、飞行速度和
机翼面积是否变化和如何变化。
因此,不能把升力系数同升力、阻力力系数同
阻力混为一谈。
我们在分析迎角对升力或阻力的影响时,之所以常用升力系数
或阻力系数来表达这种影响,而不直接用升力或阻力来表达,其优点是可以撇
开空气密度。
飞行速度和翼面积对升、阻力的影响。
这样就突出了迎角对升、
阻力的影响,对分析问题和计算都带来很大方便。
一、飞机的升阻比
衡量一架飞机的空气动力性能,不能单从升力,或单从阻力一个方面来看,必须把两者结合起来,分析升力和阻力之间的对比关系。
所谓升阻比,就是在同一迎角下升力与阻力之比。
升阻比也就是同一迎角
下升力系数与阻力系数之比。
由于升力系数和阻力系数的大小主要随迎角而变,所以升阻比的大小也主要随迎角而变。
也就是说,升阻比与空气密度、飞行速度、机翼面积的磊小无关。
因为这些因素变了,升力和阻力都按同一比例随之
改变,而不影响两者的比值。
升阻比大,说明在取得同一升力的情况下,阻力比较小。
升阻比越大,飞
机的空气动力性能越好,对飞行越有利。
二、飞机的空气动力性能曲线
(一)升力系数
升力系数为零,这个迎角叫无升力迎角。
翼型不同,无升力迎角的大小也
不同。
对称翼型的无升力迎角为零度,非对称翼型的无升力迎角一般为负值。
从无升力迎角开始,迎角增加,升力系数增加,直到最大升力系数。
最大升力
系数所对应的迎角,叫临界迎角。
超过临界迎角,迎角再增加,升力系数将急
剧降低。
迎角从无升力迎角减小,升力系数将变为负值,也就是升力变成负升
力了。
(二)阻力系数
小迎角范围内时,迎角增加,阻力系数增加缓慢;迎角比较大时,迎角增加,阻力系数增加较快;接近或超过临界迎角时,迎角增加,阻力系数急剧增加。
应当注意,阻力系数永远不会为零,也就是说飞机上的阻力是始终存在的。
(三)升阻比
升阻比有一个最大值,叫最大升阻比。
最大升阻比所对应的迎角叫有利迎角。
从无升力迎角开始,迎角增加,因升力系数比阻力系数增加的倍数多,所
以升阻比是增大的,到有利迎角,升阻比达到最大值。
超过有利迎角,再增大
迎角,因升力系数比阻力系数增加的倍数少,所以升阻比减小。
飞机在有利迎
角下飞行是有利的,所以一般飞机飞行的迎角都不大。
(四)空气动力系数
前面我们讲了,在每一个迎角下,都有一个升力系数和阻力系数。
所谓飞
机的空气动力系数曲线,就是把飞机的升力系数和阻力系数随迎角而变化的关系,综合地用一条曲线画出来,这条曲线就是飞机的空气动力系数曲线,简称
飞机极线。
飞机极线比较全面地表达了飞机的空气动力性能,在空气动力计算
中很有用处。
从飞机极线上还可得出各迎角下的升阻比,以及最大升阻比和有利迎角。
各迎角下的升阻比,可以由飞机极线上查出的升力系数和阻力系数计算出来。
也榀以从飞机极线上量得的性质角计算出来。
所谓性质角,就是飞机的总空气
动力与飞机升力之间的夹角。
性质角的大小,表明总空气动力(沿相对气流方向)向后倾斜的程度。
性质角小,说明总空气动力向后倾斜得少,阻力小。
可见,性质角的大小,表明了升阻比的大小。
迎角由无升力迎角逐渐增大时,性质角减小,升阻比增大。
性质角最小时
所对应的迎角为有利迎角,此时升阻比最大。
例如飞机放起落架后,同一迎角下的阻力系数增大,而升力系数变化不大,因而性质角变大,升阻比减小,曲线向右平称。
显然有利迎角也变大了。