大学物理实验误差理论
大学物理:物理实验误差理论

仪器误差(Error of Instrument)
注明 或 最小分度值的一半
单次测量 结果的误差可以取仪器误差; 多次测量 比较其误差和仪器误差,取两者
中较大的为结果的误差。
相对误差(Relative Uncertainty)
平均绝对误差、标准偏差、极限误差、仪器误差等,都是
有单位的,都是绝对误差,现在用 代x 表。
大学物理:物理实验误差理论
实验一 关于测量的基本理论
Exp.1 Basic Knowledge about Measurement
课程任务(Goal of Experiment)
➢培养实践、理论两方面的科学素养
➢培养和提高科学实验能力:准备实验, 使用仪器设备,观察分析判断,记录、 处理、报告实验过程和结果
Standard Deviation,Limited Error
标准偏差:
x
n
2
(xi x)
i 1
n 1
n
(xi )2
i 1
n 1
平均值的标准偏差:
x
n
n
2
(xi x)
i 1
n(n 1)
n
(xi )2
i 1
n(n 1)
根据例1的数据,计算标准偏差
科学计数法:形式 a 10n 1 a 10
有效数字由 a 确定,单位的变化只是引起 n 的变化。 例如:地球的半径可表示为:
r 6.371103km 6.371106m
如何确定测量结果的有效数字?
误差本身也是有效数字,记录测量数据的有效数字的 最后一位应该到误差发生的一位。
L (15.3 0.5)mm
误差理论-绪论-附答案

绪论大学的物理实验课是高等院校理科的一门必修基础课程,是对学生进行科学实验基本训练,提高学生分析问题和解决问题能力的重要课程。
它与物理理论课具有同等重要的地位。
这里主要介绍测量误差理论、实验数据处理、实验结果表述等初步知识,这是进入大学物理实验前必备的基础。
物理实验可分三个环节:1)课前预习,写预习报告。
2)课堂实验,要求亲自动手,认真操作,详细记录。
3)课后进行数据处理,完成实验报告。
其中:预习报告的要求:1)实验题目、实验目的、实验原理(可作为正式报告的前半部分)。
2)画好原始数据表格,单独用一张纸。
实验报告内容:(要用统一的实验报告纸做)1)实验题目;2)实验目的;3)实验原理:主要公式和主要光路图、电路图或示意图,简单扼要的文字叙述;4)主要实验仪器名称、规格、编号5)实验步骤:写主要的,要求简明扼要;6) 数据处理、作图(要用坐标纸)、误差分析。
要保留计算过程,以便检查;7) 结论:要写清楚,不要淹没在处理数据的过程中;8) 思考题、讨论、分析或心得体会;9) 附:原始数据记录。
测量误差及数据处理误差分析和数据处理是物理实验课的基础,是一切实验结果中不可缺少的内容。
实验中的误差分析,其目的是对实验结果做出评定,最大限度的减小实验误差,或指出减小实验误差的方向,提高测量结果的可信赖程度。
对低年级大学生,重点放在几个重要概念及最简单情况下的误差处理方法。
一、测量与误差1、测量:把待测量与作为标准的量(仪器)进行比较,确定出待测量是标准量的多少倍的过程称为测量。
测量得到的实验数据应包含测量值的大小和单位。
2、测量的分类测量可以分为两类。
按照测量结果获得的方法来分,可分为直接测量和间接测量两类;而从测量条件是否相同来分,又可分为等精度测量和非等精度测量。
直接测量就是把待测量与标准量直接比较得出结果。
如用米尺测量物体的长度,用电流表测量电流等。
间接测量是借助函数关系由直接测量的结果计算出的物理量。
大学物理实验-误差理论与数据处理综述

误差理论与数据处理
②依据测量的条件进行分类
※等精度测量:
就是在一定的条件下,由同一测量者,操作同 一测量工具,采用同一方法,测量同一对象, 这样的测量称为等精度测量.即测量的一切条 件都是不变的,变化的因素很小时也可认为是 等精度测量.
不等精度测量 :
③依据测量可重复性进行分类
单次测量: ※多次测量:
误差理论与数据处理
①误差的绝对值有界 有界性 ②小误差出现的概率大于大误差出现 单峰性 的概率 对称性 ③n很大时,绝对值相等、符号相反的 误差,概率相等 ④n很大时,由于正负误差相互抵消, 抵偿性 各误差的代数和趋于零。 通过数学推导,可以得到随机误差的概率密度 分布函数
误差理论与数据处理
或者
一般难以控制,往往不可抗拒。
如:电磁场等的微扰,测量者的心理等。
误差理论与数据处理
•服从的规律: 服从数理统计规律。 •处理方法:
多次测量取平均值,也就是用最佳 估计的办法得近似真值。
③过失误差
由于实验者粗心大意或环境突发干扰而造成的, 该测量值不属于正常测量范围,在处理数据时 应予以剔除。
误差理论与数据处理
误差理论与数据处理
误差理论与数据处理
《大学物理实验》课程安排
本学期(8次课16学时)
(1)误差理论与数据处理 (2)实验项目7个 14学时 2学时
误差理论与数据处理
本次课程内容:
一、基本概念 二、随机误差的正态分布率 三、数据处理 *(重点)
四、实验常用的数据处理 方法 *(重点) 五、物理实验课的基本程 序和要求
准确度高 精密度低
准确度高 精密度高
精 确 度 高
误差理论与数据处理
4)误差的表示方法:
大学物理实验—误差及数据处理

误差及数据处理物理实验离不开测量,数据测完后不进行处理,就难以判断实验效果,所以实验数据处理是物理实验非常重要的环节。
这节课我们学习误差及数据处理的知识。
数据处理及误差分析的内容很多,不可能在一两次学习中就完全掌握,因此希望大家首先对其基本内容做初步了解,然后在具体实验中通过实际运用加以掌握。
一、测量与误差1. 测量概念:将待测量与被选作为标准单位的物理量进行比较,其倍数即为物理量的测量值。
测量值:数值+单位。
分类:按方法可分为直接测量和间接测量;按条件可分为等精度测量和非等精度测量。
直接测量:可以用量具或仪表直接读出测量值的测量,如测量长度、时间等。
间接测量:利用直接测量的物理量与待测量之间的已知函数关系,通过计算而得到待测量的结果。
例如,要测量长方体的体积,可先直接测出长方体的长、宽和高的值,然后通过计算得出长方体的体积。
等精度测量:是指在测量条件完全相同(即同一观察者、同一仪器、同一方法和同一环境)情况下的重复测量。
非等精度测量:在测量条件不同(如观察者不同、或仪器改变、或方法改变,或环境变化)的情况下对同一物理量的重复测量。
2.误差真值A:我们把待测物理量的客观真实数值称为真值。
一般来说,真值仅是一个理想的概念。
实际测量中,一般只能根据测量值确定测量的最佳值,通常取多次重复测量的平均值作为最佳值。
误差ε:测量值与真值之间的差异。
误差可用绝对误差表示,也可用相对误差表示。
绝对误差=测量值-真值,反应了测量值偏离真值的大小和方向。
为了全面评价测量的优劣, 还需考虑被测量本身的大小。
绝对误差有时不能完全体现测量的优劣, 常用“相对误差”来表征测量优劣。
相对误差=绝对误差/测量的最佳值×100%分类:误差产生的原因是多方面的,根据误差的来源和性质的不同,可将其分为系统误差和随机误差两类。
(1)系统误差在相同条件下,多次测量同一物理量时,误差的大小和符号保持恒定,或按规律变化,这类误差称为系统误差。
大学物理实验误差理论讲解

2 (x)2
方差
(x)2
标准误差
由误差理论,可以证明算术平均值的实验标准偏差
x
n
2
xi x
i 1
nn 1
37 2019/6/10
如果我们把测量结果表示为
x x x
则表示在(x x)范围内包含真值 x 的
可能性是68.3%
38 88522
1
0
30 2019/6/10
算术平均值 =(1.01+1.02+2*1.03+8*1.04+8*1.05+ 5*1.06+2*1.07+2*1.08+1.09)/30=1.05
偏差Δxi -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05
17 2019/6/10
仪器误差
天平不等臂所造成的 系统误差
18 2019/6/10
aA
a A
bB
O
b
B
转轴与几何中心重合
,由于 aa bb
所以可用弧长反映角
度的大小。
由于偏心,使之用
弧长反映角度 时产
生的系统误差。如: AABB 这是由偏心
造成的。
19 2019/6/10
在一组等精度的重复测量
f(Δx)
中,其偏差位于(, )
范围内的概率为100%。
0
Δx
34 2019/6/10
f (x)
1
e
x
2
2
2
2
σ:(1)常数,(2)误差(从量纲的角度来 判断)如图所示,可以证明:
f(Δx)
大学物理实验理论课2

③ 人为方面的因素
二、正态分布 例如:用秒表测单摆的周期T,将各测量 值出现的次数列表如下。
测量值xi
次 数 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1 1 2 8 8 5 2 2 1.09 1.10 1 0
一、粗大误差产生的原因
产生粗大误差的原因是多方面的,大致可归纳为: ① 测量人员的主观原因 测量者工作责任感不强、工作过于
疲劳、缺乏经验操作不当,或在测 量时不小心、不耐心、不仔细等, 造成错误的读书或记录。
② 客观外界条件的原因
测量条件意外地改变(如机械冲击、 外界振动、电磁干扰等)。
二、判别粗大误差的准则
算术平均值的标准差
标准差的估值
x
Sx
n
(li x ) 2
i 1 n
n( n 1)
x
n
即在n次测量的等精度测量列中,算术平均值的标准差为 单次测量标准差的 1 / n ,当n愈大,算术平均值越接近被测量 的真值,测量精度也愈高。 增加测量次数,可以提高测量 精度,但测量精度是与n的平方根成 反比,因此要显著提高测量精度, 必须付出较大的劳动。由图2-3可知, σ一定时,当n>10以后, x 的减小很 慢。此外,由于增加测量次数难以 保证测量条件的恒定,从而引入新的 误差,因此一般情况下取n=10以内较为适宜。总之,提高测 量精度,应采取适当精度的仪器,选取适当的测量次数。
算术平均值是真值的最佳估值
下面来证明当测量次数无限增加时,算术平均值必然趋近于真值Lo。
i li Lo
1 2 n (l1 l 2 l n ) nLo
大学物理实验的误差理论四阶段教学法探讨

・
的数据就是错的 , 整个实验就是 失败 的。但我们的生源 现状 和 具体 的教学实 践让我们深 刻体会 到我们 的学生整体 的实 验 素质 偏低 。如果我们前期不 多加指 导,学生的实验操 作是 极其不 规范的。基于 以上三个 因素 , 我们考虑在具 体的实验 教 学中采取 基于“ 角色转换 ” 理念的 四阶段误差理论教学法 , 教学效果 良好。 第一 阶段 :创设简单生活情境 引入误差理论 不确 定度理 论对刚进 入大学的学生而言 , 由于数学工具 和物理 实验知识 的限制,是 比较难懂 的。 那么我们在讲解不 确定理论 时,就要考虑学生现有 的知识结构 , 尽量不要在高 等数学公式 的推 导上 过多纠缠 , 我们应在实 际应用过程 中让 学 生体 会它 的含义 。这 就是我们 必须要创 设一 定的物理情 境 , 学生理解 不确定度是表示 由于测量误差 的存在而对被 让
引言
一
、
大学 物理实验 课是理 工科 院校对 学生进行 实验技 能训 练的专业基础必修课程 , 是本科生接受系统 的实验 方法和实 验技能训练 的开端 。 它的主要 目的是通过大 学物 理实验的教 学使学生具备学 习各 自专业 实践课程的基本科学素质 。 让学 生学会 用不确定 度对直接 测量和 间接测量 的结 果进行评 估 是大学物理实验教 学的基本教育职 能之 一。2 0 0 4年 ,教育 部高等 学校非物 理类专业 物理基 础课程教 学指 导分委 员会 在《 非物理类理工学科大学物理 实验课程教学基本要求 》中 强调大学 物理实验 教学要 让学 生逐 步学会 用不确 定度对 直 接测 量和间接测量的结果进行评估 。现在 , 不少 高校在物 理 实验 教学 中对 不确定度 的评 定有 明确要 求 。 ,并得到较 好 的贯彻执 行。然而 , 多新升本科 院校 由于在大学物理实验 许 的师 资队伍、 科研 水平、 生源质量和教学设施 等方 面的制约 , 并未在大 学物 理实验教学 中真正执行 。 如何立足我们新建本 科 院校大 学物 理实验教学所存在 的诸 多现状 , 在大学物理 实 验教学 中执行 这一国际通用评估方法 , 使大学物理实验教 学 与各专业 实践课的教学接轨 , 是一个值得探 讨的课题 。 我们 探索 了 “ 简单 引入 、角色转换 ”的引入 方式。我们发现它 的 实施 ,既可提高我们的大学物理实验 的教 学质 量,又可提 高 我们教师 的专业素质 , 比较适合我们这类 生源底子薄 的新升
大物实验误差理论2

2.不确定度与误差
不确定度是在误差理论的基础上发展起来的,不确定度A类分量的
估算用到了标准误差计算的公式。 误差用于定性描述实验测量的有关理论和概念,不确定度用于实验 结果的定量分析和运算等。用测量不确定度代替误差评定测量结果,具 有方便性、合理性和实用性。 误差可正可负,而不确定度永远是正的。 误差是不确定度的基础,不确定度是对经典误差理论的一个补充, 是现代误差理论的内容之一,它还有待于进一步的研究、完善和发展。
3、怎样写实验报告 第一部分:预习报告 : 做实验之前认真阅读实验讲义,写好以下内容: 实验目的、实验原理、实验仪器、实验步骤及注意事项、数据记录表: (预习中完成表格的设计) 第二部分:数据处理与计算。 此部分在实验后进行,包括: 作图、计算结果与误差估算:图解法要求使用正式的坐标纸并按作图规 则进行。计算时,先将文字公式化简,再代入数值进行运算。误差估算 要预先写出误差公式,并把数据代入。 结果:按标准形式写出实验的结果。在必要时,注明结果的实验条件。 讨论:对实验中出现的问题进行说明和讨论,或写出实验心得和建议等。 作业题:完成教师指定的作业题,思考题选做。 实验报告要求同学努力做到书写清晰,字迹端正,数据记录整洁,图表 合格,文理通顺,内容简明扼要。 实验报告一律用专用的物理实验报告册书写。 4、遵守实验规则 准备充分、礼仪得当、严肃认真、接受检查、善始善终
位使用更精密的仪器,经过检定比较后给出,其符号可正可负,用△仪表 示。 ★根据仪器的级别计算仪器误差为 △仪=量程×级别% ★如果没有注明仪器级别,在物理实验教学中,对于一些连续刻度(可 估读)的仪器,一般用仪器的最小刻度的一半作为△仪;而非连续刻度 (不可估读)的仪器,一般用仪器的最小刻度作为△仪。 ★服从均匀分布的仪器的最大误差所对应的标准误差为:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 误差的表示方法: 误差的表示方法: ∆x × 100% -绝对误差 ∆x -相对误差 E = • 误差分类 -系统误差
x
-随机误差
6
系统误差
• 定义:在相同条件下多次测量同一物理量时,其误差的大小和符号 定义:在相同条件下多次测量同一物理量时,
保持不变, 或按某一确定的规律变化,这类误差称为系统误差。 保持不变, 或按某一确定的规律变化,这类误差称为系统误差。
• 区别:产生的原因不同、误差的性质和处理的方法不 同。前者是非统计量,处理方法针对具体的实验情况 来确定;后者是随机量,在处理上有一套完整的统计 方法。 • 共同之处:系统误差与随机误差都是测量误差的一个 随机误差都是测量误差的一个 分量
9
精密度、准确度、精确度
• 精密度高:指随机误差小,测量的 随机误差小,测量的数据很集中。 • 准确度高:指系统误差小,测量的平均值偏离真值小。 系统误差小,测量的平均值偏离真值小 系统误差 • 精确度高:指随机误差和系统误差都非常小,才能说 随机误差和系统误差都非常 系统误差都非常小,才能说 测量的精确度高。
4
测量的要素
• • • • •
测量对象 测量手段(仪器、方法) 测量手段(仪器、方法) 测量结果 测量单位 测量条件
5
测量误差及其分类
误差∆x=测量结果 误差 =测量结果x -真值 x0 • 误差特性:普遍性、误差是小量 误差特性:普遍性、
– 由于真值的不可知,误差实际上很难计算 由于真值的不可知, – (有时可以用准确度较高的结果作为约定真值来计 算误差) 算误差)
①小误差出现的概率比大误差出现的概率大; 小误差出现的概率比大误差出现的概率大; ②多次测量时分布对称,具有抵偿性——因此取多次测量的平 多次测量时分布对称,具有抵偿性 因此取多次测量的平 因此 均值有利于消减随机误差。 均值有利于消减随机误差。
8
系统误差与随机误差的区别和联系 系统误差与随机误差的区别和联系
误差分量和未定系统误差的联合分布范围。 误差分量和未定系统误差的联合分布范围。
• 由于真值的不可知,误差一般是不能计算的,它可 由于真值的不可知,误差一般是不能计算的,
正、可负也可能十分接近零;而不确定度总是不为 可负也可能十分接近零; 零的正值,是可以具体评定的。 零的正值,是可以具体评定的。
13
以电阻测量为例
X = x ± ∆x
(单位 单位) 单位
R = 910 . 3 ± 1 . 4 Ω
测量值的单位
包括: 包括: 测量对象 测量对象的量值 测量的不确定度
表示被测对象的真值落在( (X =x ± ∆x 表示被测对象的真值落在(x− ∆x ,x + ∆x )范 围内的概率很大, 的取值与一定的概率相联系 的取值与一定的概率相联系。) 围内的概率很大, ∆x的取值与一定的概率相联系。)
1
µ表示 x 出现概率最大的值,消除系统误差后, 表示 出现概率最大的值,消除系统误差后, 的真值。σ称为标准差 称为标准差, 通常就可以得到 x 的真值。σ称为标准差,是曲线 的拐点 x ξ = ∫x 2 p( x ) dx
σ小 σ大
x
σ = lim
n→∞
2 ∑ ( xi − µ )
n
µ = x ± 2σ µ = x ± 3σ
随机变量的分布
正态分布: 正态分布:大量相对独立微小因素共同作用下得到的随机变 量服从正态分布。 量服从正态分布。物理实验中多次独立测量得到的数据一般可以 近似看作服从正态分布。 近似看作服从正态分布。 2
p ( x; µ , σ ) =
2
1 x−µ 1 exp − σ 2π 2 σ
•
等精度测量与不等精度测量(按测量条件分) 等精度测量与不等精度测量(按测量条件分) 等精度测量是指在同一条件下进行的多次测量, 等精度测量是指在同一条件下进行的多次测量,每 是指在同一条件下进行的多次测量 次测量的可靠程度相同; 次测量的可靠程度相同; 不等精度测量是指在非同一条件下进行的多次测量, 不等精度测量是指在非同一条件下进行的多次测量, 是指在非同一条件下进行的多次测量 每次测量的可靠程度不相同。 每次测量的可靠程度不相同。
• 这两类分量在相同置信概率下用方和根方法合成总 不确定度: 不确定度:
S = S +S
2 A
2 B
(物理实验教学中一般用的总不确定度,置信概率取为95%) 物理实验教学中一般用的总不确定度,置信概率取为 )
16
二、直接测量量不确定度的估算
• 简化处理方法: 简化处理方法:
-A 类分量SA 的估算:
L = L = 120 . 09 mm
测量列的标准偏差
σ
L
=
∑
n
i =1
( Li − L ) n −1
2
= 0.03mm
12
测量误差与不确定度
• 不确定度的权威文件是国际标准化组织 不确定度的权威文件是国际标准化组织(ISO)、国际 、
计量局(BIPM)等七个国际组织 等七个国际组织1993年联合推出的 计量局 等七个国际组织 年联合推出的
• 结果表示: 结果表示:
修正掉已定系统误差项∆ -以测量列 x 的平均值 再修正掉已定系统误差项 0 得到被 测对象的量值。 测对象的量值。 -由A、B 类不确定度合成总不确定度 、 则:
X = (x − ∆0 ) ± (t n) sx + ∆
2 2
2 仪
18
关于仪器误差限
• △ins一般取基本误差限或示值误差限(仪器误差限) • 电表 △ins=k % ·量程 • 电阻箱 △R=a%·R + nRb a----电阻箱的级别 R----取用的电阻值 n-----所用的旋钮个数 Rb---常数,对于0.1级电阻箱, Rb=0.001 • 大多数情况下把△ins简化为(许多仪器误差的成因分析和各 分量限值的计算相当复杂)非随机分量的B类不确定度SB
Guide to the expression of Uncertainty in measurement
• 不确定度表示由于测量误差存在而对被测量值不能
确定的程度。不确定度是一定概率下的误差限值。 确定的程度。
• 不确定度反映了可能存在的误差分布范围,即随机 不确定度反映了可能存在的误差分布范围,
15
x x =∑ i
sx =
2 ∑ (xi − x )
二、直接测量量不确定度的估算
• 总不确定度分为两类不确定度: 总不确定度分为两类不确定度:
A 类分量 A —— 多次重复测量时用统计学方法估算的分量; 类分量S 多次重复测量时用统计学方法估算的分量; B 类分量 B ——用其他方法(非统计学方法)评定的分量。 类分量S 用其他方法( 用其他方法 非统计学方法)评定的分量。
11
随机误差的处理举例
分度的游标卡尺测某一圆棒长度L, 次测量 例:用50分度的游标卡尺测某一圆棒长度 ,6次测量 分度的游标卡尺测某一圆棒长度 结果如下(单位 结果如下(单位mm): ): 120.08,120.14,120.06, 120.10, 120.06, 120.10 则:测得值的最佳估计值为
《大学物理实验》不确定度 大学物理实验》 基础知识
1
主要内容
1 测量误差和不确定度估算的基础知识 2 实验数据有效位数的确定 3 作图法处理实验数据 4 数据的直线拟合(最小二乘法处理实验数据) 数据的直线拟合(最小二乘法处理实验数据)
一 、基本概念 测 量
• 物理实验以测量为基础:所谓测量就是借助仪器用某一 物理实验以测量为基础: 计量单位把待测量的大小表示出来。 计量单位把待测量的大小表示出来。即待测量是该计量 单位的多少倍。 单位的多少倍。 • 完整的测量结果应表示为:
• 主要来源:仪器误差、方法(理论)误差、环境误差、人员误差等 主要来源:仪器误差、方法(理论)误差、环境误差、 • 分类及处理方法: 分类及处理方法: 已定系统误差: ①已定系统误差:必须修正
电表、螺旋测微计的零位误差; 电表、螺旋测微计的零位误差; 伏安法测电阻电流表内接、外接由于忽略表内阻引起的误差。 伏安法测电阻电流表内接、外接由于忽略表内阻引起的误差。
3
测量的分类
•
直接测量和间接测量(按测量方法分) 直接测量和间接测量(按测量方法分) 直接测量就是把待测量与标准量直接比较得出结果; 直接测量就是把待测量与标准量直接比较得出结果; 就是把待测量与标准量直接比较得出结果 间接测量指利用直接测量的量与被测量之间的函数 间接测量指利用直接测量的量与被测量之间的函数 关系经过计算从而得到被测量值的测量。 关系经过计算从而得到被测量值的测量。
1 n x = ∑ xi n i =1
σx =
( xi − x ) 2 ∑
i =1 n
n −1
σx大,表示测得值很分散,随机误差分布范围宽,测量的精密度低; 表示测得值很分散,随机误差分布范围宽,测量的精密度低; σx小,表示测得值很密集,随机误差分布范围窄,测量的精密度高; 表示测得值很密集,随机误差分布范围窄,测量的精密度高; σx可由带统计功能的计算器直接求出。 可由带统计功能的计算器直接求出。
P (x)
µ ξ表示随机变量 x 在〔x1,x2〕区间出现的概率,称为置信概率。 表示随机变量 区间出现的概率,称为置信概率。 实际测量的任务是通过测量数据求得µ 的值。 实际测量的任务是通过测量数据求得 和σ的值。 的值 x µ = lim ∑ i µ = x ±σ ξ = 0.683 n→∞ n
S A = tξ (ν ) S x =
tξ (ν ) n
Sx
Sx =
( xi − x ) 2 ∑ n −1
实验中用到的 t0.95 ( n − 1) 简写为 t ,列表如下 n n