实数的基本定理
31关于实数的基本定理分析

则称α是数集S的下确界,记作 = infS.
2024/7/15
8
例2 考察下列数集的上确界与下确界
E1
{1,
1 2
, 1 ,, 3
1 n
,}
E2 {1,2,3,, n,}
E3 {x | 0 x 1}
1
{xn
1
} n
{x2k
即证明了 x n k →∞(k→∞).
2024/7/15
30
五 柯西收敛原理
Cauchy列:如果数列 具有以下特性:
>
<
则称数列
是一个基本数列.
定理7(柯西收敛准则)
数列{ xn}收敛的充分必要条件是:对于任 意给定的正数(不论它多么小),总存在正数 N ,
使得对于 m,n N 时,都有不等式 xn xm 都
推论:若存在数列{xn}的两个子列
{
x(1 nk
)
}与{
x
(2 nk
)
},分别
收敛于不同的极限,则数列{xn}必定发散 .
2024/7/15
4
例1
证明数列
sin
n
4
发散.
证明:取
n(1) k
4k
,
n( 2 ) k
8k
2,
则 子列
x(1 nk
)收
敛
于
0,而子列
x
(2 nk
)收敛于
1.
由上述推论
证明.因为数列{ xn}无界,故对任意 M>0,存在
n0 M ,使得 | x n 0 | M . 取 M=1,存在 n1 1, | x n1 | 1 , 取 M=2,存在 n2 max{2, n1} , | x n2 | 2 , 取 M=3,存在 n3 max{3, n2} , | x n1 | 3 , ……… 则存在子列 | x nk | k , (k=1,2,3,…)
实数的基本定理

第三章 关于实数的基本定理及闭区间上连续函数性质的证明六个基本定理:1实数戴德德公理 确界原理2数列的单调有界定理 3区间套定理 4聚点定理 致密性定理5数列柯西收敛准则 6有限覆盖定理定理(确界原理) 设S 为非空数集.若S 有上界,则S 必有上确界;若S 有下界,则S 必有下确界.定理 单调有界数列必收敛. 证明 不妨设{}n a 为有上界的递增数列.由确界原理,数列{}n a 有上确界,记{}n a a sup =.下面证明a 就是{}n a 的极限.事实上,任给0>ε,按上确界的定义,存在数列{}n a 中某一项N a ,使得N a a ε-<.又由{}n a 的递增性,当N n ≥时有n N a a a <<-ε.另一方面,由于a 是{}n a 的一个上界,故对一切n a 都有ε+<≤a a a n .所以当N n ≥时有εε+<<-a a a n ,即a a n n =∞→lim .同理可证有下界的递增数列必有极限,且其极限即为它的下确界.(区间套定理) 若[]{}n n b a ,是一个区间套,则在实数系中存在唯一的一点ξ,使得ξ∈[]n n b a ,,,2,1=n ,即ξ≤n a n b ≤, .,2,1 =n (2) 证 由(1)式,{}n a 为递增有界数列,依单调有界定理,{}n a 有极限ξ,且有 .,2,1, =≤n a n ξ (3) 同理,递减有界数列{}n b 也有极限,并按区间套的条件(¡¡)有ξ==∞→∞→n n n n a b lim lim , (4)且 .,2,1, =≥n b n ξ (5) 联合(3)、(5)即得(2)式。
最后证明满足(2)的ξ是唯一的。
设数ξ'也满足,,2,1, =≤'≤n b a n n ξ 则由(2)式有≤'-ξξ.,2,1, =-n a b n n 由区间套的条件(¡¡)得≤'-ξξ0)(lim =-∞→n n n a b ,故有ξξ='.由(4)式容易推得如下很有用的区间套性质:推论 若[]),2,1(, =∈n b a n n ξ是区间套[]{}n n b a ,所确定的点,则对任给的ε>0,存在N>0,使得当n >N 时有[]n n b a ,⊂().;εξU致密性定理定义2 设S 为数轴上的点集,ξ为定点(它可以属于S ,也可以不属S).ξ的任何邻域内都含有S 中无穷多个点,则称ξ为点集S 的一个聚点.等价定义如下:定义2’ 对于点集S ,若点ξ的任何ε邻域内都含有S 中异于ξ的点,即Φ≠S U );(0εξ,则称ξ为S 的一个聚点.定义2” 若存在各项互异的收敛数列{}S x n ⊂,则其极限ξ=∞→n n x lim 称为S 的一个聚点现证定义2’ ⇒定义2”设ξ为S(按定义2’)的聚点,则对任给的0>ε,存在()S U xεξ;∈.令11=ε,则存在()S U x11;εξ∈;令⎪⎭⎫ ⎝⎛-=12,21min x ξε,则存在()S U x22;εξ∈,且显然12x x ≠;令⎪⎭⎫⎝⎛-=-1,1min n n x n ξε,则存在()S U x n n εξ;∈,且11,,-n n x x x 与互异。
《数学分析》第七章 实数基本定理

第七章 实数基本定理 ( 1 8 时)§1 关于实数集完备性的基本定理( 4 时 )一. 确界存在定理:回顾确界概念.Th 1 非空有上界数集必有上确界;非空有下界数集必有下确界.二. 单调有界原理: 回顾单调和有界概念 .Th 2 单调有界数列必收敛.三. Cantor 闭区间套定理:1. 区间套: 设} ] , [ {n n b a 是一闭区间序列. 若满足条件ⅰ> 对n ∀, 有 ] , [11++n n b a ⊂] , [n n b a , 即 n n n n b b a a ≤<≤++11, 亦即 后一个闭区间包含在前一个闭区间中;ⅱ> ,0→-n n a b )(∞→n . 即当∞→n 时区间长度趋于零.则称该闭区间序列为一个递缩闭区间套, 简称为区间套 .简而言之, 所谓区间套是指一个 “闭、缩、套” 区间列.区间套还可表达为:, 1221b b b a a a n n ≤≤≤≤<≤≤≤≤ ,0→-n n a b )(∞→n . 注:这里涉及两个数列} {n a 和 } {n b , 其中} {n a 递增,} {n b 递减.例如 } ] 1 , 1 [ {n n -和} ] 1 , 0 [ {n 都是区间套.但} ] 21 , ) 1 (1 [ {nn n +-+、} ] 1 , 0 ( {n 和 } ] 11 , 1 [ {nn +-都不是. 2. Cantor 区间套定理:Th 3设} ] , [ {n n b a 是一闭区间套. 则存在唯一的点ξ,使对n ∀有∈ξ] , [n n b a .简言之, 区间套必有唯一公共点.四. Cauchy 收敛准则 —— 数列收敛的充要条件:1. 基本列:回顾基本列概念.基本列的直观意义.基本列亦称为Cauchy 列. Cauchy 列的否定:2. Cauchy 收敛原理:Th 4 数列} {n a 收敛 ⇔ } {n a 是Cauchy 列.五. 致密性定理:数集的聚点(亦称为接触点):定义 设E 是无穷点集. 若在点ξ(未必属于E )的任何邻域内有E 的无穷多个点, 则称点ξ为E 的一个聚点.数集E =} 1{n有唯一聚点0, 但E ∉0; 开区间 ) 1 , 0 (的全体聚点之集是闭区间 ] 1 , 0 [; 设Q 是] 1 , 0 [中全体有理数所成之集, 易见Q 的聚点集是闭区间] 1 , 0 [.1. 列紧性: 亦称为Weierstrass 收敛子列定理.Th 5 ( Weierstrass ) 任一有界数列必有收敛子列.2. 聚点原理 : Weierstrass 聚点原理.Th 6 每一个有界无穷点集必有聚点.六. Heine –Borel 有限复盖定理:复盖: 先介绍区间族} , {Λ∈=λλI G .定义 (复盖 )设E 是一个数集,G 是区间族.若对∍Λ∈∃∈∀ , , λE x λI x ∈,则称区间族G 复盖了E , 或称区间族G 是数集E 的一个复盖. 记为. ,Λ∈⊂λλλI E 若每个λI 都是开区间,则称区间族G 是开区间族.开区间族常记为}, , ) , ( { Λ∈<=λβαβαλλλλM . 定义 (开复盖 )数集E 的一个开区间族复盖称为E 的一个开复盖,简称为E 的一个复盖.子复盖、有限复盖、有限子复盖.例1 } ) 1 , 0 ( ), 23 , 2 ( {∈=x x x M 复盖了区间) 1 , 0 (, 但不能复盖] 1 , 0 [; } ) , ( , ) 2 , 2 ( {b a x x b x x b x H ∈-+--=复盖) , [b a , 但不能复盖] , [b a . 1. Heine –Borel 有限复盖定理:Th 7 闭区间的任一开复盖必有有限子复盖.七 实数基本定理等价性的证明证明若干个命题等价的一般方法.本节证明七个实数基本定理等价性的路线 : 证明按以下三条路线进行:Ⅰ: 确界原理 ⇒ 单调有界原理 ⇒ 区间套定理 ⇒ Cauchy 收敛准则 ⇒ 确界原理 ;Ⅱ: 区间套定理 ⇒ 致密性定理 ⇒ Cauchy 收敛准则 ;Ⅲ: 区间套定理 ⇒ Heine –Borel 有限复盖定理 ⇒ 区间套定理 .一. “Ⅰ” 的证明: (“确界原理 ⇒ 单调有界原理”已证明过 ).1. 用“确界原理”证明“单调有界原理”:Th 2 单调有界数列必收敛 .证2. 用“单调有界原理”证明“区间套定理”:Th 3 设} ] , [ {n n b a 是一闭区间套. 则存在唯一的点ξ,使对n ∀有∈ξ] , [n n b a . 证推论1 若∈ξ] , [n n b a 是区间套} ] , [ {n n b a 确定的公共点, 则对0>∀ε,,N ∃当N n >时, 总有] , [n n b a ) , (εξ ⊂.推论 2 若∈ξ] , [n n b a 是区间套} ] , [ {n n b a 确定的公共点,则有n a ↗ξ, n b ↘ξ, ) (∞→n .3. 用“区间套定理”证明“Cauchy 收敛准则”:Th 4 数列} {n a 收敛 ⇔ } {n a 是Cauchy 列.引理 Cauchy 列是有界列. ( 证 )Th 4 的证明: ( 只证充分性 ) 教科书P 217—218上的证明留作阅读.现采用[3]P 70—71例2的证明, 即三等分的方法, 该证法比较直观.4. 用“Cauchy 收敛准则” 证明“确界原理” :Th 1 非空有上界数集必有上确界 ;非空有下界数集必有下确界 .证 (只证“非空有上界数集必有上确界”)设E 为非空有上界数集 . 当E 为有 限集时 , 显然有上确界 .下设E 为无限集, 取1a 不是E 的上界, 1b 为E 的上界. 对 分区间] , [11b a , 取] , [22b a , 使2a 不是E 的上界, 2b 为E 的上界. 依此得闭区间列} ] , [ {n n b a . 验证} {n b 为Cauchy 列, 由Cauchy 收敛准则,} {n b 收敛; 同理} {n a 收敛. 易见n b ↘. 设n b ↘β.有 n a ↗β.下证β=E sup .用反证法验证β的上界性和最小性.二. “Ⅱ” 的证明:1. 用“区间套定理”证明“致密性定理”:Th 5 ( Weierstrass ) 任一有界数列必有收敛子列.证 ( 突出子列抽取技巧 )Th 6 每一个有界无穷点集必有聚点.证 ( 用对分法 )2.用“致密性定理” 证明“Cauch y 收敛准则” :Th 4 数列} {n a 收敛 ⇔ } {n a 是Cauchy 列.证 (只证充分性)证明思路 :Cauchy 列有界→ 有收敛子列→验证收敛子列的极限即为} {n a 的极限.Ex [1]P 223—224 1—7,11.三. “Ⅲ” 的证明:1. 用“区间套定理”证明“Heine –Borel 有限复盖定理”:证2. 用“Heine –Borel 有限复盖定理” 证明“区间套定理”:证 采用[3]P 72例4的证明.Ex [1]P 224 8—12 选做,其中 1 0 必做.§3 闭区间上连续函数性质的证明 ( 4 时 )一. 有界性:命题1 ] , [)(b a C x f ∈, ⇒ 在] , [b a 上)(x f =) 1 (O .证法 一 ( 用区间套定理 ). 反证法.证法 二 ( 用列紧性 ). 反证法.证法 三 ( 用有限复盖定理 ).二. 最值性:命题2 ] , [)(b a C x f ∈⇒)(x f 在] , [b a 上取得最大值和最小值. (只证取得最大值) 证( 用确界原理) 参阅[1]P 170.三. 介值性: 证明与其等价的“零点定理 ”.命题3 (零点定理)证法一(用区间套定理).证法二(用确界原理).不妨设,0)(>a f 0)(<b f .令} ] , [ , 0)( | {b a x x f x E ∈>=, 则E 非空有界, ⇒ E 有上确界. 设E sup =ξ,有∈ξ] , [b a . 现证 0)(=ξf , ( 为此证明)(ξf 0≥且)(ξf 0≤ ).取n x >ξ且n x ) ( ,∞→→n ξ.由)(x f 在点ξ连续和0)(≤n x f ,⇒,0)(lim )(≤=∞→n n x f f ξ,⇒ξE ∉.于是) ( , ∞→→∍∈∃n t E t n n ξ. 由)(x f 在点ξ连续和0)(>n t f ,⇒0)(lim )(≥=∞→n n t f f ξ.因此只能有0)(=ξf . 证法三 (用有限复盖定理).Ex [1]P 232 1,2,5.四. 一致连续性:命题4 ( Cantor 定理 )证法一 (用区间套定理).参阅[1]P 171[ 证法一 ]证法二 (用列紧性).参阅[1]P 171[ 证法二 ]Ex [1]P 232 3,4, 6*;P 236 1,2,4.。
实数知识点

1、相反数:实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。
2、绝对值:一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数:如果a与b互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
4、数轴:规定了原点、正方向、单位长度的直线称为数轴。
原点、正方向、单位长度是数轴的三要素。
5、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。
实数和数轴上的点是一一对应的关系。
实数的运算定理1、加法:(1)同号两数相加,取原来的符号,并把它们的绝对值相加;(2)异号两数相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。
可使用加法交换律、结合律。
2、减法:减去一个数等于加上这个数的相反数。
3、乘法:(1)两数相乘,同号取正,异号取负,并把绝对值相乘。
(2)n个实数相乘,有一个因数为0,积就为0;若n个非0的实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数为奇数个时,积为负。
(3)乘法可使用乘法交换律、乘法结合律、乘法分配律。
4、除法:(1)两数相除,同号得正,异号得负,并把绝对值相除。
(2)除以一个数等于乘以这个数的倒数。
(3)0除以任何数都等于0,0不能做被除数。
5、乘方与开方:乘方与开方互为逆运算。
6、实数的运算顺序:乘方、开方为三级运算,乘、除为二级运算,加、减是一级运算,如果没有括号,在同一级运算中要从左到右依次运算,不同级的运算,先算高级的运算再算低级的运算,有括号的先算括号里的运算。
数列极限与实数系的基本定理

在xε ∈ S 满足xε > β − ε = β − (β − α) = α, 与α也为S的上确界矛盾,从而上确界唯一.
同理可证下确界唯一.
例
{sin
π n
设E1 = (1, 1/2, · · · , 1/n, · · ·); E2 : n ∈ N+}. 则
=
(1, 2, · · · , n · · ·); E3
于进行严格的推理论证. 因此,有必要使用分析语言给出确切的定义.
定义1.2.1 设{xn}是一个数列,a是一个实数,如果对于任意给定的ε > 0,存在一个
自然数N ,使得凡是n > N 时,都有|xn − a| < ε, 就说数列{xn}当n趋向无穷大时以a为
极限,记成 lim
n→∞
xn
= a,
也可以简记为xn
→ a(n → ∞),
我们也说数列{xn}
收敛于a.
存
在极限的数列称为收敛数列,没有极限的数列称为发散的.
若 lim
n→∞
xn
=
0,
则称{xn}
为无
穷小量.
注
1、
lim
n→∞
xn
=
a
⇐⇒
xn
−
a为无穷小量.
2、 在定义中,正数ε必须是任意给定的,不能用一个很小的正数来代替.
3、 当正数ε给定之后,满足要求的N 通常是与ε有关的,此时N + 1, N + 2等也满足
n
2
xiyi ≤
i=1
n
x2i
i=1
n
yi2 .
i=1
其中等号成立当且仅当数组{xi}与{xi}对应成比例. 4、调合平均值-几何平均值-算术平均值不等式(简称平均值不等式)
实数六大基本定理

实数的六大基本定理是指以下六个关于实数的重要数学定理:
实数存在性定理(Completeness Axiom):实数集合是一个完备的数学对象,它满足实数序列的收敛性和有界性,即实数集合中的任意非空有上界的子集都有最小上界。
实数唯一性定理:实数具有唯一性,即在实数集合中不存在两个不同的数值对应于同一数。
实数无理数定理:实数中存在无理数,即不能表示为两个整数的比例形式的实数,如根号2和圆周率π。
实数有理数定理:实数中存在有理数,即可以表示为两个整数的比例形式的实数,如整数和分数。
实数连续性定理:实数集合是连续的,即对于任意两个实数a和b(a < b),在它们之间存在无限多个实数。
实数的稠密性定理:实数集合中的有理数和无理数是稠密分布的,即在实数集合中的任意两个不同实数之间,总存在一个有理数或一个无理数。
这些基本定理在实数的理论和应用中起着重要的作用,它们为实数的性质和运算提供了基础和保障。
这些定理是由数学家们在研究和探索实数的性质中发现和证明的重要结果。
实数完备性六个定理的互相证明

0 , x S ,使得 x ,
记为 xn a ( n ) 。如果不存在实数 a,使 xn 收敛于 a,则称数列 xn 发散。
lim xn a 0 , N N , n N ,有 xn a 。
二、一些基本概念
1.有界集: 设 S 是一个非空数集,如果 M R ,使得 x S ,有 x M ,则称 M 是 S 的
一个上界;如果 m R ,使得 x S ,有 x m ,则称 m 是 S 的一个下界。当数集 S 既有上界,又有下界时,称 S 为有界集。
a1 b1 a b a b , b1 S ,则记 a2 , b2 = 1 1 , b1 否则记 a2 , b2 = a1 , 1 1 ;...;对 2 2 2 an 1 bn 1 an 1 bn 1 a b an1 , bn1 二等分为 , bn 1 ,若 n 1 n 1 , bn 1 S , an 1 , 、 2 2 2
则记 a2 , b2 =
a1 b1 a b , b1 否则记 a2 , b2 = a1 , 1 1 ;...;对 an 1 , bn 1 二等分为 2 2
an 1 bn 1 an 1 bn 1 a b , bn 1 ,若 n 1 n 1 非 s 的上界,则记 、 an 1 , 2 2 2 an 1 bn 1 a b an , bn = , bn 1 否则记 an , bn = an 1 , n 1 n 1 ;...,得到一列闭区间 2 2
上界,则记 a2 , b2 =
2(5)实数基本定理

15
例4 设有两个正数满足0 a1 b1,
作 an1
anbn
,
bn1
an
2
bn
.
证明:
lim
n
an
,
lim
n
bn
存在且相等.
分析:只要证明 an ,bn
满足闭区间套定理的条件即可.
16
上面的定理只适合于特殊的数列,
对于一般的数列,我们先介绍子列的概念.
在数列 xn中依次任意抽出无穷多项:
1
1 x
x
1
1 n
n1
结合夹逼准则,可证 lim (1 1 )x e
x
x
7
(3) 考虑 lim (1 1 )x
x
x
令 y x
可证明 lim (1 1 )x e
x
x
故 lim(1 1)x e
x
x
令t 1 x
1
得到 lim(1 x) x e x0
8
例1 判断下列数列的收敛性
(1)
an
1 31
lim
n
xn
0
lim
xn1
1 lim
1 xn 1
x n n
n
xn
2
10
例3 证明数列 xn a a 极限存在.
a ,a 0(n重根式)的
证 (1) 显然 xn1 xn ,
所以{xn} 是单调增加的;
(2) 因为 x1
a 1
1 4a 2
数列的极限值
假定 xk 1
1 4a , 2
用归纳法可证明
1 xn
,
x1
2
Q.
可以证明: xn
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 关于实数的基本定理及闭区间上连续函数性质的证明六个基本定理: 1实数戴德德公理 确界原理2数列的单调有界定理 3区间套定理 4聚点定理 致密性定理5数列柯西收敛准则 6有限覆盖定理定理(确界原理) 设S 为非空数集.若S 有上界,则S 必有上确界;若S 有下界,则S 必有下确界.定理 单调有界数列必收敛. 证明 不妨设{}n a 为有上界的递增数列.由确界原理,数列{}n a 有上确界,记{}n a a sup =.下面证明a 就是{}n a 的极限.事实上,任给0>ε,按上确界的定义,存在数列{}n a 中某一项N a ,使得N a a ε-<.又由{}n a 的递增性,当N n ≥时有n N a a a <<-ε.另一方面,由于a 是{}n a 的一个上界,故对一切n a 都有ε+<≤a a a n .所以当N n ≥时有εε+<<-a a a n ,即a a n n =∞→lim .同理可证有下界的递增数列必有极限,且其极限即为它的下确界.(区间套定理) 若[]{}n n b a ,是一个区间套,则在实数系中存在唯一的一点ξ,使得ξ∈[]n n b a ,,,2,1=n ,即ξ≤n a n b ≤, .,2,1 =n (2) 证 由(1)式,{}n a 为递增有界数列,依单调有界定理,{}n a 有极限ξ,且有 .,2,1, =≤n a n ξ (3) 同理,递减有界数列{}n b 也有极限,并按区间套的条件(¡¡)有ξ==∞→∞→n n n n a b lim lim , (4)且 .,2,1, =≥n b n ξ (5) 联合(3)、(5)即得(2)式。
最后证明满足(2)的ξ是唯一的。
设数ξ'也满足 ,,2,1, =≤'≤n b a n n ξ则由(2)式有≤'-ξξ.,2,1, =-n a b n n 由区间套的条件(¡¡)得≤'-ξξ0)(lim =-∞→n n n a b ,故有ξξ='.由(4)式容易推得如下很有用的区间套性质:推论 若[]),2,1(, =∈n b a n n ξ是区间套[]{}n n b a ,所确定的点,则对任给的ε>0,存在N>0,使得当n >N 时有[]n n b a ,⊂().;εξU致密性定理定义2 设S 为数轴上的点集,ξ为定点(它可以属于S ,也可以不属S).ξ的任何邻域内都含有S 中无穷多个点,则称ξ为点集S 的一个聚点.等价定义如下:定义2’ 对于点集S ,若点ξ的任何ε邻域内都含有S 中异于ξ的点,即Φ≠S U );(0εξ,则称ξ为S 的一个聚点.定义2” 若存在各项互异的收敛数列{}S x n ⊂,则其极限ξ=∞→n n x lim 称为S 的一个聚点现证定义2’ ⇒定义2”设ξ为S(按定义2’)的聚点,则对任给的0>ε,存在()S U xεξ;∈.令11=ε,则存在()S U x11;εξ∈;令⎪⎭⎫ ⎝⎛-=12,21min x ξε,则存在()S U x22;εξ∈,且显然12x x ≠;令⎪⎭⎫⎝⎛-=-1,1min n n x n ξε,则存在()S U x n n εξ;∈,且11,,-n n x x x 与互异。
无限地重复以上步骤,得到S 中各项互异的数列{}n x ,且由nx n n 1≤<-εξ,易见ξ=∞→n n x lim 。
下面我们应用区间套定理来证明聚点定理.定理 (魏尔斯特拉斯(Weierstrass)聚点定理) 实轴上的任一有界无限点集S 至少有一个聚点. 证 因S 为有界点集,故存在0>M ,使得[]M M S ,-⊂,记[][]M M b a ,,11-=现将[]11,b a 等分为两个子区间.因S 为无限点集,故两个子区间中至少有一个含有S 中无穷多个点,记此子区间为[]22,b a ,则[][]2211,,b a b a ⊃且()M a b a b =-=-112221再将[]22,b a 等分为两个子区间,则其中至少有一个子区间含有S 中无穷多个点,取出这样的一个子区间,记为[]33,b a ,则[][]3322,,b a b a ⊃,且()2212233M a b a b =-=- 将此等分子区间的手续无限地进行下去,得到一个区间列[]{}n n b a ,,它满足[][]11,,++⊃n n n n b a b a ,,,2,1 =n021→=--n n n Ma b ()∞→n 即[]{}n n b a ,是区间套,且其中每一个闭区间都含有S 中无穷多个点.由区间套定理,存在唯一的一点[]n n b a ,∈ξ,,,2,1 =n .于是由定理5的推论,对任给的0>ε,存在0>N ,当M n >时有[]()εξ;,U b a n n ⊂.从而()εξ;U 内含有S 中无穷多个点,按定义2,ξ为S 的一个聚点.推论(致密性定理) 有界数列必含有收敛子列.证 设{}n x 为有界数列.若{}n x 中有无限多个相等的项,则由这些项组成的子列是一个常数列,而常数列总是收敛的.若{}n x 不含有无限多个相等的项,则其在数轴上对应的点集必为有界无限点集,故由聚点定理,点集{}n x 至少有一个聚点,记为ξ。
则存在{}n x 的一个收敛子列(以ξ为其极限).推论 若{}n x 是一个无界数列,则存在子列k n x →∞。
证明 取界为k ,则存在着一个项1k k n n x x -位于之后,则有k n x k >。
(前面有限个项是有界的)。
Cauchy 收敛原理 数列{ }n x 收敛 ⇔ 0,,N N ε+∀>∃∈当,n m N >时,有n m x x ε-<。
证 充分性设数列{}n a 满足柯西条件.先证明{}n a 是有界的.为此,取,1=ε则存在正整数N ,当m=N+1及n>N 时有.11<-+N n a a由此得n a =+-≤+-+++111N n N N n a a a a a 111+<++N N a a .令 M=max {},1,,,,121++N N a a a a则对一切正整数n 均有.M a n ≤于是,由致密性定理,有界数列{}n a 必有收敛子列{},k n a 设k n k a ∞→lim =A .对任给的ε>0,存在K>0,当m,n,k>K 时,同时有2ε<-m n a a (由柯西条件),).lim (2∞→=<-k n n A a A a k k 由ε因而当取m=n k (K k >≥)时,得到 .22εεε=+<-+-≤-A a a a A a k k n n n n这就证明了A a n n =∞→lim .(海涅一博雷尔(Heine —Borel)有限覆盖定理) 设H 为闭区间[]b a ,的一个(无限)开覆盖,则从H 中可选出有限个开区间来覆盖[]b a ,证 用反证法 假设定理的结论不成立,即不能用H 中有限个开区间来覆盖[]b a ,.将[]b a ,等分为两个子区间,则其中至少有一个子区间不能用H 中有限个开区间来覆盖.记这个子区间为[]11,b a ,则[][]b a b a ,,11⊂,且()a b a b -=-2111. 再将[]11,b a 等分为两个子区间,同样,其中至少有一个子区间不能用H 中有限个开区间来覆盖.记这个子区间为[]22,b a ,则[][]1122,,b a b a ⊂,且()a b a b -=-22221. 重复上述步骤并不断地进行下去,则得到一个闭区间列[]{}n n b a ,,它满足 [][]11,,++⊃n n n n b a b a ,,,2,1 =n()()∞→→-=-n a b a b n n n 021即[]{}n n b a ,是区间套,且其中每一个闭区间都不能用H 中有限个开区间来覆盖由区间套定理,存在唯一的一点()n n b a ,∈ξ, ,2,1=n .由于H 是[]b a ,,的一个开覆盖,故存在开区间()H ∈βα,,使()βαξ,∈.由定理5推论,当n 充分大时有 []()βα,,⊂n n b a这表明[]n n b a ,只须用H 中的一个开区间()βα,就能覆盖,与挑选[]n n b a ,时的假设“不能用H 中有限个开区间来覆盖”相矛盾.从而证得必存在属于H 的有限个开区间能覆盖[]b a ,. 有界性定理 若函数f 在闭区间[]b a ,上连续,则f 在[]b a ,上有界.证 [证法一] (应用致密性定理) 倘若f 在[]b a ,上无上界,则对任何正整数n ,存在[]b a x n ,∈,使得()n x f n >.依次取 ,2,1=n ,则得到数列{}[]b a x n ,⊂.由致密性定理,它含有收敛子列{}k n x ,记ξ=∞→k n k x lim 。
由b x a k n ≤≤及数列极限的保不等式性,[]b a ,∈ξ.利用f 在点ξ连续,推得()()+∞<=∞→ξf x f k n k lim另一方面,由n x 的选取方法又有()()+∞=⇒+∞→≥>∞→k k n k k n x f k n x f lim与(1)式矛盾.所以f 在[]b a ,有上界.类似可证f 在[]b a ,有下界,从而f 在[]b a ,上有界.[证法二] (应用有限覆盖定理) 由连续函数的局部有界性(定理4.2),对每一点[],,b a x ∈'都存在邻域);(x x U ''δ及正数x M ',使得[].,);(,)(b a x U x M x f x x '''∈≤δ考虑开区间集 []{}b a x x U H x ,);(∈''='δ,显然H 是[]b a ,的一个无限开覆盖.由有限覆盖定理,存在H 的一个有限子集()[]{}k i b a x x U i i i ,,2,1,,;* =∈=H δ覆盖了[]b a ,,且存在正数k M M M ,,,21 ,使得对一切()[]b a x U x i i ,; δ∈有().,,2,1,k i M x f i =≤ 令,max 1i ki M M ≤≤=则对任何[]b a x ,∈,x 必属于某()()M M x f x U i i i ≤≤⇒δ;.即证得f 在[]b a ,上有界. 注:开区间上的连续函数既可能有界,也可能无界。